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We introduce in this paper a testing approach that allows checking whether two financial institutions are

systemically equivalent, with systemic risk measured by CoVaR (Adrian and Brunnermeier, 2011). The test

compares the difference in CoVaR forecasts for two financial institutions via a suitable loss function that

has an economic content. Our testing approach differs from those in the literature in the sense that it is

conditional, and helps evaluating in a forward-looking manner, the extent to which statistically significant

differences in CoVaR forecasts can be attributed to lag values of market state variables. Moreover, the

test can be used to identify systemically important financial institutions (SIFIs). Extensive Monte Carlo

simulations show that the test has desirable small sample properties. With an application on a sample

including 70 large U.S. financial institutions, our conditional test using market state variables such as VIX

and various yield spreads, reveals more (resp. less) heterogeneity in the systemic profiles of these institutions

compared to its unconditional version, in crisis (resp. non-crisis) period. It also emerges that the systemic

ranking provided by our testing approach is a good forecast of a financial institution’s sensitivity to a crisis.

This is in contrast to the ranking obtained directly using CoVaR forecasts which has less predictive power

because of estimation uncertainty.
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1. Introduction

The U.S. financial market turmoil that began in August 2007 following the bankruptcy of Lehman

Brothers has spread to the global financial market and the impact on the worldwide real economy

remains current. The magnitude of the crisis and the social costs in most countries raise the need

for new macro-prudential devices for a more efficient stabilization of systemic risk in the financial

sector. In response to the crisis, a number of reforms have been initiated by the Financial Stability

Board (FSB) and the Basel Committee on Banking Supervision (BCBS) to improve the quality

of banking supervision worldwide. A main measure from these reforms addresses the identification

of the so-called global systemically important financial institutions (G-SIFIs). The objective is to

allocate G-SIFIs into buckets according to their required level of additional loss absorbency. In a

country-level, a set of principles has also been established to allow national authorities to identify

domestic systemically important financial institutions (D-SIFIs).

* We thank Christophe Hurlin, Bertrand Candelon, and Raffaella Giacomini for their comments that help improve

an earlier version of the paper. The usual disclaimers apply.
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From a methodological point of view, the identification of SIFIs requires above all a deeper

understanding of the nature of systemic risk and the development of suitable tools for its measure-

ment. In this line the Basel Committee introduced an indicator-based approach for the assessment

of the systemic importance of financial institutions. The retained indicators (quantitative and qual-

itative) which are mostly non-publicly available are related to the key driving forces of the systemic

fragility of financial institutions, such that size, contagion or interconnectedness, lack of substitute

financial products, global cross-jurisdictional activity, and complexity of business models.

In contrast to the indicator-based approach, the academic literature has evolved significantly in

recent years, offering a model-based approach to measure systemic risk based on publicly available

market data. The main contribution can be broadly divided into two groups. The first group

including the contributions of Huang et al. (2009), Acharya et al. (2010), Brownlees and Engle

(2012), and Acharya et al. (2012), among others, attempts to evaluate the systemic importance of

a financial institution by the expected losses it generates in the case of a global systemic event.

A different but closely related approach is the Conditional Value-at-Risk (CoVaR) of Adrian and

Brunnermeier (2011) which measures the systemic risk of a given institution, by the downside risk

its distress imposes to the system as whole. All these papers share the common feature that the

institution-level systemic risk they produce is based on the dependence structure between negative

large variations of the institutions market values. The second group of papers captures another

dimension of systemic risk, scrutinizing the systemic linkages among financial institutions given by

the network topology of their asset returns (Hautsch et al., 2011; Billio et al., 2012; Barigozzi and

Brownlees, 2013).1

Although the evaluation of systemic risk provided by the model-based approach can be useful

in determining the level of capital surcharges that should be imposed on the SIFIs, it is worth

mentioning that the ranking of SIFIs from this approach can be inconsistent due to estimation

uncertainty. Indeed, the different contributions in the model-based approach are based on econo-

metric models for the dynamics and the interrelationships between market data (equity or credit

default swap returns). Because these models are possibly misspecified, the provided measures of

systemic risk are noisy, and the associated rankings of SIFIs are misleading. The impact of esti-

mation uncertainty on systemic risk models has been discussed by Danielsson et al. (2011). The

authors show that most common systemic risk models such as marginal expected shortfall (Acharya

et al., 2010) or CoVaR (Adrian and Brunnermeier, 2011) contain a high degree of uncertainty with

1 Our decomposition into two groups of the contributions about systemic risk measurement based on market data
is not exhaustive. Indeed there are some papers that focus on other aspects of systemic risk such as (i) probability
of failure derived from contingent-claims analysis (Capuano, 2008; Gray and Jobst, 2010) and (ii) equity market
illiquidity (Getmansky et al., 2004; Khandani and Lo, 2011; Billio et al., 2012).
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the consequence that the signal they produce is not useful. They suggest the development of a set

of evaluation criteria (confidence intervals, backtesting, and robustness analysis) to be applied to

systemic risk models based on market data.

The impact of estimation uncertainty on the ranking of SIFIs can be alleviated using robust

inferential procedures to compare the systemic risk profiles of financial institutions. This approach

is followed by Castro and Ferrari (2012) who introduce a dominance test to compare the CoVaR

of a pair of financial institutions. Applying the test to all pairs of institutions allows providing a

ranking of SIFIs. Our article is related to the work of Castro and Ferrari (2012), as we introduce

a statistical procedure to check for the equality between the CoVaRs of two financial institutions.

Formally, our test based on the conditional predictive ability (CPA) test of Giacomini and White

(2006) compares the difference in CoVaR forecasts for two financial institutions via a suitable loss

function that has a meaningful economic interpretation. For a given financial institution, our loss

function measures at each date the incurred system loss in exceedance of its VaR when the financial

institution in question is in distress. For systemically equivalent financial institutions with the

same CoVaRs, the expected difference in the loss functions is close to zero, and deviates from zero

otherwise. Our test is robust to estimation uncertainty and helps providing a consistent ranking of

SIFIs. Extensive Monte Carlo simulations show that the test has desirable small sample size and

power properties.

Although closely related to the paper of Castro and Ferrari (2012), our work differs from this

contribution in two aspects. First, we consider testing for the statistical difference in systemic

risk measures for two financial institutions in an out-of-sample environment. Second, and more

importantly, our test is conditional and helps evaluating in a forward-looking manner, the extent

to which statistically significant differences in CoVaR forecasts can be attributed to lag values

of market state variables. Hence in our framework, rejection of the null hypothesis of statistical

equality between CoVaR forecasts will occur because market state variables help predict out-of-

sample, the statistical differences in systemic risks for both institutions. An unconditional version

of the test is also considered and corresponds to a Diebold and Mariano (1995) type test.

An empirical application is conducted using a sample of 70 U.S. financial institutions. We observe

two things. First, our conditional test using market state variables such as VIX and various yield

spreads, reveals more (resp. less) heterogeneity in the systemic profiles of these institutions com-

pared to its unconditional version, in crisis (resp. non-crisis) period. Hence, given the information

conveyed by the market state variables over the crisis period, the conditional test is able to dis-

criminate financial institutions much more in comparison to the unconditional test. Second, we

observe that the evaluation of the systemic importance of financial institutions provided by our

conditional testing approach seems consistent. Indeed, the systemic ranking obtained through the
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conditional testing approach appears as a good forecast of a financial institution’s sensitivity to

a crisis. More precisely, institutions which are identified as systemically important in the period

preceding the 2007-2008 financial crisis are those that experience large losses in the crisis period.

This is in contrast to the ranking obtained directly using CoVaR forecasts which has less predictive

power because of estimation uncertainty.

The remainder of the paper is organized as follows. In the second section, we present our condi-

tional test for the statistical equality between CoVaR forecasts. Section 3 analyzes the small sample

properties of the test via extensive Monte Carlo simulations. Section 4 is devoted to the empirical

application, and the last section concludes the paper.

2. Testing for the statistical equality of CoVaR forecasts

This section is devoted to the main contribution of our paper. We introduce a testing procedure

to check whether two financial institutions are systemically equal, with systemic risk quantified

by CoVaR. The section is divided into two parts. In the first part we briefly review the concept

of CoVaR as introduced by Adrian and Brunnermeier (2011) to measure systemic risk of financial

institutions, and present the intuition underlying our test. In the second part we give an overview

of our testing approach, introducing the test statistic and its asymptotic properties.

2.1. A brief review of CoVaR

CoVaR is based on the concept of Value-at-Risk (VaR), a risk measure often used by financial

analysts and risk managers to measure and monitor the risk of loss for a trading or investment

portfolio. The VaR of an instrument or portfolio of instruments is the maximum dollar loss within

the q%-confidence interval (Jorion, 2007). Moving from the portfolio level to the global level for a

financial institution i, the VaR at the confidence level q is defined as:

Pr
(
ri,t+1 ≤VaRi

q,t+1

)
= q, (1)

with ri,t+1 the equity return of the financial institution i at time t+1, and VaRi
q,t+1 the correspond-

ing VaR. Hence, the VaR is equal to the q-quantile of the returns distribution for the financial

institution i.

CoVaR as defined by Adrian and Brunnermeier (2011) is built on the VaR as risk measure,

and evaluates the systemic importance of a financial institution by the risk encountered by the

financial system as whole, when the institution in question is in distress. The distress of the financial

institution occurs when its return or market loss is equal to its VaR. More precisely, if we denote

rm,t+1 the return at time t+ 1 of the market, the CoVaR of the financial institution i is defined as:

Pr
(
rm,t+1 ≤CoVaRi

q,t+1

∣∣ri,t+1 = VaRi
q,t+1

)
= q, (2)
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where CoVaRi
q,t+1 is the CoVaR of the financial institution i. From (2), it appears that the CoVaR

of the financial institution i is the q-quantile of the conditional probability distribution of mar-

ket returns, with the conditioning event given by the distress of the institution i. Note that both

VaRi
q,t+1 and CoVaRi

q,t+1 in (1) and (2) are typically negative numbers. Therefore, for two finan-

cial institutions i and j, a configuration with CoVaRi
q,t+1 < CoVaRj

q,t+1 means that the financial

institution i is more systemic than the financial institution j, because the distress of the former

has a larger consequence in the left tail of the market returns distribution.

Regarding estimation, the standard method to estimate CoVaR is the parametric quantile regres-

sion used by Adrian and Brunnermeier (2011) in their application of the measure. The parametric

quantile regression links the returns of the market to the returns of the financial institution as

follows:

rm,t+1 = αi
q +βi

qri,t+1 + εi,t+1, (3)

where αi
q and βi

q are parameters, εi,t+1 is an innovation having the q-quantile equal to zero. The

parameters αi
q and βi

q are usually estimated by minimizing the ”check” loss function of Koenker and

Bassett (1978). By the definition of quantile regression, the fitted value of the dependent variable

in (3) corresponds to the q-quantile of the market returns, i.e., the estimated q-VaR of the market:

VaRm
q,t+1 = α̂i

q + β̂i
qri,t+1. (4)

This expression provides the VaR of the system for any value of the return of the financial

institution i. Replacing ri,t+1 by VaRi
q,t+1 in the last expression yields the estimated value of CoVaR

for the financial institution i:

CoVaRi
q,t+1 = α̂i

q + β̂i
qVaRi

q,t+1. (5)

Remark that in order to compute the value of CoVaRi
q,t+1, we need to estimate VaRi

q,t+1, the

VaR of the financial institution i at time t+1. This estimation can be accomplished in several ways

using either non-parametric, semi-parametric or parametric models for the probability distribution

function of ri,t+1. For a review of models for the estimation of VaR, see Engle and Manganelli

(2001). It is worth noting that the fitted value of CoVaR at time t depends on estimated parameters,

i.e., α̂i
q and β̂i

q obtained through the quantile regression, but also a vector η̂i of parameters related

to the estimation of VaRi
q,t+1. Hence throughout the paper we will use if needed the notation

CoVaRi
q,t+1

(
θ̂i

)
to denote the forecast CoVaR at time t+ 1 for the financial institution i, with:

θ̂i =
(
α̂i

q, β̂
i
q, η̂
′
i

)′
. (6)
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If we consider a second financial institution j, its CoVaR is similarly obtained through the

following quantile regression:

rm,t+1 = αj
q +βj

qrj,t+1 + εj,t+1, (7)

with the estimated CoVaR at time t+ 1 equal to:

CoVaRj
q,t+1

(
θ̂j

)
= α̂j

q + β̂j
qVaRj

q,t+1. (8)

Equations (3) and (7) show that the CoVaRs of both financial institutions are computed through

a quantile regression where the dependent variable is the market return. The only difference between

the two regressions lies in the choice of the factor or covariate that affects the dependent variable.

In other words, the CoVaRs of the two financial institutions are quantiles of the same variable

estimated through two different conditional models. Hence, a simple way to compare the two

CoVaRs is to compare the predictive ability of both models in estimating the q-quantile of the

market returns. To achieve this task, we rely on the conditional predictive ability test of Giacomini

and White (2006). Their framework allows for the comparison of the predictive power of two

competing models under a general econometric environment: (i) it can handle forecasts based on

both nested and nonnested models, (ii) allows the forecasts to be produced by general estimation

methods, (iii) and authorizes the use of general loss functions, either economic or statistical. In

the next subsection, we develop our testing approach to compare CoVaR forecasts.

2.2. Comparing CoVaR forecasts across institutions

The environment of our testing procedure is as follows. At each date t the information set avail-

able corresponds to Ft = {Ws, s≤ t}. The observed vector Wt has the following partition Wt =

(ri,t, rj,t, rm,t, z
′
t)
′
, where ri,t and rj,t are the returns at time t of two financial institutions i and

j respectively, and rm,t is the return at time t of the market as whole. The vector zt of length

k contains the values at time t of k exogenous variables, measuring the state of both stocks and

credit markets, with predictive power on the variations of systemic risk measures. Examples of

such variables are VIX, short term treasury rate, slope of the yield curve and corporate default

spreads (Adrian and Brunnermeier, 2011).

Now, consider that we use a rolling-window forecasting scheme to produce out-of-sample CoVaR

forecasts for the financial institution i. Recall that a rolling-window procedure consists in parti-

tioning the whole sample of size T into an in-sample part of size m and an out-of-sample part

of size n, with T = m+ n. The first m observations are used to produce the first out-of-sample

forecast. The n− 1 subsequent forecasts are obtained moving each time the estimation window

(including a new data and dropping the earliest data) until the last observation. At the end of the

rolling-window procedure, we obtain n = T −m out-of-sample CoVaR forecasts for the financial
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institution i, i.e., CoVaRi
q,t+1

(
θ̂i,t

)
, t=m, ..., T −1. The dependence to time of the estimated vec-

tor of parameters θ̂i comes from the fact that through the rolling-window procedure, this vector is

re-estimated. One can instead use a fixed forecasting scheme, in which θi is estimated only once on

the first m observations. For a second financial institution j, we can similarly produce n= T −m

out-of-sample CoVaR forecasts given by CoVaRj
q,t+1

(
θ̂j,t

)
, t=m, ..., T − 1.

We evaluate at each date t = m, ..., T − 1, the out-of-sample CoVaR forecast for the financial

institution i, using the following one-sided loss function

Lt+1

(
rm,t+1,CoVaRi

q,t+1

(
θ̂i,t

))
= ei,t+1I (ei,t+1 < 0) , (9)

with

ei,t+1 = rm,t+1−CoVaRi
q,t+1

(
θ̂i,t

)
, (10)

where I (.) is the usual indicator function. Since CoVaRi
q,t+1

(
θ̂i,t

)
is the q-VaR of the market

conditional on the institution i being in financial distress, this loss function measures the excess

shortfall at date t + 1, and hence has a meaningful economic interpretation, i.e., the incurred

market loss in exceedance of its VaR. The above loss function can be similarly computed for the

financial institution j over the same out-of-sample period, with

Lt+1

(
rm,t+1,CoVaRj

q,t+1

(
θ̂j,t

))
= ej,t+1I (ej,t+1 < 0) . (11)

Whereas the loss function in (9) gives the excess shortfall of the market when the institution i

is in financial distress, the loss function in (11) measures the same quantity, but when institution

j is in distress. Relying on the conditional predictive ability test of Giacomini and White (2006),

our main idea is to test the following null hypothesis

H0 :E [∆Lt+1 |Ft ] = 0, almost surely t=m, ..., T − 1, (12)

where

∆Lt+1 = Lt+1

(
rm,t+1,CoVaRi

q,t+1

(
θ̂i,t

))
− (13)

−Lt+1

(
rm,t+1,CoVaRj

q,t+1

(
θ̂j,t

))
,

and Ft = {Ws, s≤ t} is the set of information available at time t.

Our null hypothesis invokes two main comments. First, comparing the predictive power of both

models via our loss function is equivalent to testing whether the two financial institutions are

systemically equivalent. The systemic nature of each financial institution corresponds to the expec-

tation of the loss function, which is equal for each date to the expected excess shortfall of the



8

market when the financial institution is in distress. Note that for systemically equivalent financial

institutions, the expected difference in the loss functions is close to zero. Otherwise, the expectation

deviates from zero positively (resp. negatively) when the financial institution i (resp. j) is more

systemic. Second, the expectation in (12) is conditional on the information set Ft which includes

market state variables (slope of the yield curve, corporate default spreads, etc.) with predictive

power on systemic risk. This conditional setup helps to account for the effect of these state vari-

ables, in comparing the systemic nature of the two financial institutions. In other words, rejection

will occur because state variables help predict out-of-sample, the statistical differences in systemic

risks for both institutions.

With ht a given d× 1 Ft-measurable vector, we build on Giacomini and White (2006) using the

following hypothesis to test for the equality of systemic risk measures

H0,h :E [ht∆Lt+1] = 0, almost surely t=m, ..., T − 1, (14)

which is an implication of the null hypothesis in (12). A GMM-type test can thus be conducted

to make inference.

Proposition 1. Under the null hypothesis of conditional equality between CoVaR forecasts,

T h
m,n = nZ

′
m,nΩ̂−1n Zm,n

d→
n→∞

χ2 (d) ,

with

Zm,n = n−1
T−1∑
t=m

Zm,t+1 = n−1
T−1∑
t=m

ht∆Lt+1,

where χ2 (d) is a chi-square distribution with d degrees of freedom. The matrix Ω̂n is a consistent

estimate of the variance of Zm,t+1

Ω̂n = n−1
T−1∑
t=m

Zm,t+1×Z ′m,t+1.

See Giacomini and White (2006) for the proof. Assumptions for the validity of the asymptotic

distribution are weak, allowing for heterogeneity and dependence in the loss functions differences.

It is worth mentioning that the asymptotic framework requires n→∞, while m is kept fixed, with

m the estimation sample size and n the out-of-sample size. This authorizes forecasting schemes

based on fixed or rolling-windows, and rules out the use of an expanding window. Because m is

fixed, estimation errors which result from approximating the unknown vectors θi and θj by their

respective estimators, do not vanish asymptotically. This ensures that the test captures the impact

of estimation uncertainty on the equality of the loss functions (see Giacomini and White, 2006 for

a complete discussion on this issue).
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As in the general framework of Giacomini and White (2006), an unconditional version of the

test corresponds to the following null hypothesis

H0 :E [∆Lt+1] = 0, t=m, ..., T − 1, (15)

which can be tested using a Diebold and Mariano (1995) type test.

Proposition 2. Under the null hypothesis of unconditional equality between CoVaR forecasts,

we have

tm,n =
∆Lm,n

σ̂ /
√
n

d→
n→∞

N (0,1) ,

with

∆Lm,n = n−1
T−1∑
t=m

∆Lt+1,

and σ̂2 an HAC estimator of the long run variance of the loss functions differences.

The interested reader should refer to Giacomini and White (2006) for the proof, and the regularity

assumptions. The unconditional version of the test checks whether the two CoVaR forecasts are

equal or not on average, while the conditional version asks whether there is current information

that can help predict the statistical difference between the CoVaR forecasts for the next period.

The HAC estimator σ̂2 of the long run variance has the expression

σ̂2 = n−1
T−1∑
t=m

∆L2
t+1 + 2

[
n−1

pn∑
j=1

wn,j ×
T−1∑

t=m+j

∆Lt+1∆Lt+1−j

]
, (16)

where {pn} is a sequence of integers with pn→∞ as n→∞, and pn = o (n). The weights function

wn,j are such that |wn,j|<∞, wn,j→ 1 as n→∞.

Remark that in the case of rejection of the null hypothesis of the unconditional test, a positive

(resp. negative) sign for ∆Lm,n means that the financial institution i (resp. j) is more systemic.

For the conditional test the decision rule in the case of rejection of the null hypothesis is not

straightforward. Indeed, the null hypothesis in (14) is formulated as E [ht∆Lt+1] = 0, where 0 is

the null vector of length d. Deviation from the null hypothesis occurs when at least one entry of

the vector E [ht∆Lt+1] is not equal to zero. In the case where those entries which are not equal to

zero are all positive (resp. negative), we can conclude that the financial institution i is more (resp.

less) systemic than the financial institution j. These configurations should be rare in empirical

applications as they correspond to the case where all of the conditioning variables in the vector ht

impact ∆Lt+1 in the same direction. For the more plausible cases where some entries are negative

and others positive, there is no guidance about the ranking of the systemic nature of the two

financial institutions. Nevertheless, Giacomini and White (2006) in their general framework suggest
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a procedure for selecting at time t a forecasting method for t+ 1. We adopt this procedure to the

present framework. The main idea is to recognize that rejection occurs because variables in the

vector ht can predict the loss differences ∆Lt+1 out of sample. Hence, variables in ht can be used

to predict which CoVaR forecast will yield lower loss at t+ 1. The procedure works as follows:

• Step 1: regress ∆Lt+1 the difference in loss functions at time t+1 on ht over the out-of-sample

period t=m, ..., T − 1 and let δ̂n denote the regression coefficients.

• Step 2: the approximation δ̂′nht ≈E [∆Lt+1 |Ft ] motivates the following decision rule: the finan-

cial institution i is more (resp. less) systemic than the financial institution j at time t+ 1 when

δ̂′nht > 0 (resp. δ̂′nht < 0).

Note that this decision rule is applied for each date over the out-of-sample period. Therefore we

can identify at each date t+1 over the out-of-sample period, which institution is the most systemic

given the information available at time t. This is another advantage of the conditional test over

its unconditional counterpart. For the whole out-of-sample period, the financial institution i will

be selected as the most (resp. the least) systemic financial institution when the proportion of the

dates the above decision rule concludes that i is more (resp. less) systemic is higher than 50%.

3. Small sample properties

In this section, we investigate the performance of our testing procedure in finite samples. We

perform the evaluation along two dimensions: the size and the power of the tests (unconditional

and conditional).

3.1. Analysis of the size

Our Monte Carlo simulation design can be described as follows. First, we simulate n VaR forecasts

for the financial institution i assuming that its returns follows a GARCH(1,1) model ri,t+1 = σi,t+1εi,t+1

σ2
i,t+1 = ωi,0 +ωi,1r

2
i,t +ωi,2σ

2
i,t, t= 0, ..., n− 1,

(17)

with εi,t+1 a Gaussian i.i.d. innovation process with zero mean and unit variance. Hence, over the

out-of-sample period, the n VaR forecasts at the risk level q are equal to

V aRi
t+1 (q) = Φ−1 (q)σi,t+1, t= 0, ..., n− 1, (18)

where Φ is the cumulative distribution function of a standard normal random variable. The pre-

dicted values of CoVaRi
q,t+1 are obtained via the following formula

CoVaRi
q,t+1 = αi

q +βi
qV aR

i
t+1 (q) , t= 0, ..., n− 1. (19)
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Recall that these simulated CoVaRs are theoretically the q-VaR of the market when the financial

institution i is in distress, and then satisfy the relationship

Pr
(
rm,t+1 ≤CoVaRi

q,t+1

∣∣ri,t+1 = VaRi
q,t+1

)
= q, t= 0, ..., n− 1. (20)

We simulate market returns consistent with (20) using the following data generating process

(DGP)

rm,t+1 = CoVaRi
q,t+1 +ut+1, (21)

with

ut+1 ∼N
(
−λΦ−1 (q) , λ2

)
. (22)

This specification ensures that CoVaRi
q,t+1 is indeed the q-VaR of the market, because the qth

quantile of ut+1 is equal to zero. We set the value of the parameter λ to λ= 0.1.2

We follow the same procedure described in (17-22) to simulate the n forecasts of CoVaRj
q,t+1 for

the financial institution j. The market returns consistent with these forecasts are also generated

according to (21-22)

rm,t+1 = CoVaRj
q,t+1 +ut+1. (23)

The market returns series we consider in the testing procedure is a simple weighted average

of the simulated returns in (21) and (23). Note that in our simulation setup, the forecast values

of CoVaR are directly generated over the out-of-sample period. This supposes that the in-sample

size m is zero and T = n. This is not restrictive as the asymptotic analysis in the framework of

Giacomini and White (2006) requires only that n→∞. More precisely, the conditional predictive

ability test of Giacomini and White (2006) is shown to be robust to estimation uncertainty. Hence,

we proceed here as if the true parameters are known and generate the CoVaR forecasts directly.

In order to simulate data under the null hypothesis of statistical equality between the CoVaR

forecasts for the two financial institutions, we suppose that their returns follow the same GARCH

process, i.e.,

(ωi,0, ωi,1, ωi,2) = (ωj,0, ωj,1, ωj,2) = (0.002,0.2,0.6) . (24)

The profile of the n VaR forecasts are thus identical for the two financial institutions. Moreover,

we simulate the CoVaR forecasts assuming that

(
αi

q, β
i
q

)
=
(
αj

q, β
j
q

)
= (0.0,0.5) . (25)

2 See Giacomini and Komunjer (2005) for a similar simulation design in the context of conditional quantile forecasts
encompassing test.
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It is worth noting that although these restrictions are particular, they ensure that the simulated

CoVaR forecasts for the two financial institutions are statistically equal.3 The sizes of the uncon-

ditional and conditional versions of our test are displayed in Table 1 over 5,000 replications for the

nominal risk level η = 5%. The downside risk level q is set to 5%. We report results for different

configurations of the out-of-sample length n ∈ {500,1000,2000,5000}. For the unconditional test,

the truncation parameter pn is set to pn ∈ {0,5,10,15,20,25,50}. For the conditional test, we let

the ht measurable vector to be ht = (1, St)
′
, where St is a variable measuring the state of the

economy at time t, which follows an i.i.d. Bernoulli distribution with parameter 0.5. Because, St

is simulated independently to the two CoVaR forecasts, the null hypothesis of the conditional test

is also valid. Indeed, recall that the null hypothesis in the conditional version of the test requires

the difference in loss functions to be uncorrelated to the conditioning variable, we denote here St.

Results in Table 1 show that both tests are well-sized. Indeed, the rejection frequencies are overall

close to 5%. The only exceptions occur for the smallest sample sizes where the conditional (resp.

unconditional) test appears undersized for n= 500 and n= 1000 (resp. n= 500). Nevertheless for

both tests, the rejection frequencies converge to the nominal size when the sample size increases.

3.2. Analysis of the power

We consider two different simulation setups. In the first one, the difference in CoVaR forecasts is

not related to the conditioning variable St. In the second setup, the difference in CoVaR forecasts

is related to the lagged value of the conditioning or state variable St. In this last case, we expect

the conditional test to be more powerful than its unconditional counterpart.

3.2.1. Experiment 1 - independence between CoVaRs and St: We rely on the simula-

tion design used for the analysis of the size, except that the responses of the CoVaR forecasts to

the VaRs differ across the two financial institutions. More precisely, we suppose that the returns

of each financial institution follow the GARCH(1,1) model calibrated above. However, we set the

parameters βi
q and βj

q as follows (
αi

q, β
i
q

)
= (0.0,0.4) , (26)(

αj
q, β

j
q

)
= (0.0,0.6) . (27)

Hence, although the VaRs are statistically equivalent for the two financial institutions, their

CoVaR forecasts are not statistically equal, due to the difference between the slope coefficients βi
q

and βj
q . In other words, the CoVaR forecasts of the financial institution i are on average lower in

absolute value than the CoVaR forecasts of the financial institution j. For the unconditional test,

3 Indeed, it is conceptually difficult to simulate data under the null hypothesis, assuming different processes for the
returns of the two financial institutions, and (ii) different responses of the VaR of the market to the VaR of each
financial institution.
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the truncation parameter pn is set to pn ∈ {0,5,10,15,20,25,50}. To implement the conditional test,

the conditioning variable St is generated independently to the CoVaR forecasts and follows once

again an i.i.d. Bernoulli distribution with parameter 0.5. Results computed over 5,000 replications

are displayed in Table 2. The unconditional test has good small sample power properties. For

instance, with pn = 5 the test rejects the null hypothesis 81% (resp. 98%) of time when the out-of-

sample length n is equal to 500 (resp. 1000). The rejection frequencies are equal to one for the largest

sample length (n= 5000) and this result holds whatever the value of the truncation parameter pn.

Although the conditional test has fairly good power properties, the reported rejection frequencies

are lower to those for the unconditional test, especially for the smallest sample size (n= 500). This

is expected because as underlined by Giacomini and White (2006), the inclusion of a conditioning

variable that is either uncorrelated or weakly correlated with the loss functions will lower the

power of the conditional test. This is the case here, since the state variable St is not correlated to

the CoVaR forecasts.4 Remark that in empirical applications, plausible conditioning variables are

market state variables with predictive power on systemic risk, such as short-term treasury rate, the

slope of the yield curve, corporate default spreads, etc. (Adrian and Brunnermeier, 2011). Hence,

the case of a conditioning variable not related to the loss functions is for an illustration purpose.

Our goal is to show that in this case, the conditional test would have less power. Hence, one should

take care about the choice of the conditioning variables.

3.2.2. Experiment 2 - dependence between CoVaRs and St: The simulation setup is

similar to the one described above, with the exception that we condition the difference in the

loss functions to the state variable St which gives insight on the state of the economy. Formally,

we suppose that the returns of each financial institution follows the GARCH(1,1) model in (17),

with the calibrated values in (24). The n forecast values of VaR over the out-of-sample period are

generated using (18), for each financial institution. The n forecast values of CoVaR for the financial

institution i are obtained as

CoVaRi
q,t+1 =

 αi
q +βi

1,qV aR
i
t+1 (q) if St−1 = 1

αi
q +βi

2,qV aR
i
t+1 (q) if St−1 = 0,

(28)

with the state variable St following an i.i.d. Bernoulli distribution with parameter 0.5, and βi
1,q 6=

βi
2,q. Hence, according to the state prevailing in the economy at date t− 1, the responses of the

CoVaR forecasts to the VaRs of the financial institution i at time t are different. For the financial

institution j we simulate the n CoVaR forecasts similarly, yielding

CoVaRj
q,t+1 =

 αj
q +βj

1,qV aR
j
t+1 (q) if St−1 = 1

αj
q +βj

2,qV aR
j
t+1 (q) if St−1 = 0,

(29)

4 This also explains why the conditional test is undersized in small samples (see Table 1).
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where again βj
1,q 6= βj

2,q. Finally as above, the market returns used in the testing procedure are

generated as the simple average of the returns consistent with the generated CoVaR forecasts (see

equations (21) and (23)).

We simulate the empirical power under the assumption that the CoVaR forecasts for the two

financial institutions are unconditionally equal, but each financial institution has statistically lower

CoVaR forecasts in a given state of the economy. This simulation framework is of great impor-

tance, as it helps to show the relevance of the conditional test over its unconditional counterpart.

To generate data consistent with this assumption, we consider that the returns of each financial

institution follow the GARCH(1,1) model, and their respective CoVaR forecasts are such that

(
αi

q, β
i
1,q, β

i
2,q

)
= (0.0,0.4,0.6) , (30)

(
αj

q, β
j
1,q, β

j
2,q

)
= (0.0,0.6,0.4) . (31)

This means that in the first state of the economy, the CoVaR forecasts of the financial institu-

tion i is on average lower in absolute value than the CoVaR forecasts of the financial institution

j. The reverse holds in the second state of the economy. Hence, conditionally to the state of the

economy prevailing at time t−1, the two CoVaR forecasts at time t are statistically different. Nev-

ertheless, since they dominate each other to the same extent across the two states, and the latters

occur equally5 through the out-of-sample period, they are unconditionally equal. Consequently, the

unconditional test would fail to reject the null hypothesis, whereas the conditional test should do.6

Table 3 displays the rejection frequencies of the two tests for n∈ {500,1000,2000,5000} and for the

nominal risk level η = 5%. We observe that the conditional test has appealing power properties.

For instance, the rejection frequencies of the null hypothesis are equal to 54% for n= 500 and 96%

for n= 1000. Hence, the conditional test has power to detect differences in CoVaR forecasts in the

different states, while the rejection frequencies for the unconditional test are close to the nominal

risk level η= 5%.

4. Empirical application

In this section, we apply our testing approach to a sample of financial institutions and analyze

their statistical differences in term of CoVaR forecasts. Our goal is to identify the systemically

important financial institutions, stressing the relevance of our testing procedure.

5 The state variable St has indeed a Bernoulli distribution with success probability set to 0.5.

6 This framework is adapted from Giacomini and White (2006).
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4.1. Data

Our data set contains daily returns of 70 large U.S. financial institutions with a market capital-

ization greater than $5 billion as of end of June 2007. The data set covers the period from June

2, 2003 to December 31, 2008, with a total of T = 1408 observations. This data set is a part of

the larger data set used by Acharya et al. (2010) and Brownlees and Engle (2012) that includes

94 large U.S. financial institutions (depositories, insurance, broker-dealers and others). Among the

94 financial institutions considered by these authors, we exclude 24 institutions due to the lack

of complete history. All data are extracted from CRSP. Table 4 presents the list of all of the 70

financial institutions.

4.2. The methodology

For each financial institution i under investigation, we use a rolling-window approach to produce

one-step out-of-sample CoVaR forecasts. More precisely, we set the estimation sample length to

m= 504, which corresponds to two years of daily data. The first m observations corresponding to

returns data from June 2, 2003 to May 31, 2005 are used to generate the first out-of-sample CoVaR

forecast for the financial institution i. The remaining CoVaR forecasts are computed moving each

day the estimation sample, including a new data and dropping the earliest data, until the last

observation. Therefore, we obtain for each financial institution i a time series of length n= 904 of

CoVaR forecasts over the out-of-sample period ranging from June 1, 2005 to December 31, 2008.

To generate out-of-sample CoVaR forecasts, we rely on the parametric quantile regression. For

the financial institution i the CoVaR forecast for time t+ 1 using the set of information available

at time t is equal to

CoVaRi
q,t+1

(
θ̂i,t

)
= α̂i

q + β̂i
qV aR

i
t+1 (q, η̂i) , t=m, ..., T − 1,

where θ̂i,t =
(
α̂i

q, β̂
i
q, η̂
′
i

)′
is the vector of estimated parameters, with η̂i a vector of parameters

related to the estimation of the VaR of this financial institution. For the estimation of the latter,

we rely on a semi-parametric model. We make the assumption that the returns of the financial

institution i follows a GARCH(1,1) model

ri,t+1 = σi,t+1εi,t+1, (32)

σ2
i,t+1 = ωi,0 +ωi,1r

2
i,t +ωi,2σ

2
i,t, (33)

εi,t+1 ∼m.d.s. (0,1) , (34)

with ηi = (ωi,0, ωi,1, ωi,2). The GARCH model is estimated by quasi maximum likelihood and the

forecast value of VaR for time t+ 1 is equal to

V aRi
t+1 (q, η̂i) = quantile (ε̂, q) σ̂i,t+1, t=m, ..., T − 1, (35)



16

σ̂2
i,t+1 = ω̂i,0 + ω̂i,1r

2
i,t + ω̂i,2σ̂

2
i,t, (36)

where quantile(ε̂, q) is the empirical quantile of order q of the estimated standardized innovations.

Figure 1 displays over the out-of-sample period the profile of the n CoVaR forecasts in absolute

value for two selected financial institutions: Bank of America (BAC) and Bank of New York Mellon

(BK). We observe that daily CoVaR forecasts are highly dynamic and increase significantly (in

absolute value) during the 2007-2008 financial crisis.

Figure 1 Absolute values of daily CoVaR forecasts for two selected financial institutions.

For each couple (i, j) of financial institutions, we test for the statistical equality of CoVaR

forecasts using our testing approach. We use both the unconditional and the conditional versions

of the test. Recall that the unconditional test is a Diebold-Mariano-type test that relies on the

following test statistic

tm,n =
∆Lm,n

σ̂ /
√
n
, (37)

with ∆Lm,n the average value of the differences in loss functions, and σ̂ its long-run standard devia-

tion. This statistic follows under the null hypothesis of statistical equality between CoVaR forecasts

a standard Gaussian distribution. As for the conditional version of the test, the appropriate test

statistic is given by

T h
m,n = nZ

′
m,nΩ̂−1n Zm,n,

with

Zm,n = n−1
T−1∑
t=m

Zm,t+1 = n−1
T−1∑
t=m

ht∆Lt+1,
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where ∆Lt+1 is the difference in loss functions at time t+ 1, ht a given d×1 vector of conditioning

variables at time t, and Ω̂ the estimate of the long-run covariance matrix of Zm,t+1. The test statistic

T h
m,n has under the null hypothesis of statistical equality between CoVaR forecasts a chi-square

distribution with d degrees of freedom. For our application of the conditional test, we set the vector

ht to ht = (1, zt) , where zt is a vector of given market state variables at time t.7 As market state

variables, we consider four different variables with known predictive power on systemic risk as

measured by CoVaR (see Adrian and Brunnermeier, 2011). The considered variables are:

• the daily values of the VIX. The VIX measures the implied volatility in the stock market.

Daily data for the VIX were obtained from Bloomberg.

• the daily values of the slope of the yield curve. The slope of the yield curve is defined as

the spread between ten-year and three-month Treasury constant maturity rates. This variable is

a forward-looking indicator of real economic activity (Estrella and Trubin, 2006). Daily data for

the ten-year and the three-month Treasury rates were obtained from the website of the Federal

Reserve Bank of New York.

• the daily values of the default spread. The latter is defined as the yield differential between

Moody’s seasoned Aaa-rated and Baa-rated corporate bonds, and is an aggregate measure of credit

risk not affected by bond market frictions such as taxes and liquidity (Chen et al., 2008). Daily

data for the default spread were obtained from the website of the Federal Reserve Bank of New

York.

• the daily values of the TED (Treasury-Eurodollar) spread. The TED spread is defined as

the difference between the three-month LIBOR rate and the three-month Treasury bill rate. This

variable is a measure of credit risk in the financial system. The historical daily values of the LIBOR

were obtained from Economagic.

Figure 2 displays the time series behavior of the four variables over the out-of-sample period.

We observe that over the 2007-2008 financial crisis period, the daily values of all four variables

increase.

4.3. Results

In this section, we present the results of the tests (unconditional and conditional) when applied

to each couple of financial institutions across our data set. We will show how these results can be

used to identify systemically important financial institutions.

7 To take into account possible dependence in the difference of loss functions, ∆Lt+1, we also include in zt the lagged
value of the latter, i.e., ∆Lt
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Figure 2 Time series behavior of the four state variables over the out-of-sample period

4.3.1. Results of the unconditional test: Table 5 summarizes the outcomes of the uncon-

ditional test of equality between CoVaR forecasts. We divide the out-of-sample period into two

parts and give results for the pre-crisis period (ranging from June 1, 2005 to June 29, 2007) and

for the 2007-2008 crisis period (July 2, 2007 to December 31, 2008). The column labeled ”%H1+”

(resp. ”%H1−”) gives for a given financial institution i, the percentage of the other institutions

j that are statistically less (resp. more) systemic than the financial institution i, with systemic

risk measured by CoVaR forecasts. For an illustration, in the pre-crisis period, Bank of America

(BAC) is statistically more systemic than 43 out of the 69 other financial institutions, which leads

to the value of 62.32% for the column ”%H1+”. Symmetrically, this institution is statistically less

systemic than only 1 out of the 69 other financial institutions, which corresponds to the proportion

reported in the column ”%H1−”, that is 1.45%. The third column labeled ”%diff” that gives the

difference between the first and the second columns is an indicator of the systemic nature of an

institution. Indeed, large positive (resp. negative) values correspond to more (resp. less) systemic

institutions. Finally, the last column reports the ranking of the financial institutions from the most

systemic (rank 1) to the least systemic. To save space we report results for the 10 most (resp. least)

systemic institutions in Panel A (resp. B).

Over the pre-crisis period, results in Table 5 show that the top-five systemic institutions are Gold-

man Sachs (GS), Huntington Bancshares (HBAN), Eaton Vance (EV), Cincinnati Financial Corp.

(CINF), and Northern Trust (NTRS). For the same period the least systemic institutions are Aon
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Corp. (AOC), Berkshire Hathaway (BRK), TD Ameritrade (AMTD), Legg Mason (LM) and Aflac

(AFL). For the crisis-period, the most systemic institutions are Lincoln National (LNC), Torch-

mark (TMK), Citigroup Inc. (C), New York Community Bancorp (NYB) and Principal Financial

(PFG), whereas the least systemic are Humana (HUM), Aon Corp. (AOC), Unum Group (UNM),

Berkshire Hathaway (BRK) and Huntington Bancshares (HBAN). For all of the 70 financial insti-

tutions, the correlation of the rankings for the two periods is equal to 38.59%. This suggests fairly

significant changes in the relative systemic nature of these institutions.

Figure 3 Scatter-plot of the ranking of systemic importance: pre-crisis versus crisis periods

Figure 3 displays the scatter-plot of the ranks of the financial institutions for the two periods. The

ranks over the pre-crisis (resp. crisis) period are on the horizontal (resp. vertical) axis. Financial

institutions which are located in the south-west corner of the plot are those that remain the

most systemic across the two periods. These include among others Eaton Vance (EV), Torchmark

(TMK), Principal Financial (PFG) and American Capital (ACAS). Aon Corp. (AOC), Berkshire

Hathaway (BRK) and Unum Group (UNM), to cite a few, located in the north-east corner are the

least systemic financial institutions across the two periods. New York Community Bancorp (NYB),

Metlife (MET) and American Inter. Group (AIG) appear as the institutions that are severely

affected by the 2007-2008 financial crisis. Indeed, while the statistic %diff is equal to −47.83% for

New York Community Bancorp in the pre-crisis period, the same statistic increases up to 66.67%
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in the crisis period, with a switch of the ranking from 52 to 4. There are some financial institutions

(HBAN for example) located in the north-west corner, which are less systemic (relatively to the

other financial institutions) in the crisis period compared to the pre-crisis period.

Lastly, the last row of Table 5 labeled ”All” displays for all couples of institutions the proportion

of rejections of the null hypothesis of statistical equality between systemic risks. It can be considered

as an overall measure of systemic risk heterogeneity across institutions. The reported values are

equal to 57.47% and 54.28% for the pre-crisis and the crisis periods, respectively. Therefore from

the viewpoint of systemic risk, these financial institutions are heterogeneous to the same extent

over both periods (crisis and non-crisis).

4.3.2. Results of the conditional test: Table 6 presents the results of our conditional test

applied to each couple of financial institutions, where the conditioning variables are the market

state variables displayed in Figure 2. The presentation is similar to Table 5. Focusing on the

last row of the Table which reports the level of systemic risk heterogeneity across institutions

(proportion of systemically different institutions), we observe that the value for the pre-crisis period

is equal to 12.33% and is much lower than the one reported in Table 5 which is equal to 57.47%.

Hence, the conditional test suggests less heterogeneity between the 70 institutions in the pre-crisis

period. This means that at each date t across the pre-crisis period, the four market state variables

have little power in explaining statistical divergences between the systemic risk profiles of the

institutions. However, for the crisis period we obtain opposite results. Indeed, the level of systemic

risk heterogeneity between institutions is equal to 64.51% for the conditional test, whereas for

the unconditional test it is equal to 54.28%. Therefore, given the information conveyed by the

market state variables over the crisis period, the conditional test is able to discriminate financial

institutions much more in comparison to the unconditional test. To confirm this result, we run

for each couple of financial institutions (i, j), i 6= j the following time-series regression over the

out-of-sample period

∆Lt+1 = γ0 +
∑4

k=1
γkXk,t +ut, t=m, ..., T − 1,

with Xk,t, k= 1, ...,4, the value at time t of the four market state variables, and ut the regression

error term. Figure 4 gives the box-plot of the multiple R-square (in percentage) from all these

regressions for the pre-crisis and the crisis periods. We observe that the explanatory power of the

regressions over the crisis period is much higher than those over the pre-crisis period.

The difference between the two versions of the test can also be stressed comparing their respective

ranking of the institutions. Figures 5 and 6 in Appendix display the scatter-plot of the ranks of

the institutions for the pre-crisis and the crisis periods, respectively. The correlation between the
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Figure 4 Boxplot of the multiple R-square (in%) from the regression of loss function dierences on market state

variables

ranks is equal to 85% for the pre-crisis period, whereas it is equal to 86.4% for the crisis-period.

Both correlations are statistically significant at the 5% level. In both Figures, institutions which

are far below or above the 45-degree line are those that are differently ranked by the two tests. For

instance, in Figure 6 (crisis period), Comerica Inc. (CMA) is identified as more systemically risky

by the conditional test.

4.3.3. Performance Predictability of the testing approach As stressed by Sedunov

(2011), an institution-level measure of systemic risk should be a good forecast of a financial insti-

tution’s performance in crisis period. In other words, any consistent measure of the systemic risk

profile of an institution should be an early-warning indicator of losses in the case of a systemic

event. In this subsection, we check whether this characteristic is fulfilled by our measure of sys-

temic risk given by the statistic %diff. More precisely, we focus on the crisis period, i.e., the period

ranging from July 2, 2007 to December 31, 2008, with a total of Tc = 380 daily observations. Over

the crisis period, we compute for each financial institution its performance given by the average

of negative or downside returns. For a given financial institution i= 1, ...,70, the performance is

given by

Perfi =
1
m

Tc∑
t=1

ri,tZi,t, t= 1, ..., Tc, (38)
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where ri,t is the equity return of the financial institution i at time t, Zi,t is the downside indicator

variable at time t defined as

Zi,t =


1 if ri,t < 0

0 else.
(39)

The parameter m is the number of times Zi,t takes value one over the crisis period, i.e.,

m=

Tc∑
t=1

Zi,t. (40)

The performance measure in (38) gives the average value of the losses experienced by the financial

institution i in the crisis period.8 Since our goal in this section is to check whether institutions

with high level of systemic risk perform more poorly (out-of-sample) than institutions with low

level of systemic risk, we consider the following regression

Perfi = γ0 + γ1%diff i +ui, i= 1, ...,70, (41)

where %diff i is the measure of systemic importance9 (derived from our testing approach) for the

financial institution i in the pre-crisis period ranging from June 1, 2005 to June 29, 2007. We

extend this benchmark regression into two directions. First, remind that our inferential measure of

institution-level systemic risk is built on the pitfall of the estimated CoVaRs in ranking institutions.

Indeed, we argued in the line of Danielsson et al. (2011) that financial institutions ranking based

on estimated CoVaRs are misleading due to estimation uncertainty. Therefore, to evaluate the

relevance of this statement, we rather consider the regression

Perfi = γ0 + γ1%diff i + γ2CoVaRi +ui, (42)

with CoVaRi the average value of CoVaR forecasts over the pre-crisis period. Second we further

extend the regression (42) to avoid misspecification, including two firm characteristics (leverage

and size) which are known as relevant factors for the cross-sectional variations in systemic risk.

For instance, leverage defined as the relative amount of debt versus equity is related to systemic

risk, because when a shock hits an institution, the ability of the latter to contain the adverse effect

of the shock is determined by how much debt it has relative to equity. Institutions with higher

leverage ratio will struggle to manage the consequences of the shock due to the lack of sufficient

equity. The associated financial distress can impact other financial institutions leading to a global

8 We focus here only on the downside performance, as CoVaR is about events in the left tail distribution both for the
financial institutions and the system.

9 We will consider the two versions of this statistic, separately. The one based on the unconditional version of our
testing procedure, and the one derived from the conditional version.
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systemic event. In the same line, the size of a firm related to the notion of ”too big to fail” is a key

component of systemic risk, because the distress of a large firm is likely to impact the system as

whole. Following Acharya et al. (2010), we approximate the leverage by the ratio of quasi-market

value of assets to market value of equity. The data available at a quarterly frequency from CRSP-

Compustat merged dataset are averaged over the pre-crisis period. As for the size, we measure it

by the natural logarithm of total book assets, and consider the average value over the pre-crisis

period. Lastly, we also include in the regression industry dummies (insurance, broker-dealers and

others).

Table 7 displays the results of the regressions. We consider four (04) different estimations. First

results of regressions (2) and (3) show that our statistic %diff obtained from the conditional test

is statistically significant at the 5% nominal risk level, whereas the same statistic computed using

the unconditional test is not significant. In the regression (2) the adjusted R-square is equal to

15.67%, whereas it is equal to 17.56% in the regression equation (3). Figure 7 in Appendix which

displays the scatter plot of the conditional version of %diff versus the performance measure (and

the associated least squares regression line) shows that higher values of the former statistic are

associated with worse performances in the crisis-period. Second, outcomes from the regression (1)

indicate that evaluating the systemic nature of financial institutions using CoVaR forecasts directly

is not useful, since the latters have no predictive power on an institution’s performance in crisis

period. The associated coefficient is not significant, and the adjusted R-square is the smallest.

Lastly, the regression (4) that includes all regressors confirms all these findings. Remark that while

the leverage appears highly significant in predicting an institution average loss in crisis period, the

size is insignificant in all regressions. Moreover, the dummy ’Others’ is significant in all regressions,

implying that ceteris paribus the performance is on average lower for this group.

5. Conclusion

The recent financial crisis has reinforced the need for a better regulation of financial institutions.

One of the major aspects of the new face of the regulation is the imposition of additional loss

absorbency for the so-called systemically important financial institutions (SIFIs), which should be

related to the level of systemic risk. In this paper, we propose a testing procedure useful for the

identification and ranking of SIFIs. Our test based on the conditional predictive ability (CPA) test

of Giacomini and White (2006) compares the difference in systemic risk, as measured by CoVaR

(Adrian and Brunnermeier, 2011), for two financial institutions via an economic loss function.

Applied to all couples of financial institutions in a system, one can derive a simple and intuitive

statistic that helps ranking SIFIs.

Unlike the naive approach that consists in identifying and ranking SIFIs using estimated CoVaRs,

our testing approach has two main advantages. First, as the test is built on the CPA framework of
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Giacomini and White (2006), it is robust to estimation uncertainty. Second, the test is conditional

and helps incorporating the role of market state variables (VIX and various yield spreads) in

the statistical differences in systemic risks. In other words, rejection of the null hypothesis will

occur because market state variables help predict out-of-sample the difference in systemic risks as

measured by CoVaR. An unconditional version of the test is also considered. We show via Monte

Carlo simulations that the test has good small sample properties.

We conduct an empirical application using a sample of 70 U.S. financial institutions, and observe

two things. First, the systemic profiles of these institutions derived from our conditional test reveal

more (resp. less) heterogeneity, compared to the unconditional test, in crisis (resp. non-crisis)

period. Hence, over the pre-crisis (resp. crisis) period, market state variables have little (resp.

high) explanatory power for the statistical divergences between the systemic risk profiles of the

institutions. Second, it appears that our inferential procedure to identify SIFIs leads to a ranking

which appears as an early-warning indicator of losses in crisis period. More precisely, institutions

which are identified as systemically risky in the pre-crisis period are those that experienced large

losses in the crisis period.
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Appendix. Tables and Figures

Figure 5 Scatter-plot of the ranking of systemic importance over the pre-crisis period: unconditional test versus

conditional test

Figure 6 Scatter-plot of the ranking of systemic importance over the crisis period: unconditional test versus

conditional test
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Figure 7 Scatter-plot of performance in crisis period versus %diff (conditional test) in pre-crisis period
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Table 1 Empirical sizes of the tests of equality between
CoVaR forecasts

n= 500 n= 1000 n= 2000 n= 5000

Panel A: Conditional test

0.0278 0.0326 0.0450 0.0556

Panel B: Unconditional test

pn = 0 0.0316 0.0500 0.0616 0.0668

pn = 5 0.0304 0.0436 0.0550 0.0560

pn = 10 0.0306 0.0418 0.0510 0.0528

pn = 15 0.0326 0.0416 0.0498 0.0510

pn = 20 0.0344 0.0424 0.0502 0.0490

pn = 25 0.0372 0.0448 0.0494 0.0498

pn = 50 0.0500 0.0514 0.0536 0.0492

Notes: The table displays the empirical sizes of the test of equal-

ity between the predicted values of CoVaR for two financial insti-

tutions. Results are reported for both the unconditional and the
conditional versions of the test. Rejection frequencies are reported

over 5000 simulations for the nominal risk levels η = 5%, with n

the out-of-sample size. For the unconditional test, different values
of the truncation parameter pn are considered. The conditional

test is implemented using as conditioning variable a random i.i.d.
Bernoulli variable which is independent to the CoVaR forecasts.
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Table 2 Empirical powers of the tests of equality between
CoVaR forecasts: simulations under experiment 1

n= 500 n= 1000 n= 2000 n= 5000

Panel A: Conditional test

0.5498 0.9638 0.9998 1.0000

Panel B: Unconditional test

pn = 0 0.8196 0.9878 0.9998 1.0000

pn = 5 0.8112 0.9854 0.9996 1.0000

pn = 10 0.8092 0.9840 0.9996 1.0000

pn = 15 0.8084 0.9820 0.9996 1.0000

pn = 20 0.8098 0.9824 0.9994 1.0000

pn = 25 0.8086 0.9818 0.9994 1.0000

pn = 50 0.8170 0.9798 0.9994 1.0000

Notes: The table displays the empirical powers of the test of

equality between the predicted values of CoVaR for two finan-

cial institutions. Results are reported for both the unconditional
and the conditional versions of the test. Rejection frequencies are

reported over 5000 simulations for the nominal risk levels η= 5%,

with n the out-of-sample size. For the unconditional test, different
values of the truncation parameter pn are considered. The condi-

tional test is implemented using as conditioning variable a random
i.i.d. Bernoulli variable which is independent to the CoVaR fore-

casts.
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Table 3 Empirical powers of the tests of equality between
CoVaR forecasts: simulations under experiment 2

n= 500 n= 1000 n= 2000 n= 5000

Panel A: Conditional test

0.5426 0.9680 1.0000 1.0000

Panel B: Unconditional test

pn = 0 0.0468 0.0536 0.0558 0.0636

pn = 5 0.0450 0.0514 0.0518 0.0588

pn = 10 0.0468 0.0506 0.0516 0.0568

pn = 15 0.0508 0.0514 0.0516 0.0566

pn = 20 0.0534 0.0540 0.0518 0.0558

pn = 25 0.0568 0.0554 0.0522 0.0564

pn = 50 0.0726 0.0622 0.0550 0.0560

Notes: The table displays the empirical powers of the test of

equality between the predicted values of CoVaR for two finan-

cial institutions. Results are reported for both the unconditional
and the conditional versions of the test. Rejection frequencies are

reported over 5000 simulations for the nominal risk levels η= 5%,

with n the out-of-sample size. For the unconditional test, differ-
ent values of the truncation parameter pn are considered. The

conditional test is implemented using as conditioning variable a
random i.i.d. Bernoulli variable which is dependent to the CoVaR

forecasts.
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Table 4 Tickers and Company Names by Sector Groups

Depositories (24) Insurance (27) Broker-Dealers (6) Others (13)

BAC Bank of America Corp. ABK Ambac Financial Group EFTC E*Trade Financial ACAS American Capital

BBT B B & T Corp. AET Aetna GS Goldman Sachs AMTD TD Ameritrade

BK Bank New York Inc. AFL AFLAC MER Merill Lynch AXP American Express

C Citigroup Inc. AIG American Inter. Group MS Morgan Stanley BEN Franklin Resources

CMA Comerica Inc. ALL Allstate Corp. SCHW Nymex Holdings BLK BlackRock

HBAN Huntington Bancshares AOC Aon Corp. TROW T. Rowe Price CIT CIT Group

HCBK Hudson City Bancorp BKLY W.R. Berkley Corp. COF Capital One Financial

JPM JPMorgan Chase & Co. BRK Berkshire Hathaway EV Eaton Vance

KEY Keycorp New CB Chubb Corp. FITB Fifth Third Bancorp

MI Marshall & Ilsley CI CIGNA Corp. JNS Janus

MTB M&T Bank Corp. CINF Cincinnati Financial Corp. LM Legg Mason

NCC National City Corp. CNA CNA Financial Corp. SEIC SEI Investment Comp.

NTRS Northern Trust CVH Coventry Health Care SLM SLM Corp.

NYB New York Community Bancorp HIG Hartford Financial Group

PBCT Peoples United Financial HNT Health Net

PNC PNC Financial Services HUM Humana

RF Regions Financial Corp. New LNC Lincoln National

SNV Synovus Financial MBI MBIA

SOV Sovereign Bancorp MET Metlife

STI Suntrust Banks MMC Marsh & McLennan

STT State Street PFG Principal Financial

USB US Bancorp PGR Progressive

WFC Wells Fargo & Co PRU Prudential Financial

ZION Zions TMK Torchmark

TRV Travelers

UNH UnitedHealth Group

UNM Unum Group
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Table 5 Results of the unconditional test of equality between CoVaR forecasts over the
out-of-sample period

Pre-crisis period Crisis-period

%H1+ %H1− %diff rank %H1+ %H1− %diff rank

Panel A : the 10 most systemic institutions

GS 88.41 0.00 88.41 1 LNC 84.06 0.00 84.06 1
HBAN 75.36 0.00 75.36 2 TMK 71.01 0.00 71.01 2
EV 73.91 0.00 73.91 3 C 69.57 0.00 69.57 3
CINF 71.01 0.00 71.01 4 NYB 66.67 0.00 66.67 4
NTRS 69.57 0.00 69.57 5 PFG 65.22 0.00 65.22 5
SNV 66.67 0.00 66.67 6 EV 65.22 1.45 63.77 6
BAC 62.32 1.45 60.87 7 FITB 60.87 0.00 60.87 7
ACAS 60.87 0.00 60.87 7 MET 60.87 1.45 59.42 8
MER 57.97 0.00 57.97 8 ACAS 57.97 0.00 57.97 9
ZION 59.42 1.45 57.97 8 BEN 59.42 1.45 57.97 10

Panel B : the 10 least systemic institutions

JNS 7.25 57.97 −50.72 53 PBCT 2.90 66.67 −63.77 56
RF 4.35 57.97 −53.62 54 HNT 2.90 66.67 −63.77 56
UNM 2.90 62.32 −59.42 55 BLK 2.90 68.12 −65.22 57
ETFC 4.35 76.81 −72.46 56 AET 4.35 71.01 −66.67 58
SLM 1.45 73.91 −72.46 56 BKLY 1.45 73.91 −72.46 59
AFL 2.90 76.81 −73.91 57 HBAN 0.00 75.36 −75.36 60
LM 2.90 84.06 −81.16 58 BRK 1.45 78.26 −76.81 61
AMTD 1.45 91.30 −89.86 59 UNM 0.00 81.16 −81.16 62
BRK 0.00 95.65 −95.65 60 AOC 0.00 88.41 −88.41 63
AOC 0.00 98.55 −98.55 61 HUM 0.00 95.65 −95.65 64

ALL 57.47 54.28

Notes: The column labeled ”%H1+” (resp. ”%H1-”) gives for a given financial institution i, the

percentage of the other institutions j that are statistically less (resp. more) systemic than the financial

institution i, with systemic risk measured by CoVaR forecasts. The third column that gives the
difference between the first and the second columns is an indicator of the systemic nature of an

institution. Large positive (resp. negative) values correspond to more (resp. less) systemic institutions.

The last column reports the ranking of the financial institutions from the most systemic (1) to the
least systemic. We give results for the pre-crisis period (ranging from June 1, 2005 to June 29,

2007) and for the 2007-2008 crisis period (July 2, 2007 to December 31, 2008). The last row labeled

”All” displays for all couples of institutions the proportion of rejections of the null hypothesis of
statistical equality between systemic risks. It can be considered as an overall measure of systemic risk

heterogeneity across institutions.
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Table 6 Results of the conditional test of equality between CoVaR forecasts over the
out-of-sample period

Pre-crisis period Crisis-period

%H1+ %H1− %diff rank %H1+ %H1− %diff rank

Panel A : the 10 most systemic institutions

ACAS 18.84 0.00 18.84 1 FITB 72.46 1.45 71.01 1
BAC 17.39 0.00 17.39 2 WFC 72.46 5.80 66.67 2
CINF 17.39 0.00 17.39 2 MER 69.57 2.90 66.67 3
TRV 17.39 0.00 17.39 2 C 57.97 0.00 57.97 4
SNV 15.94 0.00 15.94 3 AXP 57.97 0.00 57.97 4
WFC 15.94 0.00 15.94 3 MI 56.52 0.00 56.52 5
STI 14.49 0.00 14.49 4 SNV 63.77 7.25 56.52 5
ZION 14.49 0.00 14.49 4 BAC 53.62 0.00 53.62 6
CNA 14.49 0.00 14.49 4 KEY 56.52 2.90 53.62 6
NTRS 13.04 0.00 13.04 5 NYB 50.72 0.00 50.72 7

Panel B : the 10 least systemic institutions

CVH 1.45 13.04 −11.59 21 BK 10.14 75.36 −65.22 50
BK 2.90 15.94 −13.04 22 SLM 10.14 79.71 −69.57 51
JNS 1.45 15.94 −14.49 23 CVH 5.80 76.81 −71.01 52
SLM 2.90 21.74 −18.84 24 PBCT 4.35 76.81 −72.46 53
NYB 4.35 26.09 −21.74 25 AET 4.35 76.81 −72.46 53
AFL 0.00 23.19 −23.19 26 BKLY 2.90 76.81 −73.91 54
BRK 0.00 53.62 −53.62 27 AOC 1.45 88.41 −86.96 55
LM 0.00 57.97 −57.97 28 HNT 4.35 91.30 −86.96 55
AMTD 0.00 71.01 −71.01 29 HUM 1.45 92.75 −91.30 56
AOC 0.00 82.61 −82.61 30 UNM 0.00 98.55 −98.55 57

ALL 12.33 64.51

Notes: The column labeled ”%H1+” (resp. ”%H1-”) gives for a given financial institution i, the

percentage of the other institutions j that are statistically less (resp. more) systemic than the financial

institution i, with systemic risk measured by CoVaR forecasts. The third column that gives the
difference between the first and the second columns is an indicator of the systemic nature of an

institution. Large positive (resp. negative) values correspond to more (resp. less) systemic institutions.

The last column reports the ranking of the financial institutions from the most systemic (1) to the
least systemic. We give results for the pre-crisis period (ranging from June 1, 2005 to June 29,

2007) and for the 2007-2008 crisis period (July 2, 2007 to December 31, 2008). The last row labeled

”All” displays for all couples of institutions the proportion of rejections of the null hypothesis of
statistical equality between systemic risks. It can be considered as an overall measure of systemic

risk heterogeneity across institutions.
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Table 7 Performance Predictability in crisis period

(1) (2) (3) (4)
constant −0.0129

(−0.6554)
−0.0220***

(−5.9397)
−0.0224***

(−6.2229)
−0.0585
(−1.3461)

Dummy
insurance −0.0002

(−0.1018)
−0.0003
(−0.1110)

−0.0005
(−0.1970)

−0.0001
(−0.0604)

broker-dealers −0.0012
(−0.3190)

−0.0012
(−0.3197)

−0.0014
(−0.3956)

−0.0021
(−0.6560)

others −0.0073***
(−2.6209)

−0.0075
(−2.6547)

*** −0.0079
(−2.7970)

*** −0.0081
(−2.7302)

***

leverage −0.0014
(−4.8588)

*** −0.0014
(−4.8900)

*** −0.0013
(−4.7094)

*** −0.0013
(−4.7012)

***

size 0.0000
(0.0542)

0.0000
(0.0385)

0.0001
(0.1470)

0.0002
(0.2231)

CoVaR 0.6456
(0.4778)

−2.5215
(−0.8001)

%diff (unconditional) −0.0010
(−0.5203)

−0.0003
(−0.0567)

%diff (conditional) −0.0078
(−2.0850)

** −0.0139
(−2.3484)

**

Adj. R2 15.63% 15.67% 17.56% 15.91%
#obs 70 70 70 70

Notes: The table displays results for the regressions of the performance indicator in crisis period
on some systemic risk measures and firms characteristics (leverage and size). %diff refers to our

systemic risk indicator derived from the unconditional or conditional tests in the pre-crisis period.

CoVaR is the average value of CoVaR forecasts over the pre-crisis period. We also consider three
industry dummies (insurance, broker-dealers and others). The pre-crisis period ranges from June

1, 2005 to June 29, 2007, and the crisis period from July 2, 2007 to December 31, 2008. Adj. R2 is

the adjusted R-square. ***, **, * mean statistically significant at 1%, 5% and 10%, respectively.


