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aLEG, Université de Bourgogne
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Abstract

In this note, we consider a generalized T−stage Stackelberg oligopoly. We provide
a proof and an interpretation that under the two necessary and sufficient condi-
tions of linear aggregate demand and identical constant marginal costs, followers
do not matter for leaders. Leaders act as rational myopic agents, voluntarily ignor-
ing the number of followers and remaining stages, thereby behaving as Cournotian
oligopolists. Strategies of incumbent firms are invariant to entry of new cohorts.
Their profits can be studied by the way of two discount factors: the first impacting
markup and the second impacting output supply. Some implications in terms of
welfare and convergence toward competitive equilibrium are derived.

Keywords: Leader’s markup discount factor, linear economy, follower’s output
discount factor, myopic behavior.
JEL classification: L13, L20

1. Introduction

The Stackelberg (1934) sequential oligopoly model is often put forward in the
literature as a useful alternative to the static Cournot (1838) model. 1 Firms
sequentially choose the quantities to produce and take into account the impact
of their own decisions on the decisions of firms playing later. The basic model
has been extended in order to integrate a larger number of stages and/or players
than in the original model (Boyer and Moreaux (1986), Sherali (1984) or Watt
(2002)). An interest of such a structure, which we call a hierarchy,2 is to introduce
heterogeneity between firms according to their place in the decision process. Notable
implications concern welfare (Watt (2002)), merging (Daughety (1990) and Heywood
and McGinty (2007, 2008)) and profits (Etro (2008)).

Under the two standard assumptions of linear market demand and identical con-
stant marginal costs, this sequential process exhibits an interesting property: the
T−stage Stackelberg equilibrium strategies coincide with the equilibrium strategies

✩We are grateful to C. Bidard for his comments and remarks.
Email addresses: ludovic.julien@u-paris10.fr (Ludovic A. Julien), omusy@u-paris10.fr

(Olivier Musy), asaidi@escpeurope.eu (Aurélien W. Säıdi)
1We do not consider oligopoly competition on prices.
2This denomination comes from Boyer and Moreaux (1986).
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obtained in a succession of T monopolists exploiting the residual demand. This
feature of the linear economy has been noticed by Boyer and Moreaux (1986), An-
derson and Engers (1992) and Pal and Sarkar (2001). Watt (2002) has extended
the framework to integrate multiplayer cohorts and has shown that firms behave as
oligopolists in a succession of Cournot games.3

The purpose of this note is twofold. First, we generalize the existing results and
provide a formal proof for the following property: the two assumptions specified
above are not only sufficient but also necessary for the sequential structure of the
Stackelberg model to simply reduce to a succession of Cournot games. By contrast
with the relevant literature, we also provide an explanation for such a result by
showing that the rational behavior of leaders consists in voluntarily ignoring any
information about their followers when solving their optimization program. A change
in the number of remaining stages or followers results in a scale factor affecting
negatively the objective profit function of a leader, but does not distort the relative
profits associated with two different strategies, and thereby, the optimal strategy.
The behavior of firms can be qualified as “rationally myopic”: it is optimal for them
to only focus on the decisions of the previous and current players and ignore the
available information about their followers.4 This property holds in and outside the
equilibrium.

Second, our approach enables us to explore some properties concerning strategic
interactions in this Stackelberg structure. The model exhibits two discount factors
for any cohort. We call the first the leader’s markup discount factor. It represents
the reduction of a leader’s markup associated with the existence of its followers in
the hierarchy. Its value differs from one cohort to another, depending negatively
on the number of remaining cohorts and corresponding players. This factor also
brings into light the consequences of free entry for incumbents. We call the second
factor the follower’s output discount factor. It represents the decrease in optimal
quantities for a follower resulting from a contraction of the residual demand when
playing latter in the hierarchy. It is a share of the first cohort production, whether
optimal or not. For any follower, this share decreases when going further in the
sequence. Its value depends negatively on the number of leading cohorts and on
the number of corresponding players (because residual demand decreases with this
parameter). Both factors measure the profit reduction of a firm within the hierarchy.

The paper is presented as follows. In section 2, we present the model. Section 3
analyzes the behavior of the firms under the Stackelberg structure, and introduces
the two kinds of discount factors. Section 4 derives welfare implications and free
entry analysis. In section 5, we conclude.

2. The Model

Consider one homogeneous good produced by n firms which oligopolistically
compete in a hierarchical framework. There are T stages of decisions indexed by t,

3Julien and Musy (2011) also show that considering various degrees of competition between the
followers does not affect Watt (2002)’s results.

4It does not imply that a firm has no advantage in being a leader since its position in the
sequential process does affect its profits.
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t ∈ J1, T K. Each stage embodies one cohort and is associated with a level of decision.
The whole set of cohorts represents a hierarchy. Cohort t is populated by nt firms,
with

∑

t nt = n. The distribution of the firms within each cohort is assumed to be
observable and exogenous.5 This latter assumption notably implies that position of
firms and timing of moves are given. are given.6

A firm i which belongs to cohort t has to decide strategically (simultaneously
with firms of the same cohort, and sequentially among the hierarchy) its level of
output denoted by xi

t. The aggregate output of cohort t is denoted Xt =
∑nt

i=1 x
i
t,

where xi
t stands for firm i’s output within cohort t. In addition, X−i

t =
∑

−i x
−i
t will

denote the production of all firms belonging to cohort t but i.
The inverse market demand function specifies the market price p as a function of

aggregate output X, with X =
∑T

t=1Xt, and is denoted by p(X). We assume that

p(.) is continuous and twice differentiable, with dp(X)
dX

< 0. The cost function of any
firm i which belongs to cohort t, is denoted by φi

t(.). It is a continuous and twice

differentiable function with
dφi

t
(xi

t
)

dxi
t

> 0 and
d2φi

t
(xi

t
)

d(xi
t)

2 ≥ 0.

The nt firms which belong to cohort t, behave as followers with respect to all
firms of cohort τ , τ ∈ J1, t − 1K, whose strategies are taken as given. However,
they behave as Stackelberg leaders toward all firms of cohort τ , τ ∈ Jt + 1, T K.
They consider the best-response functions of all firms belonging to these cohorts as
functions of their strategies. Therefore the profit of firm i which belongs to cohort
t may be written:

πi
t(x

i
t) = p

(

t−1
∑

τ=1

Xτ +
T
∑

τ=t

Xτ

)

xi
t − φi

t(x
i
t), i = 1, ..., nt. (1)

3. Rational myopic behavior and Stackelberg competition

3.1. Assumptions and graphical interpretation

In this section, we assume a linear market demand function

p(X) = a− bX, a, b > 0 (H1)

and constant and identical marginal costs7

φi
t(x

i
t) = cxi

t, i = 1, ..., nt and t = 1, ..., T. (H2)

These two assumptions are standard in the literature on oligopoly analysis (see
Daughety (1990), Carlton and Perloff (1994), Vives (1999), among others).

Consider two successive stages, say t − 1 and t. Let p

(

t
∑

τ=1

Xτ

)

be the market

price when cohort t enters the market while each cohort τ (τ < t) produces a quantity

5The standard Stackelberg duopoly prevails when T = 2 and n1 = n2 = 1.
6We therefore do not question the way a specific firm could or should become a leader (see

Anderson and Engers (1992), Amir and Grilo (1999), Matsumura (1999)).
7We therefore do not envisage the case where one firm is more efficient than another within the

economy (see Pal and Sarkar (2001)).
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of output Xτ . No particular value is given to Xτ , except that it must generate a
non-negative profit. However, we assume that any leading cohort τ < t expects
firms of cohort t (or more) to act rationally and symmetrically. As in the standard
literature, they maximize their profits for any quantity

∑t−1
τ=1 Xτ produced by their

predecessors.
The behavior of firms can be qualified as “rationally myopic” when it is optimal

for them to focus on the decision of the previous players, and thereby to ignore
the information about their followers. In this case, the rational choice of firms is
depicted in figure 1.

Figure 1: Rational myopia
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In this Figure, we illustrate the behavior of cohort t when acting as a myopic
cohort. Firms of this cohort behave as oligopolists on the residual demand left by
firms of cohort τ < t, and do not take into consideration firms playing after.

The purpose of the current section consists in proving that the following property
holds if and only if (H1) and (H2) are satisfied.

Property 1. While rational myopia is an optimal behavior for the last cohort, it is
also optimal for any cohort in the economy, whatever its rank within the hierarchy.

3.2. Sufficiency

Demonstrating property 1 requires to exhibit the link between leaders and fol-
lowers’ profits.
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Lemma 1. Let γt ≡
T
∏

τ=t+1

1
1+nτ

be the leader’s markup discount factor. Under (H1)

and (H2), the markup earned by a cohort t firm, t < T , in a T−cohort economy is
a constant share γt < 1 of the markup it earns in a t−cohort economy for any given
vector of outputs (X1, ..., Xt−1) produced by the previous cohorts:

p

(

T
∑

τ=1

Xτ

)

− c = γt

[

p

(

t
∑

τ=1

Xτ

)

− c

]

for t < T. (2)

Proof. See Appendix A.

Notice that under condition H2, the markup is always equal across cohorts.
The discount factor γt measures the dependence of market power on the number of
followers. It represents the reduction of markup of any leader due to the presence of
the additional cohorts t+ 1 to T . It affects less intensively the market power of the
last cohorts in the sequence since they face a reduced number of followers. Market
power shrinks as t tends to infinity. This case will be discussed in Section 4.

The existence of cohort τ equally impacts by a coefficient 1/(1+nτ ) the markup
expected by a leader t (t < τ) in a t−stage economy, whatever the quantities pro-
duced by the first t cohorts (this results directly from H1 and H2).

Corollary 1. For any strategy xi
t, the profit obtained by a cohort−t firm in the

sequential T−stage structure is a constant share of the myopic profit (of the t−stage
economy):

πi
t(x

i
t) =

[

p

(

T
∑

τ=1

Xτ

)

− c

]

xi
t = γt

[

p

(

t
∑

τ=1

Xτ

)

− c

]

xi
t (3)

Proof. This corollary directly results from Lemma 1.

In other words, each cohort can behave as if there were no following cohorts
behind it since it earns a constant share of the profit realized in an oligopoly structure
market where it represents the last cohort, whatever the aggregate output

∑t−1
τ=1 Xτ

produced by the leaders. Provided that cohort−t firms maximize their profit for
any vector of strategies (X1, ..., Xt−1), cohort−τ leaders (τ < t) act as oligopolists,
ignoring the following cohorts, that only discount the value of their profits without
changing the nature of the maximization program.

Lemma 2. Let ηt−h,t ≡
t
∏

τ=t−h+1

1
1+nτ

be the follower’s output discount factor. Under

(H1) and (H2), the output of a firm i in cohort t ≤ T can be expressed as a share
of the output produced by a firm playing previously and belonging to cohort t− h for
h ∈ J1, t− 1K, that is:

xt = ηt−h,txt−h.
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Proof. See Appendix B.

The follower’s output discount factor represents the contraction of output result-
ing from playing later in the hierarchy. It indicates the share of cohort t−h’s output
which is optimal for cohort t to produce.

From the previous lemmas, the following proposition can be stated:

Proposition 1. If conditions (H1) and (H2) hold, firms in any cohort behave as ra-
tional myopic agents and the T -stage Stackelberg linear economy reduces to a succes-
sion of staggered static problems in which firms compete oligopolistically on residual
demands.

Proof. The proposition directly ensues from Lemmas 1 and 2.

Maximizing the right-hand side of Equation (3) (sequential structure program) is
tantamount to maximize the left-hand side of Equation (3) (myopic program) since
γt is a constant term. In the linear economy, strategies of firms do not depend on the
number of firms playing after, which equally impact the profit associated to each
strategy. As a consequence the optimal strategies and the equilibrium strategies
remain unchanged whatever the number of stages and the number of followers in
the sequential structure.

The literature only covers the similarity of the equilibrium strategies in both the
T−stage Stackelberg linear model and the succession of staggered static problems
but does not provide any explanation for this coincidence (see Boyer and Moreaux
(1986), Anderson and Engers (1992) and Watt (2002)).

Corollary 2. The equilibrium strategy of cohort 1-firms may thus be obtained from
the myopic profit maximization:

x1 =
1

1 + n1

a− c

b
≡ η1X

∗,

where X∗ = (a− c)/b is equal to the perfect competition aggregate output. We then
deduce the equilibrium strategy of any firm i in cohort t, t ∈ J1, T K:

xt =
η1,t

1 + n1

a− c

b
≡ ηtX

∗ with ηt ≡

t
∏

τ=1

1

1 + nτ

Notice that in the equilibrium, each firm of cohort t produces a share ηt of the
perfect competition equilibrium output.

Corollary 3. The equilibrium price and equilibrium profits are given by:

p = c+ (a− c)
T
∏

τ=1

1

1 + nτ

,

πi
t =

(a− c)2

b

t
∏

τ=1

1

(1 + nτ )2

T
∏

τ=t+1

1

1 + nτ

t = 1, ..., T.
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De Quinto and Watt (2003) use a similar term to ηt to analyze welfare through
market power and mergers. In our approach, we investigate the issue of welfare
through a comparison with perfect competition representing the maximizing global
surplus benchmark case.

Remark 1. When leaders of any cohort t, t ∈ J1, T − 1K, ignore the true number of
followers in cohort τ > t or form incorrect estimates about it, the effective equilib-
rium strategies and payoffs coincide with those obtained under perfect information
regarding the number of followers.

Remark 2. The leader’s markup discount factor is equivalent to a taxation of prof-
its. The tax rate τt differs from one firm to another:

τt = 1− γt.

3.3. Necessity

Lemma 3. Under condition (H1), Property 1 occurs only if condition (H2) is sat-
isfied. Under condition (H2) and c > 0, Property 1 occurs only if condition (H1) is
satisfied.

Proof. See Appendix C and Appendix D.

It is then possible to state the following proposition.

Proposition 2. In the T -stage economy, firms behave as Cournotian oligopolists
only if (H1) and (H2) are satisfied.

Proof. The proposition directly ensues from Lemmas 1 to 3.

In the literature, neither the necessity of these conditions nor the fact that the
leaders effectively behave as Cournotian oligopolists have ever been demonstrated.
The only results in the literature feature that the equilibrium strategies in a T−stage
model coincides with the equilibrium strategies that would be obtained with stag-
gered static problems where firms either compete monopolistically (as in Boyer and
Moreaux (1986)) or oligopolistically (as in Watt (2002)) on residual demand. This
paper provides a formal and general proof.

4. Implications for convergence and welfare

Social welfare is maximized under perfect competition, that is when aggregate
output is equal to X∗. Let ω be the index of social welfare. This index, included
between 0 and 1 (maximum welfare), is measured by the sum of the shares nτητ :

ω =
T
∑

τ=1

nτητ = 1−
1

(1 + n1)(1 + n2)...(1 + nT )
= 1− η1,T .

It can be asserted from Corollary 2 that the aggregate equilibrium output in the
model is given by ωX∗.
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Lemma 4. When the number of firms becomes arbitrarily large, either vertically
(when T tends to infinity) or horizontally (when nτ tends to infinity), the oligopoly
equilibrium output converges toward the competitive equilibrium output.

Proof. Immediate from limT→∞

∑T
τ=1 nτητ = 1 and limnτ→∞

∑T
τ=1 nτητ = 1.

Convergence toward perfect competition is then achieved through an increase
in the number of cohorts and/or in the number of firms in any cohort. A specific
case of vertical convergence can be found in Boyer and Moreaux (1986) for nτ = 1,
t ∈ J1, T K.

From the previous lemma we know that welfare can be improved by increasing
the number of firms. When the number of firms is fixed, welfare can be modified
modified when firms are displaced in the decision sequence, either by enlarging the
hierarchy or changing the size of existing cohorts.

Lemma 5. For any given number of firms, a displacement of any firm results in a
higher welfare gain when enlarging the hierarchy rather than modifying the size of
an existing cohort.

Proof. Assume a move of a cohort-t firm within the hierarchy. Let ω1 be the social
welfare index when this moves enlarges the hierarchy (adding a cohort T + 1) and
ω2 be the same index when it modifies the size of an existing cohort (say t′).

ω1 = 1−
1 + nt

(1 + nt − 1)(1 + nT+1)

T
∏

τ=1

1

1 + nt

with nT+1 = 1

ω2 = 1−
(1 + nt)(1 + nt′)

(1 + nt − 1)(1 + nt′ + 1)

T
∏

τ=1

1

1 + nt

.

Since 1
2+n

t′
< 1

2
for any nt > 0 then ω1 > ω2.

For a constant number of firms, adding new cohorts is always welfare improving.
Said differently, introducing position-based asymmetries is welfare enhancing. It
echoes and generalizes the result of Daughety (1990), which is restricted to T = 2.

When both the number of stages and the number of firms are fixed, the following
lemma shows how to improve welfare.

Lemma 6. For a fixed number of firms and cohorts, welfare improves as long as
firms are relocated between cohorts until the difference of sizes between any two
cohorts is at most equal to 1. For each relocation, welfare enhancement is greater
when the firm is moved from the largest to the smallest cohort.

Proof. See Appendix E.

It can now be stressed the assumptions upon which positions of firms do not
matter for social welfare, i.e. are invariant to specific modifications in the decision
process. This property is called hierarchy neutrality.
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Lemma 7. The linear economy, defined by assumptions (H1) and (H2), is hierarchy
neutral when relocation of firms consists of switching the whole cohorts within the
hierarchy: this relocation does not affect social welfare.

Proof. Immediate: switching nt and nt′ backward or forward in η1,T does not change
the value of ω.

From the preceding lemmas, one can state the following proposition relative to
the link between welfare and the structure of the economy.

Proposition 3. In this linear economy, maximizing social welfare can be achieved
through two ways:

(i) As a priority, by enlarging the hierarchy.
(ii) Then, by successively relocating firms from the most to the less populated

cohort until equalizing the size of all cohorts.

Proof. Proposition 3 ensues from Lemmas 4 to 7.

This proposition could also be used to analyze how entry affects welfare. If new
firms enter the economy, the increase in welfare is greater if new cohorts are created
rather than if those firms integrate existing cohorts.

5. Conclusion

The paper investigates a hierarchic T -stage oligopoly model. It states that fol-
lowers do not matter in the linear case, i.e. under constant identical marginal costs
and linear demand. This means that at any stage each firm behaves as a Cournotian
oligopolist on residual demand. In addition, the two discount factors presented in
this paper enable us to characterize to fully characterize the market outcome of the
linear economy, especially in terms of strategies and welfare.

The rational myopic behavior of firms could be interpreted as a situation in which
firms compete under imperfect information on the number of stages and players.
Since strategies are invariant to the number of followers, this framework is also
suited to analyze free entry. The follower’s output discount factor determines the
quantities produced by new firms while the leader’s markup discount factor captures
the impact of additional competitors on incumbents’ profits.
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Appendix A. Proof of Lemma 1

The proof is by backward induction and structured in three steps.

Step 1: property (2) is true for cohort t = T − 1 (with T > 1).

The inverse demand function faced by firms (blue line) is defined by:

p(X) = a− bX with X =
T
∑

τ=1

Xτ , (H1)

where Xτ =
nτ
∑

i=1

xi
τ ≥ 0 is the aggregate production of cohort τ . For any quantity

of output XT−1 produced by cohort T − 1, the resulting residual demand faced by
followers of cohort T is:

p

(

T
∑

τ=1

Xτ

)

= âT−1 − bXT with ât ≡ a− b
t
∑

τ=1

Xτ ,

where âT−1 is considered as given by followers. Geometrically, followers must select
a couple (X, p) on the segment [D,A].

When acting symmetrically, the associated marginal revenue of cohort−T firms
(red line) is defined by:8

Rm(XT ) = âT−1 − b
1 + nT

nT

XT .

Considering the following derivatives:

∂Rm

∂XT

(XT ) =
DF

CF
= −b

1 + nT

nT

∂p

∂XT

(XT ) =
DF

AF
= −b,

it comes that:

CF =
nT

1 + nT

AF, or equivalently AC =
1

1 + nT

AF.

Finally, applying Thales’ theorem to triangles ABC and ADF leads to:

BC =
1

1 + nT

DF = EF. (A.1)

8This function is derived from the total revenue of a follower i :

RT (xi

T
) =

[

âT−1 − b
nT
∑

k=1

xk

T

]

xi

T
. The symmetric behavior assumed for followers yields: xi

T
= xT

for all i ∈ [1, nT ] and XT = nTxT .
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Actually, EF is the markup of a leader after the entrance of the last cohort,
while DF is the markup of a leader before the entrance of cohort T . Equation (A.1)
can be rewritten as:

p

(

T
∑

τ=1

Xτ

)

− c =
1

1 + nT

[

p

(

T−1
∑

τ=1

Xτ

)

− c

]

.

Step 2: assume property (2) is true for any cohort t = T − h (1 ≤ h ≤ T − 2)
then it is true for cohort T − h− 1.

If property (2) holds for cohort T − h then:

[

p

(

T
∑

τ=1

Xτ

)

− c

]

xi
T−h = γT−h

[

p

(

T−h
∑

τ=1

Xτ

)

− c

]

xi
T−h with γT−h ≡

T
∏

τ=T−h+1

1

1 + nτ

Thus, maximizing firm i’s profit is tantamount to maximize the myopic profit
defined as follows:

max
xi

T−h

[

p

(

T−h
∑

τ=1

Xτ

)

− c

]

xi
T−h.

When firms of cohort−(T − h) act symmetrically, the myopic marginal revenue
(red line) is defined by:9

R̃m(XT−h) = âT−h−1 − b
1 + nT−h

nT−h

XT−h.

In the same way as in step 1, it can be shown that:

p

(

T−h
∑

τ=1

Xτ

)

− c =
1

1 + nT−h

[

p

(

T−h−1
∑

τ=1

Xτ

)

− c

]

.

By assumption, the following property is satisfied:

p

(

T
∑

τ=1

Xτ

)

− c = γT−h

[

p

(

T−h
∑

τ=1

Xτ

)

− c

]

.

We deduce from the two previous equations that:

p

(

T
∑

τ=1

Xτ

)

− c =
γT−h

1 + nT−h

[

p

(

T−h−1
∑

τ=1

Xτ

)

− c

]

= γT−h−1

[

p

(

T−h−1
∑

τ=1

Xτ

)

− c

]

Step 3: from steps 1 and 2 we conclude by backward induction that property (2)
is true for any cohort t (with 1 ≤ t ≤ T − 1).

9The associated marginal revenue is: Rm(XT−h) = R̃m(XT−h) + (1− γT−h)c.
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Appendix B. Proof of Lemma 2

Applying Thales’ theorem to triangles ABC and ADF leads to:

CF =
nt

1 + nt

AF. (B.1)

Actually, CF is the optimal output produced by cohort t, that is Xt, while AF is
the maximal quantities cohort t can produce to generate non-negative profit (equal
to the difference between the perfect competition equilibrium supply and the output
already produced by the previous cohorts). The property above can be rewritten as:

Xt =
nt

1 + nt

(Xt + AC), or equivalently AC =
Xt

nt

= xt.

Notice that AC is also the maximal quantities cohort t+1 can produce to generate
non-negative profit. Then, property (B.1) applied to cohorts t and t+ 1 becomes:

Xt+1 =
nt+1

1 + nt+1

AC, leading to
Xt+1

nt+1

= xt+1 =
1

1 + nt+1

xt.

By backward induction, it turns out that:

xt = η1,tx1, where η1,t ≡

t
∏

τ=2

1

1 + nτ

.

Appendix C. Proof of Lemma 3

We intend to prove that condition (H2)

φt(xt) = cxt for any t ∈ J1, T K (H2)

is a necessary condition for properties (2) and (3) to hold.

Assume that all firms act as Cournotian oligopolists on the residual demand.
The firm j of cohort t then determines xj

t such that it maximizes its myopic profit
function π̃j

t :

π̃j
t (x

j
t) =

[

ât−1 − b
nt
∑

i=1

xi
t

]

xj
t − φt(x

j
t),

where φt is a non-decreasing function.

The reaction function of cohort-t firms, when behaving symmetrically, is implic-
itly defined by:

ât−1 − b(1 + nt)xt − φ′

t(xt) = 0 for any t > 1.

When maximizing its profit, a cohort-τ firm (τ < t) substitutes to Xt the ag-
gregate reaction function of cohort t. Strategy of a cohort-τ firm is then indepen-
dent of nt provided Xt does not contain any nt term. If so xt is a function of nt,
i.e. xt = Xt/(1 + nt).
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The aggregate reaction function of cohort t can be rewritten as:

Xt =
ât−1 − φ′

t(xt)

b
for any t > 1.

It does not depend on nt provided φ′

t(xt) does not contain any nt term. Since xt

is a function of nt, the marginal cost is independent of xt, that is constant:

φt(xt) = ctxt for any t ∈ J1, T K.

The reaction function of a cohort-T firm can now be explicitly defined:

xT =

a− cT − b
T−1
∑

τ=1

Xτ

b(1 + nT )
,

and the profit function of cohort−(T − 1) firms is:

πT−1(xT−1) =
1

1 + nT

[âT−1 − bXT−1 − cT−1 − nT (cT−1 − cT )] xT−1

For cohort−(T − 1) firms to behave as Cournotian oligopolists, the profit function
must be such that:

πT−1(xT−1) =
1

1 + nT

π̃T−1(xT−1).

This is the case if and only if:

cT−1 = cT .

Using backward induction, it can be proved that for cohort−t firms, t < T − 1,
to behave as Cournotian oligopolists, the following properties must hold:

c1 = c2 = ... = cT−1 = cT .

Thus, when the demand function is linear and cost functions are non-decreasing,
a necessary condition for firms of any cohort to behave as Cournotian competitors
on residual demand requires condition (H2).

Appendix D. Proof of Lemma 4

Under condition (H2), firms of cohort T − 1 act as Cournotian competitors on
residual demand if and only if:

[

p

(

T−1
∑

τ=1

Xτ +XT

)

− c

]

xt = γt

[

p

(

T−1
∑

τ=1

Xτ

)

− c

]

xt

for a coefficient γt > 0.
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It requires XT (the aggregate reaction function of cohort T ) to be linear in
∑T−1

τ=1 Xτ and to be a function of c, independent of
∑T−1

τ=1 Xτ :

XT = α1 + α2

T−1
∑

τ=1

Xτ + g(c),

where α1 > 0 and −1 < α2 < 0 (strategies are substitutes) are constant terms, and
g(0) = 0 and g′(c) ≤ 0 on the ground of economic plausibility.

Adding
∑T−1

τ=1 Xτ to each side of the equation above and rearranging yields:

T−1
∑

τ=1

Xτ = −
α1

1 + α2

+
1

1 + α2

T
∑

τ=1

Xτ −
g(c)

1 + α2

.

The first-order condition for profit maximization of cohort-T firms is:

p

(

T
∑

τ=1

Xτ

)

− c+ p′

(

T
∑

τ=1

Xτ

)

xT = 0

that is:

−

p

(

T
∑

τ=1

Xτ

)

p′
(

T
∑

τ=1

Xτ

) +
c

p′
(

T
∑

τ=1

Xτ

) =
α1

nT

+
α2

nT

T−1
∑

τ=1

Xτ +
g(c)

nT

.

or:

−

p

(

T
∑

τ=1

Xτ

)

p′
(

T
∑

τ=1

Xτ

) +
c

p′
(

T
∑

τ=1

Xτ

) = µ1 + µ2

T
∑

τ=1

Xτ + µ3g(c), (D.1)

with:

µ1 =
α1

nT (1 + α2)
> 0

µ2 =
α2

nT (1 + α2)
< 0

µ3 =
1

nT (1 + α2)
> 0

By identification, the previous equality is satisfied provided p′ is independent of
T
∑

τ=1

Xτ or c = 0.

Case 1

When c = 0, equation (D.1) becomes:
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−

p′
(

T
∑

τ=1

Xτ

)

p

(

T
∑

τ=1

Xτ

) =
1

µ1 + µ2

∑T
τ=1Xτ

.

By integrating both sides of the equation:

− ln p

(

T
∑

τ=1

Xτ

)

=
1

µ2

ln

[

µ1 + µ2

T
∑

τ=1

Xτ

]

− lnµ4 with µ4 > 0,

that is:

p(X) = µ4

[

µ1 + µ2

T
∑

τ=1

Xτ

]−1/µ2

≡

[

a− b
T
∑

τ=1

Xτ

]µ

with a, b, µ > 0.

A specific case is the linear demand function with µ = 1. It is worth noting
however that another class of non-linear functions is compatible with the property
that firms behave as Cournotian oligopolist on residual demand when c = 0.

Case 2

When c 6= 0, identifying equation (D.1) implies:

c

p′
(

T
∑

τ=1

Xτ

) = µ3g(c),

where µ3 is a constant and g is independent of
∑T

τ=1 Xτ . The derivative of p must
then be a constant term. Thus:

p(X) = a− b
T
∑

τ=1

Xτ with a, b > 0.

The linear demand function is the only class of functions consistent with the
property that firms act as Cournotian oligopolist on residual demand when c 6= 0.

Appendix E. Proof of Lemma 6

Maximizing the welfare index ω is tantamount to maximize:















max
nτ

T
∏

τ=1

1 + nτ

s.t.
T
∑

τ=1

nτ = n

Substituting nT by n−
∑T−1

τ=1 nτ into the objective function, deriving with respect
to nτ , τ ∈ J1, T−1K, and assuming the n′

τs are infinitely divisible yields the following
first-order conditions:
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n−

T−1
∑

τ=1

nτ = nt t ∈ J1, nT−1K

or equivalently (in addition with the definition of nT ):

nt = n/T ≡ n̄ t ∈ J1, nT−1K.

Notice that for this value of nτ the omitted constraint 0 ≤ nτ ≤ n is satisfied for
any τ ∈ J1, T K.

At (n̄, ..., n̄), the T × T Hessian matrix M is

M = −(1 + n̄)T−2







1 . . . 1
...

. . .
...

1 . . . 1






− (1 + n̄)T−2I,

where I is the identity matrix. The eigenvalues of M are −(T + 1)(1 + n̄)T−2 and
−(1 + n̄)T−2 (the associated eigenspaces have dimension 1 and T − 1 respectively).

Matrix M is then negative definite:

• The unique solution to the first-order conditions is a global maximum when
n/T is an integer.

• There are multiple optima when n/T is not an integer. Due to the strict
concavity of the objective function, these optima must be as close as possible
to the hypothetical solution above. In other words they must minimize the
distances

∣

∣nτ −
n
T

∣

∣, for τ = 1, ..., T , such that
∑T

τ=1 nτ = n. The minimum
value of these distances is 1 and can be obtained as follows.

Let m < T be an integer such that (n − m)/T = ⌊n/T ⌋. An optimum is
such that there are T −m cohorts populated by ⌊n/T ⌋ firms and the other m
cohorts by ⌊n/T ⌋+ 1 firms. The number of combinations of m cohorts out of
T defines the number of optima.

Notice that the most populated cohorts embody one more firm than the less
populated cohorts.

When n/T is not an integer and for given values of the nτ ’s, the more efficient
way to get closer to the hypothetical optimal as one firm is relocated consists in
reducing the largest distance, e.g.

∣

∣nt −
n
T

∣

∣. Without loss of generality, assume that
the difference

(

nt −
n
T

)

is positive. Then, it is not efficient for social welfare to
relocate the firm in a cohort t′ with nt′ > n̄ since this move decreases

∣

∣nt −
n
T

∣

∣ but
increases

∣

∣nt′ −
n
T

∣

∣. The firm must be relocated in a cohort τ such that nτ < n̄.
Within this set of cohorts, the cohort with the largest

∣

∣nτ −
n
T

∣

∣ will be selected since
the reduction of the distance is the highest.

The argument is similar when the difference
(

nt −
n
T

)

is negative. As a conclu-
sion, social welfare is more efficiently improved when relocating a firm from the most
to the less populated cohort.
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