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Abstract

This paper takes a minimax regression approach to incorporate aversion to
parameter uncertainty into the mean-variance model. The uncertainty-averse
minimax mean-variance portfolio is obtained by minimizing with respect to the
unknown weights the upper bound of the usual quadratic risk function over a
fuzzy ellipsoidal set. Beyond the existing approaches, our methodology o¤ers
three main advantages: �rst, the resulting optimal portfolio can be interpreted
as a Bayesian mean-variance portfolio with the least favorable prior density, and
this result allows for a comprehensive comparison with traditional uncertainty-
neutral Bayesian mean-variance portfolios. Second, the minimax mean-variance
portfolio has a shrinkage expression, but its performance does not necessarily lie
within those of the two reference portfolios. Third, we provide closed form ex-
pressions for the standard errors of the minimax mean-variance portfolio weights
and statistical signi�cance of the optimal portfolio weights can be easily con-
ducted. Empirical applications show that incorporating aversion to parameter
uncertainty leads to more stable optimal portfolios that outperform traditional
uncertainty-neutral Bayesian mean-variance portfolios.
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1 Introduction

The mean-variance model of Markowitz (1952) is one of the most prominent advance

in guiding the practice of portfolio selection. This model provides a rigorous frame-

work within which the investor maximizes his expected utility. Yet, the model is

unfeasible in practice because the true parameters characterizing the expected utility

are not known. A common remedy to this problem is to adopt a plug-in approach

which consists in replacing the true unkown parameters by their sample analogues.

However, sample estimates are di¤erent from the true parameters and the result-

ing estimation error in most cases leads to optimized mean-variance portfolios that

perform poorly out-of-sample (Michaud (1989), Best and Grauer (1991), Black and

Litterman (1992), DeMiguel et al. (2009)). To take care of the problem of estimation

error in the mean-variance model, an investor can maximize a Bayesian expected

utility function de�ned with respect to a prior density of the unknown parameters.

This approach pionnered by Zellner and Chetty (1965) and Bawa, Brown and Klein

(1979) was further investigated in the literature with proven empirical success (Frost

and Savarino (1986), Jorion (1985, 1986), Pastor and Stambaugh (2000)).

The Bayesian mean-variance analysis supposes that investors have full informa-

tion and are certain that the speci�ed prior density is perfectly identical to the true

density. Nevertheless investors may not have perfect con�dence on any prior density

due to incomplete information and should manifest this by considering multiple prior

densities, each with unknown plausibility. In the more general context of decision

making under uncertainty, this situation referred as Knightian uncertainty (or ambi-

guity) describes the uncertainty to the underlying probabilities. As Ellsberg (1961)

shows in several thought experiments, decision-makers are averse to Knightian un-

certainty because they prefer known to unknown and ambiguous probabilities of the

states of the world.1 Moreover, Gilboa and Schmeidler (1989) demonstrate that the

1See also Becker and Brownson (1964) and Camerer and Weber (1992) for more designed experi-
ments which con�rm Ellsberg�s intuition.
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maxmin expected utility decision rule, that is, the decision rule which maximizes the

minimum expected utility over the set of prior densities is compatible with utility

maximization under aversion to Knightian uncertainty. Applications of the maxmin

principle in the context of portfolio selection are nested to the general framework

of robust optimisation (Goldfarb and Iyengar (2003), Tütücün and Koenig (2004),

Garlappi, Uppal and Wang (2007)). The main principle is to maximise the investor�s

expected utility in the worst case scenario regarding the estimation of the unknown

parameters. Our paper is related to these works and attempts to provide within a

regression framework a methodology to incorporate the investors�s aversion to para-

meter uncertainty when computing the mean-variance portfolio.2

The development of our methodology follows three key steps: �rst, we build on

Britten-Jones (1999) and demonstrate that the computation of the feasible mean-

variance portfolio can be recast within a regression framework by minimizing the

usual quadratic risk function. Second, we introduce parameter uncertainty into the

mean-variance model through a constrained regression problem. In the constrained

problem, we minimize the quadratic risk function under the constraint that the true

weights of the mean-variance portfolio lie within a fuzzy ellipsoidal set. This set sum-

marizes the investor�s incomplete information about the true weights of the mean-

variance portfolio. Third we rely on the minimax principle (Wald (1945)) to incor-

porate the investor�s aversion to parameter uncertainty. Formally, among all possible

allocations that re�ect his incomplete information given by the fuzzy ellipsoidal set,

he chooses the best allocation in the worst case, that is, the allocation which achieves

the smallest maximum quadratic risk.

It is worth noticing that our methodology contrasts with alternative existing ap-

proaches (Goldfarb and Iyengar (2003), Tütücün and Koenig (2004), Wang (2005),

Garlappi, Uppal and Wang (2007)) in three major points: �rst, we make a clear

connection between our methodology and the Bayesian mean-variance models. For-
2 In the rest of the paper, the term "uncertainty" will thus refer to the "Knightian uncertainty".
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mally we demonstrate following Pilz (1986) that our minimax mean-variance portfo-

lio can be interpreted as a Bayesian mean-variance portfolio with the least favorable

prior density over the fuzzy ellipsoidal set. This result that gives more insights on

the ability of our methodology to model aversion to parameter uncertainty allows

for a clear comparison with traditional Bayesian mean-variance models. Second, it

turns out from our analytic expressions that the minimax mean-variance portfolio

shrinks the weights of the feasible mean-variance portfolio towards the weights of the

minimum-variance portfolio. However and importantly, the performance of the mini-

max mean-variance portfolio does not necessarily lie within the performances of these

target portfolios. Third, closed form expressions for the standard errors of the min-

imax mean-variance portfolio weights are available. This is possible because of the

regression method we adopt. Hence, statistical signi�cance of the optimal portfolio

weights can be easily conducted.

Two empirical applications are conducted to illustrate the relevance of the min-

imax mean-variance portfolio. In the �rst application we use excess returns on the

Fama-French�s 6 size and book-to-market assets and compare the accuracy and the

stability of the weights of the minimax mean-variance portfolio with the weights of

the feasible mean-variance portfolio. The results show that allowing for parameter

uncertainty aversion radically decreases the imprecision and the instability of mean-

variance portfolios weights. The second application evaluates the economic bene�t

of incorporating aversion to parameter uncertainty into the mean-variance model,

comparing the out-of-sample performance of the minimax mean-variance portfolio

with traditional Bayesian mean-variance portfolios. Using the Fama-French�s 25 size

and book-to-market assets, the obtained results show that relying on the least favor-

able prior density leads to optimized Bayesian mean-variance portfolios that exhibit

higher out-of-sample performances compared to the Bayes-Stein shrinkage portfolio of

Jorion (1986) and the Bayesian data-and-model approach of Pastor and Stambaugh

(2000).
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The rest of the paper is organized as follows. In section 2 we brie�y review the

standard mean-variance model of asset allocation along with the associated problem

of parameter uncertainty aversion. In section 3 we introduce our methodology to

model aversion to parameter uncertainty and present the minimax mean-variance

portfolio. Section 4 illustrates numerically the gain arising from taking into account

aversion to parameter uncertainty notably in term of portfolio weights accuracy and

stability, while in Section 5 we compare our minimax mean-variance portfolio with

traditional Bayesian mean-variance portfolios. Further extensions are considered in

section 6 and the last section concludes the paper.

2 Mean-Variance Model and Aversion to Parameter Un-
certainty

Consider an investor who faces the choice of a portfolio among the universe of k risky

investable assets. At time t, let rt be the k � 1 vector of excess (over the risk-free

rate) returns on the k risky assets. We denote �t and �t respectively the mean and

the covariance matrix of rt. In the mean-variance model, the investor chooses the

portfolio that maximizes the expected return for a given level of risk. It is well-known

that this strategy is equivalent to select at time T the portfolio x = (x1; :::; xk)
0 to

maximize the next-period mean-variance utility

UT+1 (x) = E (rT+1)0 x�



2
x0V ar (rT+1)x (1)

= �0T+1x�



2
x0�T+1x;

where the coe¢ cient 
 is the degree of relative risk aversion of the investor. The

solution to the above problem is

w = 
�1��1T+1�T+1: (2)

This solution, when scaled to meet the restriction that the asset weights must

sum to one, leads to the so-called tangency portfolio

w = x
�
�0x
��1

= ��1T+1�T+1
�
�0��1T+1�T+1

��1
; (3)
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with � a vector k � 1 of ones. The tangency portfolio is independent of the risk

aversion parameter 
 and corresponds to the portfolio of risky assets that maximizes

the Sharpe ratio. Theoretically, (3) illustrates that the mean-variance optimal rule

is computationally unfeasible since the true parameters characterizing the tangency

portfolio are unknown. The usual plug-in solution consists in replacing the unknown

parameters by corresponding estimators. Under the assumption that rt is indepen-

dent and identically distributed, and follows a multivariate normal distribution, nat-

ural estimators (maximum likelihood) for the two moments correspond respectively

to the empirical mean and covariance matrix, that is

b�T+1 = n�1Pt=T
t=T�n+1 rt; (4)

b�T+1 = n�1Pt=T
t=T�n+1

�
rt � b�T+1� �rt � b�T+1�0 ; (5)

with n the available sample size. As a result, the feasible tangency portfolio is

computed by replacing the two unknown moments in (3) by their empirical counter-

parts, leading to the following allocation

bw = b��1T+1b�T+1 ��0b��1T+1b�T+1��1 : (6)

However, the estimator in (6) are di¤erent from the true weights in (3) and from

the di¤erence arises the problem of estimation error. The cost of ignoring this er-

ror has been widely documented in the literature. Indeed, relying on the empirical

moments generally leads to instable sub-optimal mean-variance portfolios with ex-

tremely large positive and negative weights which are not meaningful economically.

The Bayesian mean-variance analysis o¤ers a convenient frame within which the prob-

lem of estimation error can be treated. Formally, Bayes estimators of the tangency

portfolio weights have the following expression

bwb = �b�bT+1��1 b�bT+1��0 �b�bT+1��1 b�bT+1��1 ; (7)

where b�bT+1 and b�bT+1 correspond to the �rst two moments of the predictive density
p (rT+1 jFT ) of asset returns, with FT the set of information available. The predictive
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density is obtained by integrating with respect to �T+1 and �T+1 the a posteriori

density p
�
rT+1; �T+1;�T+1 jFT

�
, that is

p (rT+1 jFT ) =
Z
�T+1

Z
�T+1

p
�
rT+1; �T+1;�T+1 jFT

�
d�T+1d�T+1: (8)

The a posteriori density is derived by updating an a priori density p
�
�T+1;�T+1

�
of the unknown parameters with the sampling information. The theoretical contribu-

tions in this branch of the literature di¤er from the choice of the prior density. Earlier

Bayesian methods (Brown (1976, 1978), Klein and Bawa (1976)) rely on di¤use-prior

while Bayes-Stein shrinkage (Frost and Savarino (1986), Jorion (1985, 1986)) are built

with conjugate or hyperparameter priors. Priors that re�ect an investor�s degree of

belief in a given asset pricing model lead to the so-called Bayesian data-and-model

method (Pastor (2000), Pastor and Stambaugh (2000), Wang (2005)).

A central hypothesis in the Bayesian analysis is that uncertainty is mesurable and

can be summarized by a single prior density. This kind of uncertainty is called risk

by Knight (1921) and should be di¤erentiated from the non mesurable uncertainty or

ambiguity describing the situation where decision-makers fail to assess with accuracy

the probability distribution of the relevant parameters. This distinction is at the core

of our paper and we provide in the sequel an econometric methodology which treats

the problem of parameter uncertainty along with the reported evidence that investors

are averse to such ambiguous situations (Ellsberg (1961)).

3 Aversion to Parameter Uncertainty and the Minimax
Mean-Variance Portfolio

This section is divided into two parts. In the �rst part we extend the results in

Britten-Jones (1999) and introduce an ellipsoid-constrained regression model that

solves the computation of the mean-variance portfolio when parameter uncertainty

is of concern. In the second part, we rely on the minimax principle to solve the

constrained regression model and show that the resulting allocation rule deals with
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the issue of parameter uncertainty aversion.

3.1 Incorporating Parameter Uncertainty into the Mean-Variance
Model

Our starting point is the regression-based approach for the computation of the mean-

variance portfolio (Britten-Jones (1999)). Formally, consider the following regression

model �
Y = Xw + u;

E (u) = 0; E (uu0) = �2u
; (9)

where X is the n�k matrix of excess returns on the k risky assets, w the k�1 vector

of parameters, u the noise term, and Y the n � 1 constant vector with all entries

equal to � with

� =
�
�0b��1T+1b�T+1��1 �1 + b�0T+1b��1T+1b�T+1� : (10)

Let D = f ew : ew = CY g be the class of homogeneous linear solutions for the
regression model (9) with C a k�n unknown matrix and consider the quadratic risk

function R ( ew;w)
R ( ew;w;A) = E ( ew � w)0A ( ew � w) ;

with A a k � k positive de�nite matrix. The following proposition recasts the com-

putation of the feasible tangency portfolio within a regression framework.

Proposition 1 With the regression model (9) and the class of homogeneous linear

solutions ew = CY , the optimal unbiased estimator of w under the risk function

R ( ew;w;A) is identical to the weights of the feasible tangency portfolio in (6), that is
argminew2D R ( ew;w;A) =

�
X 0X

��1
X 0Y = bw: (11)

The proof is straightforward using �rst the equivalence between the least-squares

estimation of (9) and the minimization of the quadratic risk function R ( ew;w;A) (see
Theorem 4.1 in Rao and Toutenburg (1999)), and second the results of Theorem 1 in

Britten-Jones (1999). The proposition states that the traditional plug-in method to
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compute the weights of the tangency portfolio and the minimization of the quadratic

risk function R ( ew;w;A) lead to the same solution.
Now, the question of interest is how one can exploit this result to deal with

the issue of estimation error. First let us recall that from a Bayesian perspective,

the problem of estimation error in the mean-variance model is usually treated by

specifying a prior density for the unknown parameters �T+1 and �T+1. The direct

equivalence in our regression framework would be to form a prior density p (w) directly

for the unknown weights of the tangency portfolio. The resulting Bayesian mean-

variance portfolio can be obtained by minimizing (with respect to ew 2 D) the Bayes
risk given by

EpR (w; ew;A) = R Rk R (w; ew;A) p (dw) : (12)

As already stressed, the uncertainty that arises from the arbitrariness of the choice

of the prior density p (w) is at the core of this paper. An approach we take here to

incorporate this uncertainty into the mean-variance model is to solve the problem (11)

by searching the optimal weights over a fuzzy set which re�ects the incompleteness

of the investor�s information, and hence his inability to form the prior density p (w).

The corresponding minimization problem can be written as follows( bw� = argminew2D R ( ew;w;A)
s.t. w 2 �; �0w = 1

; (13)

with bw� an estimator of the weights of the tangency portfolio and � the fuzzy set.3 To
construct the fuzzy set �, consider an investor who believes that the empirical mean

b�T+1 provides a good approximation to the true expected asset returns �T+1. This
investor should rely on the feasible tangency portfolio by replacing the two unknown

moments in (3) by their empirical counterparts. In the converse case where the

investor assumes that the uncertainty in approximating the expected asset returns

3The notion of fuzzy sets is introduced by Zadeh (1965) and provides an interesting alternative
(in representing uncertainty) to the conventional approaches using probabilistic modelling. For com-
prehensive descriptions and interpretations of the notion of fuzzy sets, see for e.g. Bandemer and
Gottwald (1995) or Zimmermann (2001).
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by its empirical counterpart is too high to be economically valuable, he should allocate

the assets by cancelling the contribution of the expected returns in (3). This task can

be achieved by setting the expected returns to the constant vector. The corresponding

allocation is identical to the weights of the global minimum-variance portfolio given

by4

bwmin = b��1T+1���0b��1T+1���1 . (14)

As a consequence, the distance between the true tangency portfolio weights w and

the weights bwmin of the global minimum-variance portfolio can serve as an indicator
of the level of uncertainty in estimating the expected asset returns. This distance

can be formulated in the form of the following ellipsoidal constraint

� =
�
w : (w � bwmin)0H (w � bwmin) � �	 ; (15)

where H is a k�k positive de�nite matrix and � a positive real number. The ellipsoid

de�nes a region where the true asset weights are believed to lie and the volume of this

region is controlled by the parameter �. For convenience, we will use the following

re-parameterization for �

� = n
�
��1 (1� �=2)

�2
; (16)

with � 2 (0; 1) and ��1 (:) the inverse of the standard normal cumulative distribution

function. This is useful because we summarize the in�nite possible values of � 2 R+

via the bounded parameter �. Note that � can be viewed as the investor�s degree

of skepticism about the estimation of the expected asset returns. Indeed, when the

investor assigns a value for � near one (� near zero), he has high uncertainty about the

estimation of the expected asset returns, and materializes this by locating the true

unknown tangency portfolio weights near the weights of the global minimum-variance

portfolio. In the opposite case where � diverges from one, the investor�s skepticism

4Note that we focus here on the uncertainty in estimating the expected asset returns since they
are more a¤ected by estimation error than the covariance matrix. For empirical evidences see Merton
(1980) and Chopra and Ziemba (1993). In Section 6 we will extend our framework by considering
uncertainty in estimating both the expected asset returns and the covariance matrix.

10



about the precision of the empirical mean b�T+1 diminishes. It is worth noting that
the role of the scaling factor n in (16) is to relax the ellipsoidal constraint when larger

sample sizes are available, because in these cases and independently of the investor�s

degree of skepticism �, the precision of the empirical mean b�T+1 becomes larger.
A simple choice for the matrix H would be the identity matrix. But this is a

rather naive choice, since it measures the distance between w and bwmin by placing
equal importance on the deviation of each component of w from that of bwmin. A
better alternative would be to weight the importance of the deviation by a matrix

that re�ects the precision of the estimated weights of the global minimum-variance

portfolio. More precisely, we set the matrix H to the k � k diagonal matrix with

the i-th element being the inverse of the variance of the i-th weight of the global

minimum-variance portfolio, that is, H = (hij) with

hij =

(
1

V ar( bwmin;i) if i = j

0 else
: (17)

The expression of the variance of the i-th weight of the global minimum-variance

portfolio is given by Bodnar and Schmid (2008) and corresponds to

V ar ( bwmin;i) = �b��1T+1�0�(�)ii �
�Pk

m=1 �
(�)
im

�2
(n� k)

�
�b��1T+1�0�2 ; (18)

with b��1T+1 = ��(�)im

�
the inverse of the sample covariance matrix.

3.2 Minimax Principle and Aversion to Parameter Uncertainty

In the last part of this section, we show how to solve the constrained minimiza-

tion program (13) taking care of the investor�s aversion to parameter uncertainty.5

Precisely, we rely on the minimax principle (Wald (1945)) to solve this program.

5We focus in a �rst time on the constrained least squares problem (13) without the last restriction
that the asset weights must sum to one. We will consider this restriction later.

11



De�nition 2 The minimax estimator bw� 2 D = f ew : ew = CY g solution of the con-
strained problem (13) is de�ned as follows

sup
w2�

R (w; bw�; A) = infew2D supw2�
R (w; ew;A) . (19)

An investor that allocates assets using the minimax estimator bw� in (19) is averse
to the uncertainty (or ambiguity) arising from having multiple prior densities. To

show this, let P be the set of arbitrary prior distributions p on � and consider the

Bayes risk

EpR (w; ew;A) = R �R (w; ew;A) p (dw) : (20)

Proposition 3 There exists a prior density p0 2 P such that the Bayes estimator

that minimizes the Bayes risk in (20) corresponds to the minimax estimator bw� in
(19), that is

bw� = infew2D Ep0R (w; ew;A) ;
with the following relation

Ep0R (w; ew;A) � EpR (w; ew;A) 8p 2 P:

See Theorem 1 in Pilz (1986) for the proof. The prior density p0 is termed the

least favorable prior density, that is the prior density which leads to the maximum

Bayes risk. Our minimax estimator of the mean-variance portfolio can thus be viewed

as a Bayesian mean-variance portfolio for an investor who has multiple prior densities

(over the fuzzy set �) and chooses the one which corresponds to the least favorable

(or worst-case) scenario. Following Gilboa and Schmeidler (1989), this investment

strategy is evidently compatible with aversion to uncertainty.

To derive explicit solutions for the estimator bw�, additional structural assumptions
are needed. In the case where the matrix A is of rank one, the explicit solution (Kuks

and Olman (1971, 1972)) is given by

bw� = �X 0X + ��1�2uH
��1 �

X 0Y + ��1�2uH bwmin� : (21)
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An operational version of this estimator is obtained by replacing �2u by its least-

squares estimator b�2u. It can be seen easily that bw� behaves like a shrinkage estimator
and makes - with respect to the parameter � or equivalently � - a trade-o¤ between bw
the weights of the feasible mean-variance portfolio and the weights bwmin of the global
minimum-variance portfolio. The corresponding limiting behaviours are

lim
�!0

bw� = bw; (22)

lim
�!1

bw� = bwmin: (23)

To �nish, remark that bw� is not properly an estimator of the tangency portfolio
weights because its components do not sum to one except for the limiting cases bw
and bwmin. Therefore, we follow Toutenburg (1980) de�ning the equality restricted

analogue of the estimator bw� in (21), that is
w� = bw� �D�1� ��0D�1���1 ��0 bw� � 1� ; (24)

with D = X 0X + ��1b�2uH. A salient feature of our regression approach is that the
bias and the variance of w� can be derived (Toutenburg (1980)) yielding

bias w� = ��1b�2u h�Ik +D�1� ��0D�1���1 �0iD�1Hw;
b��2u V ar ( w�) = D�1X 0XD�1

+D�1�
�
�0D�1�

��1
�0D�1X 0XD�1�

�
�0
�
X 0X

��1
�
��1

�D�1�
�
�0D�1�

��1
�0D�1X 0XD�1

�D�1X 0XD�1�
�
�0D�1�

��1
�0D�1; (25)

The bias (resp. the variance) is a decreasing (resp. increasing) function of �. This

implies that when the investor degree of skepticism in estimating the expected returns

is high (� ! 1) the parameter �! 0 and the bias (resp. the variance) increases (resp.

decreases). Hence, allowing for uncertainty aversion has a shrinkage-like e¤ect on the

estimated portfolio weights which are biased but more precise according to the usual
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bias-variance trade-o¤ for regression parameters. Notice that for the limiting case

� ! 0 (�!1), we have bias w� = 0 and

V ar ( w�) = b�2u hS�1 � S�1�0 ��S�1�0��1 �S�1i ; (26)

which correspond to the bias and the variance of the feasible tangency portfolio.

4 Stability and Accuracy of theMinimaxMean-Variance
Portfolio

In this section, we evaluate the behaviour (from the viewpoint of stability and ac-

curacy) of the minimax mean-variance portfolio, using the monthly excess returns

of the Fama-French�s 6 size and book-to-market assets from July 1963 to September

2009. Thus the number of assets is equal to k = 6 and the total number of time

series observations is equal to N = 555 months. We set the estimation sample size to

n = 60 months and use a "rolling-window" procedure to compute the out-of-sample

mean-variance portfolio weights and returns. More precisely, the asset returns for the

�rst n = 60 months are used to compute w� and the corresponding portfolio return

for the next month. This step is repeated by moving each time the estimation window

(including the data for a new month and dropping the data for the earliest month)

until the end of the data set is reached. Note that at the end of the procedure, we

have computed N � n portfolio weights and returns.

Figure 1 in Appendix reports for four di¤erent values of the investor�s degree

of skepticism � the boxplot of the estimated portfolio weights w� over the out-of-

sample period. The considered values are 0%, 10%, 75% and 100%. Recall that

the �rst value � = 0% corresponds to the feasible tangency portfolio that ignores

parameter uncertainty, while the last value � = 100% corresponds to the global

minimum-variance portfolio. Compared to the feasible tangency portfolio in which

parameter uncertainty is not of concern, the minimax mean-variance portfolios have

more stable weights. Indeed, while the weights of the feasible tangency portfolio
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range dramatically from -1258 to 2884, the weights w� of the new optimal portfolio

range from -8 to 11 (resp. -4 to 5) for � = 10% (resp. � = 75%). Therefore, aversion

to parameter uncertainty leads to less extreme positions and portfolio weights that

vary much less over time. This is the case, because for a given value of � 6= 0

the estimator w� of the optimal portfolio weights shrinks the weights of the feasible

tangency portfolio towards the weights of the global minimum-variance portfolio, and

thus bene�ts from the stability of the latter portfolio. To give more evidence about

the stabilization e¤ect of the minimax mean-variance investment strategy, we report

in Figure 2 (see Appendix) the boxplot of the estimated variances of the optimal

portfolio weights displayed in Figure 1. The variances are computed using formula

(25) and the observed patterns illustrate the reduction of estimation error due to

the shrinkage e¤ect of the estimator w�. The variances of the feasible tangency

portfolio weights range from 0:23 to 2105 illustrating the fact that sample means are

very noisy estimators of the true expected asset returns. In the same time, allowing

for uncertainty aversion with a small amount of uncertainty equal to 10% lower the

variances which lie between 0:02 and 3:2.

To illustrate the e¤ect of aversion to parameter uncertainty on the out-of-sample

performance of the mean-variance model, we compute from the N�n optimal portfo-

lios returns three statistics: the out-of-sample means, standard-deviations and sharpe

ratios. Table 1 in Appendix displays these statistics for di¤erent values of the in-

vestor�s degree of skepticism �. First, one can see that for the limiting case � = 0%

(resp. � = 100%) the statistics are identical to those of the feasible tangency portfolio

(resp. the global minimum-variance portfolio). Second, the minimax mean-variance

portfolio w� that allows for parameter uncertainty aversion exhibits higher means

and lower volatilities. For instance, while the out-of-sample mean (resp. standard-

deviation) of the feasible tangency portfolio is equal to -0:1732 (resp. 3:9550) the same

statistic when the investor�s degree of skepticism corresponds to � = 10% is equal to

0:0175 (resp. 0:1937). Third, for a given value of � 2 ]0; 1[ the out-of-sample Sharpe
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ratio of our minimax mean-variance portfolio w� does not lie necessarily within the

sharpe ratios of the two limiting cases (� = 0% and � = 100%). Indeed, for � � 20%

the out-of-sample Sharpe ratios are higher than the ones of the feasible tangency

and the global minimum-variance portfolios. Figure 3 in Appendix gives a complete

description of the evolution of the Sharpe ratio with respect to �. The �gure depicts

a quadratic evolution, with an increase in Sharpe ratio up to a given value of � and

a decrease over this value. Relatively to this evolution our methodology to deal with

the issue of uncertainty aversion contrasts with the multi-prior approach of Garlappi,

Uppal and Wang (2007). In the multi-prior approach, uncertainty is introduced in

the mean-variance model by specifying con�dence intervals (around the true expected

asset returns) in the form of ellipsoid constraint, that is

G
�
�T+1; b�T+1� = ��T+1 : n (n� k)(n� 1) k

�
�T+1 � b�T+1�0�T+1 ��T+1 � b�T+1� � �� ;

(27)

with � the level of uncertainty in estimating expected asset returns. Aversion to

uncertainty is modelled by referring to the following constrained mean-variance op-

timization (
w = argmax

w
min
�T+1

�0T+1w �


2w

0�T+1w;

s.t. �T+1 2 G
�
�T+1; b�T+1� and �0w = 1: (28)

In this setting, the standard problem of utility maximization over the unknown

portfolio weights is modi�ed, by �rst minimizing the investor�s utility with respect to

the expected returns which are constrained to lie within the ellipsoid G
�
�T+1; b�T+1�.

This ellipsoid re�ects the investor�s a priori information about the true expected

asset returns for a given level of uncertainty �. Therefore, there is a close connection

between the max-min problem (28) and the minimax regression approach we follow in

this paper. The methodological di¤erence arises from the fact that in our framework,

the uncertainty is instead about the true unknown portfolio weights. Garlappi, Uppal

and Wang (2007) show that the solution of the max-min problem (28) is a weighted

average of the classical mean-variance portfolio that ignores parameter uncertainty
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and the global minimum-variance portfolio

w = � bwmin + (1� �) bw (29)

with � a scalar that depends on the level of uncertainty �. Thus, the performance

of this asset allocation rule lies between the ones of the two reference portfolios. As

already stressed, our minimax mean-variance portfolio w� di¤ers from w with regards

to this characteristic.

5 Comparison with Uncertainty Neutral BayesianMean-
Variance Portfolios

From proposition 3, we have shown that the minimax mean-variance portfolio cor-

responds to a Bayesian mean-variance portfolio under the least favorable prior den-

sity. Hence, we compare in this section the out-of-sample performances of the mini-

max mean-variance portfolio w� with traditional uncertainty neutral Bayesian mean-

variance portfolios.

5.1 Description of the portfolios Considered

The �rst mean-variance portfolio we consider is the Bayes-Stein shrinkage portfolio

developed by Jorion (1986), which exploits the idea of shrinkage estimation (Stein

(1955), James and Stein (1961)). Under this model, the weights of the tangency

portfolio has the following expression

bwbs = �b�bsT+1��1 b�bsT+1��0 �b�bsT+1��1 b�bsT+1��1 ; (30)

with b�bsT+1 and b�bsT+1 the shrinkage estimators of �T+1 and �T+1 equal to
b�bsT+1 = (1� bv) b�T+1 + bvb�gT+1�; (31)

b�bsT+1 = �1 + 1

n+ b�
�
V T+1 +

b�
n
�
n+ 1 + b�� ��0

�0V
�1
T+1�

; (32)

bv = k + 2

(k + 2) + n
�b�T+1 � b�gT+1��0 V �1T+1 �b�T+1 � b�gT+1�� ;
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b� = k + 2�b�T+1 � b�gT+1��0 V �1T+1 �b�T+1 � b�gT+1�� ;
V T+1 =

nb�T+1
n� k � 2 ;

b�gT+1 = �0V
�1
T+1b�T+1
�0V

�1
T+1�

:

Thus, the empirical mean b�T+1 are shrunk towards the target value b�gT+1� with bv
the bounded shrinkage parameter. This operation while introducing a small amount

of bias in the estimation procedure of the expected asset returns signi�cantly reduces

the variance, leading to more stable out-of-sample portfolio weights (see Jorion (1986)

and DeMiguel et al. (2009a, 2009b) for empirical applications).

The second mean-variance portfolio is derived from the Bayesian data-and-model

approach in Pastor and Stambaugh (2000). For a brief description, suppose the

existence of m benchmark portfolios related to a given asset-pricing model. The

key issue in the Bayesian data-and-model approach is to make a balance between

the asset-pricing model and the sampling information. In this line, the two extreme

views for an investor is to believe or not to believe in the asset-pricing model. In the

former case, estimators of the two unknown moments �T+1 and �T+1 are computed

from the asset-pricing model

rt = �rf;t + et; 8t = T � n+ 1; :::; T; (33)

where rf;t is the m� 1 vector of excess returns on the benchmark portfolios, � is the

k �m matrix of the betas, and et the k � 1 vector of residuals. In the latter case,

empirical counterparts of the two moments are used instead, and this is equivalent to

estimate the moments via the asset-pricing model (33) by allowing for a mispricing

vector �. A middle approach that is more relevant than the extreme views is to

update the sampling information with the prior degree of con�dence about the asset-

pricing model. As suggested by Pastor and Stambaugh (2000), one way of doing this
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is to specify a prior distribution for the asset�s mispricing vector �, that is

p (� j�T+1 ) = N
�
0;
�2�
s2
�T+1

�
; (34)

where �2� is a positive parameter that controls the variance of the prior distribution of

�, and s2 a �xed parameter. Note that when �2� = 0 the investor believes dogmatically

in the asset-pricing model and for �2� !1 the investor believes that the asset-pricing

model is not useful. Wang (2005) shows that with the prior in (34), the mean of the

predictive distribution of rT+1 has a shrinkage expression

E (rT+1 j� ) = �b�fT+1 + (1� �) b�T+1; (35)

with b�fT+1 the estimator of the expected returns from the asset-pricing model, � the

shrinkage parameter that depends on �2� the variance of the mispricing.
6 Hence,

the weights of the tangency portfolio in the Bayesian data-and-model approach are

computed by replacing �T+1 and �T+1 in (3) by E (rT+1 j� ) and V ar (rT+1 j� ).

5.2 Data and Results

The comparison is conducted using k = 25 risky assets that correspond to the 25

Fama-French size and book-to-market portfolios. The data set contains monthly

excess returns (from Kenneth French�s Web site) for these assets over the period

July 1963-September 2009. We set the estimation sample size to n = 60 and use

the rolling-window methodology described in the last section to compute the out-

of-sample portfolio weights respectively for our minimax mean-variance portfolio w�

and the two Bayesian mean-variance portfolios described above.

Table 2 in Appendix displays the out-of-sample means, standard deviations and

Sharpe ratios for the three portfolios. For the minimax mean-variance portfolio w�,

we report the results for di¤erent values of the investor�s degree of skepticism �.

To implement the Bayesian data-and-model approach we consider the Fama-French

6Wang (2005) also derived the formula for the second moment V ar (rT+1 jFT ; � ) of the predictive
distribution which also has a shrinkage expression.
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three-factor model and set the shrinkage parameter � respectively to 10%, 25%, 50%,

75%, 90% and 100%. From this table, we see that the out-of-sample mean of the

Bayes-Stein shrinkage portfolio is negative and equal to -0:0225. Thus, it seems,

at least for the data set considered here, that the shrinkage intensity of this model

is not su¢ cient enough to move the out-of-sample mean of the feasible tangency

portfolio from a negative value (-0:0455) to a positive one. Compared to the feasible

tangency portfolio that ignores parameter uncertainty, both the Bayesian data-and-

model portfolios of Pastor and Stambaugh (2000) and our minimax portfolios exhibit

higher means in all cases, that is for the di¤erent values of � and �. However, the

out-of-sample means are uniformly higher for the former portfolios for � � 50%. To

give more insights about this result, note that the Bayesian data-and-model (resp.

the minimax) approach makes a compromise between the feasible tangency portfolio

and the asset-pricing (resp. the minimum-variance) portfolio. Now, it turns out

in the case of the data set used that the out-of-sample mean of the Fama-French

three-factor portfolio (� = 100%) is higher than the one of the minimum-variance

portfolio. The converse case is obtained with regards to the out-of-sample standard-

deviations, where the values respectively for the Fama-French three-factor portfolio

and the minimum-variance portfolio are equal to 0:4582 and 0:0437. The minimax

mean-variance portfolios bene�t from this characteristic by exhibiting lower standard-

deviations compared to the Bayesian data-and-model portfolios. Lastly, the out-of-

sample Sharpe ratios of the minimax mean-variance portfolios are higher than the

ones of the Bayesian portfolios. Summarizing our �ndings, we can conclude from this

empirical exercise that relying on the least favorable prior density via our minimax

regression approach is economically bene�cial, because the corresponding portfolio

leads to lower (resp. higher) out-of-sample standard-deviations (resp. Sharpe ratios).
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6 Further Extensions

It is well documented in the literature that sample means are more a¤ected by esti-

mation error than the sample covariance matrix (Merton (1980), Chopra and Ziemba

(1993)). Yet the uncertainty in estimating the covariance matrix by its empirical

counterpart is not negligible for high dimensional problem, that is when the asset

universe is large (Chan et al. (1999), Jagannathan and Ma (2003), Ledoit and Wolf

(2003, 2004a, 2004b)). This is the case because when k=n ! c > 0 with k the

number of assets and n the sample size, the eigenvalues of the sample covariance

matrix spread out more than the true unobservable ones (Marcenko-Pastur (1967)),

and the eigenvectors are not consistent (Johnstone and Lu (2004)). Therefore, unless

k=n! 0, errors in the sample covariance matrix can a¤ect the mean-variance alloca-

tion through the inconsistency of eigenvalues and eigenvectors. Needless to say that

investors should be averse to this type of uncertainty. Hence, our objective in this

section is to extend our methodology to incorporate into the mean-variance model the

investor�s aversion in estimating both the expected asset returns and the covariance

matrix.

If we denote w0 the vector weights of the equally-weighted portfolio, it is easy to

see that the fuzzy ellipsoidal set � de�ned as follows

� =
n
w :

�
w � w0

�0
H
�
w � w0

�
� �

o
; (36)

can summarize the incompleteness of the investor�s information. Indeed, for � ! 0

the investor allocates his wealth equally between the assets because he believes that

sampling information is completely useless. In the opposite case where � ! 1, he

relax his belief and search the weights of the tangency portfolio in a larger space. As

previously, we use for convenience a re-parameterization of the parameter �, that is

� = n
�
��1 (1� �=2)

�2
; (37)

with � the level of uncertainty in estimating the two unknown moments �T+1 and
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�T+1. For the choice of the matrix H, we use the diagonal matrix with elements

the inverse of the empirical variances of the asset returns. Hence, the more risky is

an asset, the less important is its contribution to the construction of the ellipsoid.

Using once again the minimax principle, the optimal portfolio weights ew� for an
uncertainty averse investor will be identical to w� in (24) except that the weights

of the target minimum-variance portfolio is replaced by the weights of the noise-free

equally-weighted portfolio

ew� = �!w � �D�1� ��0D�1���1 ��0�!w � � 1� ; (38)

with D = X 0X + ��1b�2uH and

�!w � = D�1
�
X 0Y + ��1b�2uHw0� : (39)

Thus, our methodology does not change radically. One can expect that for large

dimensional problems where the minimum-variance portfolio performs poorly, shrink-

ing (using our minimax method) the feasible tangency portfolio towards the equally-

weighted portfolio would be more bene�cial. This is all the more true as it is shown

by DeMiguel et al. (2009a) that the equally-weighted portfolio constitutes a relevant

benchmark investment rule as many others investment strategies, even sophisticated,

cannot beat it.

To illustrate all these statements, we consider the excess returns for the Fama-

French�s 100 size and book-to-market assets over the period July 1963 - September

2009. The estimation sample size is set to n = 120 and a rolling-window procedure is

use to compute w� and ew� which are considered as competitive investment strategies.
Recall that w� (resp. ew�) refers to the weights of the minimax mean-variance portfolio
for an investor�s who worries about the estimation of the expected asset returns (resp.

the expected asset returns and the covariance matrix). Table 3 in Appendix reports

for di¤erent values of the investor�s degree of skepticism � the out-of-sample means,

standard errors and Sharpe ratios of the two investment strategies. The table also
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displays the same statistics for the target minimum-variance and equally-weighted

portfolios. As expected, the out-of-sample standard deviations (resp. the Sharpe

ratios) of the equally-weighted portfolio are lower (resp. higher) than those of the

minimum-variance portfolio. As a consequence, for the di¤erent values of � the

minimax mean-variance allocation rule ew� is uniformly better than w� at least for
the data set considered here.

7 Conclusion

Standard models of asset allocation would be very easy to implement if the true

parameters characterizing the distribution of asset returns are perfectly known. In

practice, this is not the case and the knowledges of investors are generally too lim-

ited to form a single prior density for these parameters. The resulting Knightian

uncertainty (or ambiguity) renders the usual uncertainty-neutral Bayesian solutions

restrictive because investors are averse to the uncertainty arising from having multiple

prior densities.

For an investor allocating assets using the mean-variance model, this article pro-

vides an econometric framework to incorporate his aversion to parameter uncertainty.

The starting point of our methodology is the regression-based approach for the com-

putation of the mean-variance portfolio in Britten-Jones (1999). Extending this ap-

proach using the minimax principle (Wald (1945)) we provide an estimator for the

optimal portfolio weights that solves the mean-variance problem under aversion to

parameter uncertainty. The uncertainty-averse mean-variance portfolio weights corre-

spond to the minimax estimator for regression parameters, that is the estimator that

minimizes the upper bound of the usual quadratic risk function. This upper bound is

derived by searching over a fuzzy ellipsoidal set that summarizes the incompleteness

of the investor�s information about the unknown parameters. The new estimator has

a shrinkage expression and makes a compromise between the usual plug-in estimator

of the mean-variance portfolio and the global minimum-variance portfolio. An empir-
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ical application using the Fama-French 6 size and book-to-market assets shows that

the minimax estimator by introducing a small amount of bias improves substantially

the accuracy and the stability of the optimal portfolio weights. Moreover, the mini-

max mean-variance portfolio corresponds to a Bayesian mean-variance portfolio with

the least favorable prior density. Using the Fama-French 25 size and book-to-market

assets we show that relying on the least favorable prior density leads to better out-

of-sample performances compared to traditional hyperparameter or pricing-model

priors.

Appendix : Tables and �gures

Figure 1: Boxplots of the out-of-sample weights of the minimax mean-variance port-
folio using the Fama-French�s 6 size and book-to-market assets
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Figure 2: Boxplots of the variances of the out-of-sample weights of the minimax
mean-variance portfolio using the Fama-French�s 6 size and book-to-market assets
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Figure 3: Evolution of the Sharpe ratio of the minimax mean-variance portfolios with
respect to the investor�s degree of skepticism �
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Table 1: Monthly out-of-sample statistics of the minimax Mean-Variance
Portfolios with the Fama-French�s 6 size and book-to-market assets

Strategy Mean Standard Deviation Sharpe ratio

Feasible Mean-Variance �0:1732 3:9550 �0:0438

Minimum-Variance 0:0081 0:0398 0:2025

Minimax mean-variance

� = 0% �0:1732 3:9550 �0:0438

� = 10% 0:0175 0:1937 0:0903

� = 20% 0:0166 0:0793 0:2095

� = 30% 0:0158 0:0711 0:2225

� = 40% 0:0150 0:0643 0:2334

� = 50% 0:0141 0:0582 0:2416

� = 60% 0:0130 0:0528 0:2457

� = 70% 0:0117 0:0479 0:2436

� = 80% 0:0102 0:0438 0:2325

� = 90% 0:0087 0:0407 0:2139

� = 99% 0:0081 0:0398 0:2026

� = 100% 0:0081 0:0398 0:2025

Notes: This table provides for di¤erent values of the investor�s degree of skepticism in
estimating the expected asset returns, the monthly out-of-sample means, standard-deviations
and Sharpe ratios of the minimax mean-variance portfolios. For comparison, the table also
displays the same statistics for the feasible tangency portfolio and the global minimum-
variance portfolio. The statistics are computed using a rolling-window procedure over the
period July 1963 to September 2009.
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Table 2: Comparison of the Minimax Mean-Variance Portfolios with Bayesian
Mean-Variance Portfolios (Fama-French�s 25 size and book-to-market assets)

Strategy Mean Standard Deviation Sharpe ratio

Feasible Mean-Variance �0:0455 1:3891 �0:0328

Bayes-Stein shrinkage �0:0225 0:7434 �0:0303

Minimum-Variance 0:0083 0:0437 0:1903

Bayesian Data-and-Model

� = 10% �0:0379 1:7407 �0:0218

� = 25% �0:0213 3:1404 �0:0068

� = 50% 0:0588 0:7537 0:0781

� = 75% 0:0439 0:6018 0:0730

� = 90% 0:0255 1:0034 0:0254

� = 100% 0:0259 0:4582 0:0566

Minimax Mean-Variance

� = 5% 0:0166 0:1449 0:1145

� = 10% 0:0166 0:1293 0:1287

� = 50% 0:0161 0:0815 0:1981

� = 75% 0:0148 0:0618 0:2404

� = 90% 0:0117 0:0484 0:2428

� = 99% 0:0084 0:0436 0:1925

Notes: This table compares the monthly out-of-sample performances (means, standard-
deviations and Sharpe ratios) of the minimax mean-variance Portfolios for di¤erent values of
� the investor�s degree of skepticism about the estimation of the expected returns with the
Bayes-Stein shrinkage portfolio of Jorion (1986) and the Bayesian data-and-model portfolio
of Pastor and Stambaugh (2000). For the latter portfolio, we display the performances for
di¤erent values of � the shrinkage parameter in equation (35). The statistics are computed
using excess returns of the Fama-French�s 25 size and book-to-market assets over the period
July 1963 to September 2009.

28



Table 3: Comparison of Minimax Mean-Variance Portfolios using the
Fama-French�s 100 size and book-to-market assets

Strategy Mean Standard Deviation Sharpe ratio

Minimum-Variance 0.0039 0.0879 0.0442

Equally-Weighted 0.0055 0.0527 0.1047

Panel A: Uncertainty about only the �rst moment

� = 5% 0.0097 0.3658 0.0265

� = 10% 0.0093 0.3285 0.0284

� = 50% 0.0092 0.2024 0.0454

� = 75% 0.0108 0.1454 0.0744

� = 99% 0.0038 0.0889 0.0426

Panel B: Uncertainty about the �rst two moments

� = 5% 0.0136 0.1478 0.0919

� = 10% 0.0131 0.1361 0.0961

� = 50% 0.0101 0.0966 0.1048

� = 75% 0.0072 0.0790 0.0915

� = 99% 0.0046 0.0561 0.0827

Notes: This table compares the monthly out-of-sample performances (means,
standard-deviations and Sharpe ratios) of the two types of minimax mean-variance portfo-
lios. The �rst (resp. second) type includes portfolios that take into account the investor�s
aversion in estimating the expected asset returns (resp. the expected asset returns and
the covariance matrix). The statistics are computed using a rolling-window procedure
over the period July 1963 to September 2009 with an estimation sample size equal to
n = 120.
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