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Abstract

In this article, we consider illiquid life annuity contracts and show that they may
be preferred to Yaari (1965)’s liquid contracts. In an overlapping-generation
economy, liquid life annuities are demanded only if the equilibrium is dynami-
cally inefficient. Alternatively, an equilibrium displaying a positive demand for
illiquid life annuities is efficient. In this latter case, the welfare at steady-state
is larger if illiquid life annuity contracts are available.



1 Introduction

In this article, we challenge the common thought that the life annuity contract

proposed by Yaari in his seminal 1965’s paper is optimal. We indeed show,

in a standard neo-classical framework, that another contract, which actually

resembles much more to the contracts offered by insurance companies, may be

preferred by rational individuals.

The economic theory of annuities has been strongly influenced by Yaari

(1965). He studies the optimal demand for annuities in a life-cycle model with

or without bequest motives. The financial asset that is named annuity by Yaari

has the following characteristics: the returns are positive if the bearer is alive

and zero if he is not. Annuities are nevertheless demanded since their returns are

larger than the one yielded by risk-free bonds. The difference between the two

yields is the annuity premium, which is said to be fair when it equals the inverse

of the survival probability. Importantly, as the individual ages, the premium

increases. This characterization of an annuity has been quite influential and has

lead to numerous studies (See among others Davidoff et al, 2005, and Sheshinski,

2008).

Many types of annuity contracts exist (Cannon and Towks, 2008). Their

common features are quite different from Yaari’s annuities. First, the premium is

age-independent. The individual purchases some annuities during youth and, at

a given age -let say the age at retirement- he periodically receives a fixed amount

as long as he survives. Second, the contract is irreversible. Once payments have

begun, one can not recover the amount invested. An implicit assumption in

Yaari is that agents, upon survival, receive the capital and the interests of their

annuity. This means that they are in position to renegotiate their contract at

each period, and that is why the premium increases as the individual ages.

In this article, we propose a standard framework in which the individual has

the choice between two types of life annuity contract. The first one that we

named flexible, is the one proposed by Yaari (1965). The second one, which is

named illiquid, is irreversible and proposes age-independent returns. In both

case, we suppose that the annuity premium is such that the insurance companies

make no profit. Illiquid annuities have been introduced in life-cycle models by

Horneff et al. (2008) and Peijnenburg et al. (2011) in order to discuss the issue
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about the low demand for annuities. Our purpose is to study analytically the

equilibrium and welfare consequences of the existence of such contracts.

First, we analyze the life-cycle optimal decision under uncertain lifetime.

Importantly, we consider a setting in which the individual ages, which more

precisely means that survival probabilities decrease with age. We therefore

depart from two-period life-cycle models or from Blanchard (1985)’s setting in

which our distinction between increasing and fixed returns makes no sense. We

obtain that illiquid annuity are preferred to flexible one if the expected returns of

the first are sufficiently greater than those of the second. This is the consequence

of an arbitrage between more flexibility and more returns.

Second, we consider the general equilibrium of our economy, in which returns

of both contracts are determined by the markets. We study a simple overlap-

ping generation economy, similar to the one analyzed by Diamond (1965). Sur-

prisingly, we show that illiquid annuities are preferred when the equilibrium is

dynamically efficient while flexible annuities are preferred when it is inefficient.

We then discuss about the optimality of both annuity contracts. In particu-

lar, for dynamically efficient equilibrium, the welfare at steady-state is larger if

illiquid life annuity contracts are available.

Finally, to test the robustness of our results, we propose three extensions of

our model by considering successively a background risk, a bequest motive and

a subjective evaluation of survival probabilities.

2 Individual behavior

2.1 Demographics

We consider an overlapping generations model in which agents live a finite and

uncertain length of time. They live for a maximum of three periods, also called

ages, which are denoted i = {0, 1, 2}. The probability of being alive at age i,

conditional on survival until age i − 1, is denoted pi. Survival probabilities at

each age are constant over time, but decrease with age.

Let Ni,t be the number of agents of age i at time t. At each time t = 0, 1, 2...,

N0,t identical agents are born. Thus, the number of agents of age 1 born at

time t is N1,t+1 = p1N0,t and the number of agents of age 2 born at time t is

N2,t+2 = p1p2N0,t. Finally, we assume that the number of agents of age 0 grows
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at a constant growth rate, denoted n, with n > −1:

N0,t = (1 + n)N0,t−1. (1)

2.2 Annuity markets

Agents can invest in two types of financial products: bonds and life annuities.

The yield on bonds is risk free: each unit of consumption invested at time t− 1

yields Rt units of consumption at time t. Concerning annuities, two types of

contracts are offered by insurance companies. It is assumed that information

on the probability of survival is perfect and that markets for each contract are

competitive, which implies that the proposed contracts are fair. It is further

assumed that a company cannot cross-subsidize the types of contracts it offers.

All these assumptions imply that the profit of insurance companies is zero for

each contract. We will now explain in detail the characteristics of both annuity

contracts.

The first annuity contract offered to agents is that found in most articles of

the literature since the seminal article of Yaari (1965). This is an actuarially

fair contract that can be renegotiated each time. If the agent survives, he

recovers the capital plus interest and can consume or invest again. Because of

this feature, we refer to it as a flexible annuity contract. Assuming zero profit

as stated above, calculation of the annuity yield is well known; it results from

sharing, among the survivors of a cohort, the capital plus interest of deceased

agents. A unit of consumption invested at time t− 1 by an agent of age i, i =

{1, 2}, therefore yields Rt/pi+1 units of consumption at time t, upon survival.

We denote a0,t and a1,t+1 as the demands for flexible annuities at ages 0 and 1

by an agent born at time t. At age 2, the demand for annuities must be zero

because the agent has reached, by assumption, the last period of life.

The second annuity contract proposed to agents has the following features:

the investment must be made at age 0, the capital cannot be recovered before

age 2 and the remuneration received is independent of age. Annuity is said to be

illiquid because, at age 1, the agent receives only the interest of his investment.

Equivalently, it can be said that the agent must invest at age 1 the same amount

that he invested at age 0. We denote bt as the demand for illiquid annuities by

an agent of age 0 at time t. To calculate the annuity yield, the condition of zero

3



profit for insurance companies is applied. The companies collect at time t − 1

the agent’s savings and invest them at the risk-free rate. At time t, the value of

this investment, which is equal to

(N0,t−1bt−1 +N1,t−1bt−2)Rt, (2)

is redistributed among the surviving agents. If we denote Rt/πt as the yield at

time t for each unit of consumption invested in t− 1 or t− 2, we conclude that

the amount distributed must be equal to

(N1,tbt−1 +N2,tbt−2)
Rt
πt
. (3)

Consequently, by equalizing (2) and (3), the inverse of the premium solves:

πt =
p1 (1 + n) bt−1 + p1p2bt−2

(1 + n) bt−1 + p1bt−2
. (4)

If the demands for illiquid annuities are positive, it is easy to show that πt ∈

[p2, p1]. We conclude that the interest paid at age 1 is higher than that of the

flexible annuities, while the interest paid at age 2 is lower. Hence, the flexible

contract is more profitable the older the agent and illiquid annuities can be

interpreted as an intergenerational transfer from agents age 2 to agents age 1.

This explains why the yield Rt/πt is a decreasing function of the population

growth rate, n. Finally, we note that in the limit case p1 = p2, the yields of the

two annuity contracts are equal.

2.3 Life-cycle choices

Each agent chooses a portfolio and a savings strategy to achieve an optimal

consumption allocation between the different ages. The intertemporal expected

utility of an agent of age 0 at time t reads as:

u (c0,t) + θp1u (c1,t+1) + θ2p1p2u (c2,t+2) , (5)

where ci,t+i is the consumption at age i, and θ > 0 is a discount factor. The

instantaneous utility function u, is increasing and concave, u′ > 0 and u′′ <

0, and is such that limx→0 u
′ (x) = +∞ and limx→+∞ u′ (x) = 0. Budget

constraints are as follows: at time t, the agent of age 0 receives a wage, denoted

wt, which he allocates between consumption and savings. It may consist of
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flexible annuities, a0,t, and illiquid annuity, bt. The budget constraint at age 0

is:

c0,t = wt − a0,t − bt. (6)

We notice that investment in risk-free bonds is not modelled here because it is

never an optimal strategy. Furthermore, short selling constraints are imposed

on both investments, which together with positivity constraints on consumption

allow us to eliminate degenerate strategies.

a0,t ≥ 0, bt ≥ 0, c0,t ≥ 0, c1,t+1 ≥ 0, c2,t+2 ≥ 0. (7)

At time t+ 1, the agent receives the capital and interest of his flexible annuity

investment and the interest of his illiquid annuity investment. These financial

revenues are used by the agent to finance his consumption and savings in the

form of flexible annuities, for which the demand is denoted a1,t+1. The budget

constraint at age 1 is:

c1,t+1 = a0,t
Rt+1

p1
+ bt

(
Rt+1

πt+1
− 1

)
− a1,t+1. (8)

At time t + 2, which corresponds to the last period of life of the agent, con-

sumption is equal to the capital and interest of his flexible and illiquid annuity

investments. The bounded lifespan hypothesis implies that the capital invested

in illiquid life annuity is recovered at age 21. The budget constraint at age 2 is:

c2,t+2 = a1,t+1
Rt+2

p2
+ bt

Rt+2

πt+2
. (9)

The problem of the agent is to choose {c0,t, c1,t+1, c2,t+2, a0,t, bt, a1,t+1} that

maximizes (5) subject to (6), (7), (8) and (9). Let us denote:

Rt+1 :=
p1
πt+1

Rt+1 − p1
(

1− p2
πt+2

)
. (10)

Our first result is the following.

Proposition 1. The optimal portfolio satisfies:{
bt > 0 and a0,t = 0 if Rt+1 > Rt+1

bt = 0 and a0,t > 0 if Rt+1 < Rt+1
(11)

1This condition is the counterpart of a transversality condition that should be introduced
in a more realistic model with a large number of periods of life where survival probabilities
converge to 0 when age tends to infinity.
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A portfolio satisfying bt > 0 and a0,t > 0 can be optimal only if Rt+1 = Rt+1.

Proof. See Appendix.

In this first version of the model, without background risks nor borrowing

constraints, illiquidity is not an issue specific to the agent. Portfolio choice is

therefore based on a comparison of the respective yields from flexible annuities

and illiquid annuities. Relevant yields are expected yields, discounted at the

risk-free interest rate and calculated assuming no reinvestment of the interest

received at age 12.

Through πt+1 and πt+2 given in (4), we see that R̄t+1 is affected by the

demands for annuities by past and future generations. In particular, Rt+1 in-

creases with bt−1 and decreases with bt+1. Because the illiquid annuity contract

acts as a transfer from the oldest to the youngest, the more it is demanded by

the previous generation, the more the comparative advantage increases, but the

more it is demanded by the next generation, the more the comparative advan-

tage decreases. We also note that the yields of the two contracts are equal in

the limit case p1 = p2.

With Proposition 1, we have seen that the portfolio is generically composed

of a single type of contract. The optimal consumption allocation of the agent

then depends on the chosen contract. If flexible annuities are chosen at age

0, the result is typical of that found in the literature: consumption dynamics

are independent of survival probabilities and increase according to the ratio of

the interest factor over the discount factor (Yaari, 1965). Conversely, if illiquid

annuities are chosen, the optimal consumption dynamics can be characterized

by the following proposition.

Proposition 2. Suppose that Rt+1 > Rt+1. The optimal consumption alloca-

tion satisfies:
u′ (c0,t)

u′ (c1,t+1)
>
u′ (c1,t+1)

u′ (c2,t+2)
if Rt+1 ≥ Rt+2. (12)

Thus, if the utility function is homogenous, inequality (12) can be rewritten as:

2The condition Rt+1 ≥ R̃t+1 can indeed be rewritten as:

p1

Rt+1

(
Rt+1

p1

)
+

p1p2

Rt+1Rt+2

(
Rt+2

p2

)
≥

p1

Rt+1

(
Rt+1

πt+1

)
+

p1p2

Rt+1Rt+2

(
Rt+2

πt+2

)
.
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c1,t+1

c0,t
>
c2,t+2

c1,t+1
if Rt+1 ≥ Rt+2. (13)

Proof. See Appendix.

Provided that the interest rate is not increasing and that the utility function

has standard properties, the holding of a portfolio composed of illiquid annuities

implies that the consumption growth rate decreases with age. This is explained

by the fact that the marginal rate of substitution (MRS) between ages 0 and 1

is given by Rt+1, which is higher than Rt+1 (as shown in Proposition 1), turns

to be greater than the MRS between ages 1 and 2, which is given by Rt+2.

Between ages 1 and 2, all additional savings are indeed invested in flexible an-

nuities. The lower yield of investment opportunities when the agent ages can

explain the decrease in the growth of consumption. Introducing illiquid annu-

ities in a life-cycle model allows better reproduction of the stylized facts of the

individual’s consumption during his life cycle (see, e.g., Gourinchas and Parker,

2002 and Fernández-Villaverde and Krueger, 2007) even though annuities are

fairly priced3. It should be noted, moreover, that the MRS between periods 0

and 1 is affected by the survival probabilities even if the intertemporal utility

function is additively separable4. For a given and constant demand for annu-

ities, it can be shown that the relationship is positive if the interest rate is higher

than the population growth rate.

In this section, we have shown that there exists a set of interest rate values

for which illiquid annuities are purchased by agents. In the next section, we

analyze the choice of agents when prices are determined by the equilibrium

conditions in all markets.

3 General equilibrium analysis

3.1 Annuities and the efficiency of the equilibrium

The production side of the model is standard. There exists a unique good that is

produced by many firms acting on a perfectly competitive market. The produc-

3Alternatively, a concave consumption can be obtained if annuities are not available (Davis,
1981) or not fairly priced (Hansen and Imrohoroglu, 2008).

4Bommier (2006) obtained the same kind of result with flexible annuities under the condi-
tion of non separability of the utility function.
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tion function displays constant returns-to-scale and satisfies Inada conditions.

We assume that only agents of age 0 are working and denote by kt the capital

stock per worker at time t. Assuming that capital depreciation rate is 100% per

period, the optimality conditions of the firms can be written as:

wt = f (kt)− ktf ′ (kt) and Rt = f ′ (kt) . (14)

The equilibrium condition on the capital market is satisfied if the capital

stock at time t+ 1 is equal to the sum of the savings of agents born at times t

and t− 1. This condition can be written as:

kt+1 =
a0,t + bt

1 + n
+
p1 (a1,t + bt−1)

(1 + n)
2 . (15)

In what follows, we assume there exists a unique steady-state. Depending

on the model parameters values, the interest rate at steady-state may be higher

or lower than the population growth rate. It is well known5 that a converg-

ing trajectory to such steady states is efficient in the first case and inefficient

otherwise.

Let a stared variable denote the steady-state equilibrium value of the consid-

ered variable. The following proposition, which is the counterpart at equilibrium

of Proposition 1, characterizes the portfolio choices of agents based on the effi-

ciency of the steady state.

Proposition 3. At steady-state, the optimal portfolio satisfies: b∗ > 0 and a∗0 = 0 if f ′ (k∗) > 1 + n,

b∗ = 0and a∗0 > 0 if f ′ (k∗) < 1 + n.
(16)

A portfolio satisfying b∗ > 0 and a∗0 > 0 can be optimal only if f ′ (k∗) = 1 + n.

Proof. See Appendix.

Proposition 3 states that if the equilibrium is dynamically efficient, the

agents hold illiquid annuities in the steady state. It is only when the equi-

librium is inefficient that they are not held. The proof is simple and is based

on the difference between the yields offered by flexible and illiquid annuities.

Using equations (4), (10) and (14), written in the steady state, we observe that

5Cass 1972, De La Croix and Michel 2002, page 83
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R
∗

can be written as a linear function of the marginal productivity of capital:

R
∗

=
1 + n+ p1
1 + n+ p2

f ′ (k∗)− (p1 − p2) (1 + n+ p2)

1 + n+ p2
(17)

The yield on illiquid annuities is greater than on flexible life annuity if and only

if it is greater than 1 +n, the population growth factor. The figure below shows

the spread in yields as a function of the steady state interest factor R∗.

Insert Figure 1.

The intuition behind the result stated in Proposition 3 is based on the fact

that illiquid annuity represents a transfer from one generation to the next gen-

eration. When the population growth rate is relatively low, which is the case

when the equilibrium is efficient, this transfer is inexpensive and the investment

is profitable. Conversely, when the growth rate is high, illiquid annuity invest-

ment is unprofitable. Finally, at the Golden Rule, flexible and illiquid annuities

have exactly the same profitability. Somehow, illiquid life annuity is the op-

posite of a Pay-As-You-Go pension system, which is a transfer to the previous

generation and a profitable investment when the equilibrium is inefficient.

3.2 Annuities and the welfare at steady-state

The next step concerns the welfare of an agent in the steady state. We have

seen that when the equilibrium is efficient, illiquid annuity is preferred to flexible

annuity. This has been established for an equilibrium interest rate associated

to the level of capital per worker at equilibrium. It does not, however, take into

account the fact that the capital per worker may be different in an economy

where illiquid annuities are proposed and in an economy where they are not.

So to evaluate the effect of the supply of illiquid annuity contracts on welfare,

we proceed as follows: we compare the welfare obtained in an economy where

the two types of contracts are offered to welfare obtained in an economy where

only flexible annuity is available. The result of this comparison is presented in

the following proposition.

Proposition 4. Let f ′ (k∗) > 1 + n. The welfare at steady-state is larger if

illiquid annuity contracts are available.
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Proof. See Appendix.

In the proof of Proposition 4, we show that the introduction of illiquid annu-

ity contracts increases the capital per worker in the steady state. The intuition

for this result is the following: as it induces a shift to youth, illiquid annuity

stimulates savings. This increase is conducive to steady-state welfare when the

equilibrium is inefficient, as the utility increases with capital in that case. The

proof of Proposition 4 is based on the assumption of the existence of a unique

steady state. In the case of multiple equilibria, the same comparison can be

made using the stability properties.

In the long run, agents benefit from the existence of an illiquid annuity

market provided that the equilibrium is efficient. However, the existence of

an illiquid annuity market in the steady state depends on the decisions made

by agents along the transitory path. This is demonstrated in the following

proposition.

Proposition 5. Illiquid annuity contracts are offered in the steady state only

if all previous generations have purchased illiquid annuity.

Proof. See Appendix.

Proposition 5 shows that the Pareto optimality of illiquid annuity contracts

at steady-state is not a sufficient condition for the existence of such a market.

While the generation born in t chooses not to invest in illiquid annuity, we see,

by using equation (4), that the preceding generation benefits at age 2 from a

yield equal to Rt+1/p2, equal to the one of flexible annuity, and the generation

that follows should settle at age 1 for a yield equal to Rt+2/p1. As this yield

is equal to one of flexible annuity, the generation born at t + 1 has no interest

in investing in illiquid annuity, after which the contract is never requested.

We conclude that if it exists, the illiquid annuity contract represents a Pareto

improvement for all generations.

Equivalently, we can notice that illiquid annuities will never be demanded if

the contract has not been proposed before the initial time of the economy t = 0,

that is to say, if agents born at t = −1 do not have illiquid annuities in their

portfolio at t = 0. If the contract does not initially exist, it will not appear

spontaneously in a market economy. This fact makes it necessary to intervene
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in order to possibly compensate for earlier generations to increase the welfare

of future generations. Although it is not sufficient, this result may also help

understanding the low participation in annuity markets (for a recent survey on

the annuity puzzle, see Benartzi et al. 2011).

In this section, we have presented the conditions for the existence of an illiq-

uid annuity market and demonstrated the Pareto improvement that it generates.

In the next section, we discuss the robustness of our results.

4 Robustness

The results presented above are not changed if we consider alternative assump-

tions about the agents’ preferences and the environment in which they make

their decisions. We consider, in particular, a non-borrowing constraint at age

1, possibly with a background risk that may affect consumption at ages 1 and

2, an assumption of bequest motivated by joy-of-giving, and finally, a subjec-

tive evaluation of the survival probabilities. We show that in all these cases,

Proposition 1 is not, or barely, changed.

The first extension we consider is a non-borrowing constraint at age 1. In our

framework, this implies that selling annuities short, or equivalently purshasing

life insurance contracts (Bernheim, 1991), is not allowed. We therefore add the

following inequality to the optimization problem described above:

a1,t+1 ≥ 0. (18)

The Proposition 1 is modified as follows.

Proposition 6. Let the agent maximizes (5) subject to (6), (7), (8), (9) and

(18). The optimal portfolio satisfies: bt > 0 if Rt+1 > Rt+1,

bt = 0, a0,t > 0 and a1,t > 0 if Rt+1 < Rt+1.
(19)

A portfolio satisfying bt > 0 and a0,t > 0 can be optimal only if Rt+1 ≥ Rt+1.

In the case Rt+1 > Rt+1, a0,t > 0 can be optimal only if a1,t+1 = 0.

Proof. See Appendix.

With proposition 6, we see that introducing a non-borrowing constraint at

age 1 barely modifies the optimal portfolio. Constraint (18) is binding only if
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the demand for illiquid annuities is positive, as the consumption at age 2 would

be otherwise zero. Provided that constraint (18) is binding, the MRS between

ages 0 and 1 is still greater than Rt+1 while remaining lower than Rt+1, whereas

between ages 1 and 2 is greater than Rt+2. In a nutshell, it is the dynamics of

consumption that is modified by the non-borrowing constraint, not the optimal

portfolio.

Let us now introduce a background risk that may reduce consumptions at

ages 1 and 2. This risk can be interpreted as health shocks that require costly

treatments and against with it is not possible to be insured6. Together with

the constraint (18), this shock makes the annuity contract non flexible (Direr,

2010). Consumptions at ages 1 and 2 are then written as random variables,

denoted c̃1,t+1 and c̃2,t+2, and the expected utility of the agent of age 0 at time

t reads as:

u (c0,t) + θp1Eu (c̃1,t+1) + θ2p1p2Eu (c̃2,t+2) . (20)

The optimal behavior of the agent is given in the following.

Proposition 7. Let the agent maximizes (20) subject to (6), (7), (8), (9) and

(18). The optimal portfolio satisfies the same conditions as those described in

Proposition 6.

Proof. See Appendix.

As the portfolio choice depends on a comparison of yields, it is not affected

by considering random utilities.

The second extension we consider is a bequest motive. The investment

in regular bonds can indeed be justified on the grounds of intergenerational

altruism and, as shown by Lockwood (2012), this may help explaining the low

demand for annuities. Following Yaari (1965), the bonds held in the portfolio

at the age of death are bequested, and the utility of the agent increases with

the amount that is bequested. As in Davidoff et al. (2005), we suppose that

capitalized value of the bequest enter the expected utility, which reads as:

u (c0,t) + θp1u (c1,t+1) + θ2p1p2u (c2,t+2) + (1− p1) v (Rt+1Rt+2h0,t)

+p1 (1− p2) v (Rt+2h1,t+1) + p1p2v (h2,t+2) , (21)

6Long-Term care can be though as an example of this even though insurance contracts are
offered in some countries. See Brown and Finkelstein (2011).
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where hi,t+i is the demand for bonds made by an agent of age i, i = {0, 1, 2},

as of time t + i. Function v is increasing and concave and we assume that

limx→0 v
′ (x) = +∞, which restrict our analysis to interior solutions. Bonds’

yield is the risk-free rate. Thus, the budget constraints (6), (8), (9) are replaced

by the following ones:

c0,t = wt − a0,t − bt − h0,t, (22)

c1,t+1 = a0,t
Rt+1

p1
+ bt

(
Rt+1

πt+1
− 1

)
+ h0,tRt+1 − a1,t+1 − h1,t+1, (23)

c2,t+2 = a1,t+1
Rt+2

p2
+ bt

Rt+2

πt+2
+ h1,t+1Rt+2 − h2,t+2. (24)

The optimal behavior of the agent is given in the following.

Proposition 8. Let the agent maximizes (21) subject to (7), (22), (23), and

(24). The optimal portfolio satisfies conditions (11). Moreover, the capitalized

bequests are such that: Rt+1Rt+2h0,t = Rt+2h1,t+1 = h2,t+2 if bt = 0,

Rt+1Rt+2h0,t < Rt+2h1,t+1 = h2,t+2 if a0,t = 0.
(25)

Proof. See Appendix.

The introduction of a joy-of-giving altruistic motive modifies the optimal

porfolio as regular bonds are demanded in order to be bequested. However, the

remaining of the optimal portfolio is composed of flexible annuities for Rt+1 <

Rt+1 and of illiquid annuities for Rt+1 > Rt+1. With flexible annuities, the

optimal tradeoff between consumption and bequest is the same as in Davidoff et

al. (2005). The capitalized value of the bequest is constant and the consumption

at age 2 equals the return of what was invested in annuities at age 1. With

illiquid annuities annuities, the capitalized value of the bequest increases with

age (for the same reasons as those detailed for consumption in Proposition 2)

but, at age 2, the agent still consumes the share of his portfolio invested in

annuities.

The third extension considers a subjective evaluation of the survival proba-

bilities. Many studies have indeed demonstrated the importance of probability

distortion in risky choices, and notably when the risk at stake concerns health

and longevity (Brewer et al., 2007). We consider an agent endowed with subjec-

tive survival probabilities, denoted p̂1 and p̂2, which are such that p̂1 6= p1 and
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p̂2 6= p2. His preferences are represented by the following subjective expected

utility7:

u (c0,t) + p̂1θu (c1,t+1) + p̂2θ
2u (c2,t+2) . (26)

The rest of the model is the same as in section 2.3, which implies that agent’s

beliefs differ from the insurers’ survival probabilities estimation.To simplify,

we therefore do not take into account the possibility for insurers to use this

information and modify annuity’s yields. The optimal behavior of the agent is

given in the following.

Proposition 9. Let the agent maximizes (26) subject to (6), (7), (8), and (9).

The optimal portfolio satisfies conditions (11).

Proof. See Appendix.

Once again, our main results are robust. Introducing a subjective evaluation

of longevity risk does not modifies the preference for illiquid annuity as long as

their objective yield is sufficiently large.

5 Conclusion

In this paper, we showed that illiquid annuity is preferred to flexible one pro-

vided that the equilibrium is dynamically efficient. Moreover, the availability

of illiquid annuity permits a welfare improvement in the long run. Neverthe-

less, they are offered in the steady-state only if all generations have purchased

them in the past. Consequently, policy intervention can be justified even if the

equilibrium is efficient.

This study can be extended in several directions. First a multi-period setting

can be analyzed in order to investigate the issue of the optimal timing of annuity

purchase (Brugiavini, 1993) and discuss the opportunity represented by deferred

annuities. Second, heterogeneous agents could be introduced in order to focus

on adverse selection (Bommier et al., 2011) and redistribution issues (Cremer et

al., 2010). Finally, aggregate risk on mortality (Schulze and Post, 2010) as well

as other aggregate risk could be introduced in order to discuss the risk sharing

properties (Gollier, 2008) of the illiquid annuities we considered.

7Although different models of representation of preferences under uncertainty have been
proposed, in case of two states of nature, the main models reach to one, namely the subjective
model (Savage, 1954).

14



6 Appendix

Proof of Proposition 1. We denote µt as the Kuhn-Tucker multiplier associated

with the non-negativity constraint: a0,t ≥ 0, and λt as the one associated with:

bt ≥ 0. The first order conditions of the optimization problem can be written

as:

u′ (c0,t)− θRt+1u
′ (c1,t+1) = µt,

u′ (c0,t)− θp1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p1p2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2u
′ (c2,t+2) = 0,

(27)

while the complementary slackness conditions are:

µta0,t = 0 and λtbt = 0. (28)

By rearranging equations in system (27), we obtain:(
R̃t+1 −Rt+1

)
θu′ (c1,t+1) + λt − µt = 0, (29)

where Rt+1 is defined in (10).

Let us first notice that having both λt > 0 and µt > 0 is not possible as

we can see, using the complementary slackness conditions (28) and the budget

constraints (8) and (9), that this would imply:

c1,t+1 = −a1,t+1 and c2,t+2 = a1,t+1
Rt+2

p2
, (30)

which contradicts the fact that optimal consumptions should be positive. As a

consequence, we use (29) to state that:
λt = 0, µt > 0 if Rt+1 −Rt+1 > 0,

λt > 0, µt = 0 if Rt+1 −Rt+1 < 0,

λt = µt = 0 if Rt+1 −Rt+1 = 0,

(31)

which, using the complementary slackness conditions (28), allow us to conclude

the proof. �

Proof of Proposition 2. For Rt+1 > Rt+1, we have seen in the proof of Proposi-

tion 1 that λt = 0 and µt > 0. Thus, the last two equations of system (27) can

be rewritten as follows: −u
′ (c0,t) + θRt+1u

′ (c1,t+1) = 0,

−u′ (c1,t+1) + θRt+2u
′ (c2,t+2) = 0.

(32)

15



Thus, we have:

u′ (c0,t)

u′ (c1,t+1)
≥ u′ (c1,t+1)

u′ (c2,t+2)
⇔ Rt+1 ≥ Rt+2, (33)

which, using that fact that Rt+1 > Rt+1, allow us to write (12). To obtain (13),

we us the fact that if u is homogenous of degree κ + 1, u′ is homogenous of

degree κ, which implies that (33) can be rewritten as follows:(
c1,t+1

c0,t

)κ
≥
(
c2,t+2

c1,t+1

)κ
⇔ Rt+1 ≥ Rt+2 . � (34)

Proof of Proposition 3. An intertemporal equilibrium is a collection:

{c0,t, c1,t, c2,t, bt, a0,t, a1,t, πt+1, Rt+1, wt+1, kt+1}t≥0 , (35)

which satisfies the budget constraints (6), (8) and (9), the optimality conditions

(14) and (27), the complementary slackness conditions (28), the zero-profit con-

dition (4) and the equilibrium condition (15). At steady state, the equilibrium

is the solution of the following system:

c0 = f (k)− kf ′ (k)− a0 − b,

c1 = a0
f ′(k)
p1

+ b
(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
− a1,

c2 = a1
f ′(k)
p2

+ bf ′ (k) 1+n+p1
p1(1+n+p2)

,

k = a0+b
1+n + p1(a1+b)

(1+n)2
,

0 = [u′ (c0)− θf ′ (k)u′ (c1)] a0,

0 =
[
u′ (c0)− θp1

(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
u′ (c1)− θ2p2f ′ (k) 1+n+p1

1+n+p2
u′ (c2)

]
b,

0 = u′ (c1)− θf ′ (k)u′ (c2) ,
(36)

as well as (4) and (14).

From Proposition 1, we know that the possible portfolio at steady-state are:

(1) a∗0 > 0 and b∗ > 0, (2) a∗0 = 0 and b∗ > 0, (3) a∗0 > 0 and b∗ > 0. Let us

consider those three cases successively.

For a∗0 > 0 and b∗ > 0, the last three equations of (36) can be rewritten as:[
f ′ (k) + p1 − (f ′ (k) + p2)

1 + n+ p1
1 + n+ p2

]
u′ (c1) = 0, (37)
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which is satisfied for f ′ (k) = 1 +n, i.e. when the capital is at the Golden Rule.

For a∗0 = 0 and b∗ > 0, the last three equations of (36) can be rewritten as:
u′ (c0)− θf ′ (k)u′ (c1) ≥ 0,

u′ (c0)− θ
(
f ′ (k) 1+n+p1

1+n+p2
− p1 + p2

1+n+p1
1+n+p2

)
u′ (c1) = 0,

(38)

which are satisfied only if f ′ (k) ≥ 1+n. Using what has been shown just above,

we conclude that if f ′ (k) > 1 + n, one has a∗0 = 0.

Finally, for a∗0 > 0 and b∗ = 0, the last three equations of (36) can be

rewritten as:[
f ′ (k)

(
1− 1 + n+ p1

1 + n+ p2

)
+ p1 − p2

1 + n+ p1
1 + n+ p2

]
u′ (c1) ≥ 0, (39)

which is satisfied only if f ′ (k) ≤ 1 +n. As above, f ′ (k) < 1 +n, implies b∗ = 0.

�

Proof of Proposition 4. The proof proceeds in two steps. In step 1, we show that

the capital stock is higher in an economy where flexible and illiquid annuities

are proposed than in an economy where only flexible annuities are proposed. In

step 2, we show that the utility increases with the capital stock.

Step 1. Let us consider first an economy where flexible and illiquid annuities

are proposed. If f ′ (k) > 1 + n, we can use the proof of Proposition 3 to state

that the steady-state solves:

c0 = f (k)− kf ′ (k)− b,

c1 = b
(
f ′ (k) 1+n+p1

p1(1+n+p2)
− 1
)
− a1,

c2 = a1
f ′(k)
p2

+ bf ′ (k) 1+n+p1
p1(1+n+p2)

,

k = b
1+n + p1(a1+b)

(1+n)2
,

0 = u′ (c0)− θ
(

[f ′ (k) + p2] 1+n+p1
1+n+p2

− p1
)
u′ (c1) ,

0 = u′ (c1)− θf ′ (k)u′ (c2) .

(40)

System (40) reduces to a system in (c0, k) that reads as:
−u′ (c0) +

θ[f ′(k)(1+n+p1)−(p1−p2)(1+n)]
(1+n+p2)

u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,

(41)
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where: 
c1 =

[f(k)−kf ′(k)−c0]
p1

(
f ′(k)(1+n+p1)

1+n+p2
+ (1 + n)

)
− (1+n)2k

p1
,

c2 = (1+n)2

p1p2
kf ′ (k)− [f(k)−kf ′(k)−c0]f ′(k)(1+n+p1)(1+n)

p1p2(1+n+p2)
.

(42)

Let us consider now an economy where only flexible annuities are proposed. The

steady-state of such an economy solves:

c0 = f (k)− kf ′ (k)− a0,

c1 = a0
f ′(k)
p1
− a1,

c2 = a1
f ′(k)
p2

,

k = a0
1+n + p1a1

(1+n)2
,

0 = u′ (c0)− θf ′ (k)u′ (c1) ,

0 = u′ (c1)− θf ′ (k)u′ (c2) .

(43)

System (43) reduces to a system in (c0, k) that reads as: −u
′ (c0) + θf ′ (k)u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(44)

where: 
c1 = [f (k)− kf ′ (k)− c0] f

′(k)+(1+n)
p1

− (1+n)2k
p1

,

c2 = {(1 + n) k − [f (k)− kf ′ (k)− c0]} (1+n)f ′(k)
p1p2

.

(45)

The objective is thus to compare the steady-state capital that is the solution

of (41) with the one that is solution of (44). To do so, we set up, for z ∈

[1, (1 + n+ p1) / (1 + n+ p2)], a more general system that writes: −u
′ (f (k)− kf ′ (k)− x) + θ [f ′ (k) z − (1 + n) (z − 1)]u′ (c1) = 0,

−u′ (c1) + θf ′ (k)u′ (c2) = 0,
(46)

where 

x = f (k)− kf ′ (k)− c0,

c1 =
x[f ′(k)z+(1+n)]

p1
− (1+n)2k

p1
,

c2 = [(1 + n) k − xz] (1+n)f ′(k)
p1p2

.

(47)

We notice that for z = 1, system (46) reduces to system (44) while for z =

(1 + n+ p1) / (1 + n+ p2), system (46) reduces to system (41). To prove our
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claim, we hence aim at showing that:

dk∗

dz
> 0, (48)

where k∗ is the capital stock that is the solution of (46). Let us rewrite the first

equation in (46) as F (x, k; z) = 0 and the second as G (x, k; z) = 0. One has:

dk

dz
= −

F ′z −
G′

z

G′
x
F ′x

F ′k −
G′

k

G′
x
F ′x
. (49)

Consider first the numerator of (49). Let σ (c) := −u′ (c) /cu′′ (c). Simple

computations give that the sign of F ′z −G′zF ′x/G′x is the same as the one of:

f ′ (k)− (1 + n)

f ′ (k) z − (1 + n) (z − 1)

×

{
1

σ (c1)

f ′ (k) z + (1 + n)

x [f ′ (k) z + (1 + n)]− (1 + n)
2
k

+
1

σ (c2)

z

(1 + n) k − xz

}

+
1

c0σ (c0)

1

σ (c1)

xf ′ (k)

x [f ′ (k) z + (1 + n)]− (1 + n)
2
k

+
1

c0σ (c0)

1

σ (c2)

x

(1 + n) k − xz

+
1

σ (c1)

1

σ (c2)

x

(1 + n) k − xz
(1 + n)

x [f ′ (k) z + (1 + n)]− (1 + n)
2
k
, (50)

which is positive as we supposed that f ′ (k) > (1 + n). To determine the sign of

the denominator, we use the assumption of the existence of a unique equilibrium.

System (46) can be written as a single dimension problem: F (φ (k; z) , k; z) = 0

where φ (.) is the implicit function obtained using G (x, k; z) = 0. The deriva-

tive of F (φ (k; z) , k; z) with respect to k is given by F ′k − G′kF
′
x/G

′
x. As

F (φ (0; z) , 0; z) > 0, we conclude that the derivative, computed at the equi-

librium k∗ is negative. Using (49), we finally conclude that dk/dz > 0.

Step 2. We now compute the derivative of the intertemporal utility function

with respect to capital, such as

u′ (c0)
dc0
dk

+ θp1u
′ (c1)

dc1
dk

+ θ2p1p2u
′ (c2)

dc2
dk

, (51)

In steady-state of an economy where both flexible and illiquid annuities are

proposed, we use (41) and (42) to obtain that the sign of (51) is the same as

the one of:

[f ′ (k)− (1 + n)]

[
k (1 + n)− [f (k)− 2kf ′ (k)− c0]

(
1 + n+ p1
1 + n+ p2

)]
. (52)
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Using the fact that c2, whose expression is given in (42), is positive we conclude

that (52) is positive. Hence, an increase in capital increases the welfare of the

agent in the steady-state. �

Proof of Proposition 5. The objective is to prove that if there exists T such that

bT−1 = 0 then bT+i = 0 for all i = 0, 1, 2, ... To prove it, we consider the yield of

the investment in illiquid annuities made at time T . Replacing (4) and bT−1 = 0

in (10), we obtain:

RT+1 = RT+1 − p1
(

1− p2
p1

(1 + n) bT+1 + p1bT
(1 + n) bT+1 + p2bT

)
. (53)

For bT+1 > 0, we obtain that RT+1 > RT+1, which implies, using Proposition

1, that bT = 0. �

Proof of Proposition 6. The proof is similar to the one of Proposition 1. We

denote (µt, λt, γt) as the Kuhn-Tucker multipliers associated with the non-

negativity constraints: a0,t ≥ 0, bt ≥ 0 and a1,t ≥ 0. The first order conditions

of the optimization problem can be written as:

u′ (c0,t)− θRt+1u
′ (c1,t+1) = µt,

u′ (c0,t)− θp1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p1p2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2u
′ (c2,t+2) = γt+1,

(54)

while the complementary slackness conditions are:

µta0,t = 0, λtbt = 0 and γt+1a1,t+1 = 0. (55)

By rearranging equations in system (54), we obtain:

(
Rt+1 −Rt+1

)
θu′ (c1,t+1) + λt − µt − γt+1

p2
πt+2

= 0, (56)

where Rt+1 is defined in (10).

Let us consider the various configurations that are possible. As in the proof

of Proposition 1, the case λt > 0 and µt > 0 is not optimal as it implies that

the sign of c1,t+1 is the opposite of the one of c2,t+2. Similarly, the case λt > 0

and γt+1 > 0 is neither optimal as it implies c2,t+2 = 0. We now use equation

(56) to establish that:
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- for Rt+1 > Rt+1, one has λt < µt + γt+1p2/πt+2, which necessarily implies:

λt = 0 and µt + γt+1p2/πt+2 > 0. Condition λtbt = 0 implies that bt ≥ 0.

However, bt = 0 is not possible as the positivity of c1,t+1 would thus imply

a0,t > 0 (and µt = 0) while the positivity of c2,t+2 would imply a1,t+1 > 0 (and

γt+1 = 0). Thus, bt > 0. Moreover, µt ≥ 0 and γt+1 ≥ 0, with at least one of

the two inequalities being strict.

- for Rt+1 = Rt+1, one has λt = µt + γt+1p2/πt+2, which necessarily implies:

λt = µt = γt+1 = 0.

- for Rt+1 > Rt+1, one has λt > µt + γt+1p2/πt+2, which necessarily implies:

λt > 0 and µt = γt+1 = 0. Due to (55) we conclude that bt = 0 while the

positivity of c1,t+1 implies a0,t > 0 and the positivity of c2,t+2 implies a1,t+1 > 0.

�

Proof of Proposition 7. Following the same derivations as those made in the

proof of Proposition 6, we obtain:(
Rt+1 −Rt+1

)
θEu′ (c̃1,t+1) + λt − µt − γt+1

p2
πt+2

= 0, (57)

which is the counterpart of (56). The reasonning made after (56) also applies

here. �

Proof of Proposition 8. The first order conditions of the agent’s problem are

given by (27), (28) and:
−u′ (c0,t) + θp1Rt+1u

′ (c1,t+1) + (1− p1)Rt+1Rt+2v
′ (Rt+1Rt+2h0,t) = 0,

−θu′ (c1,t+1) + θ2p2Rt+2u
′ (c2,t+2) + (1− p2)Rt+2v

′ (Rt+2h1,t+1) = 0,

−θ2u′ (c2,t+2) + v′ (h2,t+2) = 0.
(58)

As a consequence (29) and (31) still hold. Moreover, by replacing the first and

the third equations of (27) in (58), we obtain:
− µt

(1−p1)Rt+1
− θu′ (c1,t+1) +Rt+2v

′ (Rt+1Rt+2h0,t) = 0,

−θu′ (c1,t+1) +Rt+2v
′ (Rt+2h1,t+1) = 0,

−θu′ (c1,t+1) +Rt+2v
′ (h2,t+2) = 0.

(59)

This allow us to conclude that: Rt+1Rt+2h0,t = Rt+2h1,t+1 = h2,t+2 if µt = 0,

Rt+1Rt+2h0,t < Rt+2h1,t+1 = h2,t+2 if µt > 0. �
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Proof of Proposition 9. As in the proof of Proposition 1, the first order condi-

tions of the optimization problem can be written as:

u′ (c0,t)− θRt+1
p̂1
p1
u′ (c1,t+1) = µt,

u′ (c0,t)− θp̂1
(
Rt+1

πt+1
− 1
)
u′ (c1,t+1)− θ2p̂1p̂2Rt+2

πt+2
u′ (c2,t+2) = λt,

u′ (c1,t+1)− θRt+2
p̂2
p2
u′ (c2,t+2) = 0,

(60)

while the complementary slackness conditions are given by (28). By rearranging

equations in system (60), we obtain:(
R̃t+1 −Rt+1

)
θ
p̂1
p1
u′ (c1,t+1) + λt − µt = 0, (61)

where Rt+1 is defined in (10). The rest of the proof is similar to the one of

Proposition 1. �
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Figure 1. Spread in yields at steady state
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