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supports, like the center or the tails. We prove that it converges asymptotically
to a standard Gaussian distribution under the null hypothesis and thus it is
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interdependence effects.

Keywords: Granger-causality, Distribution, Tails, Kernel-based test,
Financial Spill-over.

*Corresponding author.
Email addresses: b.candelon@maastrichtuniversity.nl (B. Candelon),
sessi.tokpavi@u-paris10.fr (S. Tokpavi)

Preprint submitted to Elsevier April 3, 2014



1. Introduction

Analysis of causal relationships holds an important part of the theoretical
and empirical contributions in quantitative economics (See the special issues of
the Journal of Econometrics in 1988 and 2006). Although the concept of causal-
ity as defined by Granger (1969) is broad and consists in testing transmission
effects between the whole distribution of random variables, recent literature has
proposed some weak versions of this concept, as the causality in the frequency
domain or for specific distribution moments. For instance, Granger-causality in
mean (Granger, 1980, 1988) is widely used in macroeconomics.! Granger et al.
(1986) also introduce the concept of Granger-causality in variance to test for
causal effects in the second order moment between financial series.? A unified
treatment of Granger-causality in the mean and the variance is formalized by
Comte and Lieberman (2000).

More recently, some contributions have focused on the concept of Granger-
causality in quantiles, an issue which is particularly important for non-Gaussian
distributions that exhibit asymmetry, fat-tail characteristics and non-linearity
(Lee and Yang, 2012; Jeong et al., 2012). Indeed, given these distributions,
the dynamic in the tails can be rather different from the one in the center of
the distribution. In this case, the information content of quantiles gives more
insights on the distribution than the mean. Lee and Yang (2012) developed a
parametric methodology for Granger-causality in quantiles which is based on
the conditional predictive ability (CPA) framework of Giacomini and White
(2006). Jeong et al. (2012) introduce a non-parametric approach to test for
causality in quantiles and apply it to the detection of causal relations between
the crude oil price, the USD/GBP exchange rate, and the gold price. A closely
related but different concept is the Granger-causality in tail-event by Hong et

al. (2009), a tail-event being identified as a situation where the value of a time

1See inter alii Sims (1972, 1980) who tests for Granger-causality in mean between money
and income.

2This concept is further explored by Cheung and Ng (1996), Kanas and Kouretas (2002),
Hafner and Herwartz (2004), to cite but a few.



series is lower than its Value-at-Risk at a specified risk level. Hence the test
checks whether an extreme downside movement for a given time series has a
predictive content for an extreme downside movement for another time series,
and has many potential applications in risk management.

All the tests of causality in quantiles and tail-events share the same limit
that statistical inference is exclusively performed at a particular fixed level of
the quantile. At this given level, the null hypothesis should not be rejected,
while the opposite conclusion should hold for another quantile level. Indeed as
emphasized by Granger (2003) and Engle and Manganelli (2004), time series
behavior of quantiles can vary considerably across the distribution because of
long memory or non-stationarity. Hence, a Granger-causality test in quantiles or
tail-events which does not consider a large number of quantiles simultaneously
over the distribution support would be restrictive. Given that the predictive
distribution of a time series is entirely determined by its quantiles, testing for
Granger-causality for the range of quantiles over the distribution support is
equivalent to testing for Granger-causality in distribution.

Very few papers developed testing procedures for Granger-causality in the
whole distribution in a time series context. The only exceptions to our knowl-
edge include Su and White (2007,2008,2012,2013), Bouezmarni et al. (2012) and
Taamouti et al. (2012). For example, Su and White (2012) introduce a con-
ditional independence specification test which can be used to test for Granger-
causality in quantiles for a continuum values of quantile levels between (0, 1).
Bouezmarni et al. (2012) construct a nonparametric Granger-causality test
in distribution based on conditional independence in the framework of copu-
las.? Our paper adds to this literature proposing a new methodology to test
for Granger-causality in the whole distribution between two time series. Our
testing procedure consists in dividing the distribution support of each series
into a multivariate process of dynamic inter-quantile event variables, and by

checking whether there is a spill-over effect between the two multivariate pro-

3See also Taamouti et al. (2012) for another approach from the copulas theory.



cesses, analyzing their cross-correlations structure. The test draws from the
generalized portmanteau test for independence between multivariate processes
in Bouhaddioui and Roy (2006).

It is worth mentioning that although our approach checks for the strong
version of the Granger-causality concept (Granger, 1969), it is highly flexible as
it can be used to test for causality in specific regions on the distribution supports,
like the center or the tails (left or right).* For example, the test can be used to
test for causality in the left-tail distribution for two time series. In this case the
multivariate process of inter-quantile event variables should be defined so as to
focus the analysis exclusively on this part of the distribution. This flexibility
is one of the great advantage of our methodology compared to those based on
copulas theory (Bouezmarni et al., 2012; Taamouti et al., 2012). It allows us to
go beyond the simple rejection of the null hypothesis of Granger-causality for the
whole distribution, as it provides us with the specific regions for which Granger-
causality is rejected. Besides, our test statistic is a multivariate extension of the
kernel-based nonparametric Granger-causality test in tail-event by Hong et al.
(2009), and hence shares its main advantage: it checks for a large number of
lags by discounting higher order lags. This characteristic is consistent with the
stylized fact in empirical finance that recent events have much more influence in
the current market trends than those older. In this line, our Granger-causality
test in distribution is different from those available in the literature which check
for causality uniformly for a limited number of lags.

Technically, we show that the test has a standard Gaussian distribution
under the null hypothesis which is free of parameter estimation uncertainty.
Monte Carlo simulations reveal indeed that the Gaussian distribution provides
a good approximation of the distribution of our test statistic, even in small
samples. Moreover, the test has power to reject the null hypothesis of causality

in distribution stemming from different sources including linear and non-linear

4Note that Candelon et al. (2013) introduce a parametric test to check for Granger-
causality in distribution tails, but the methodology does not apply for other regions of the
distribution like the center.



causality in mean and causality in variance.

To illustrate the importance of this test for the empirical literature, we use it
to better understand the spill-overs that have taken place within European stock
markets during the recent crisis. Our Granger-causality test in distribution
allows to consider asymmetry between markets (which is not possible using
correlation), to take into account for break in volatility (as suggested by Forbes
and Rigobon, 2002) and to distinguish between contagion and interdependence.
Indeed, interdependence is a long run path and taking place in ”normal periods”
concerning hence the center of the distribution. On the contrary, contagion
is detected by a short-run abrupt increase in the causal linkages taking place
exclusively during crisis’ period, i.e., in the tails of the distribution. As our test
is designed to check for causality in specific regions of the distribution, it can
be used to check for interdependence or contagion. Anticipating on our results,
we find weak (resp. strong) support for interdependence (resp. contagion)
during the recent crisis. Interestingly, we observe a strong asymmetry between
causal tests in the right and left tails: Whereas spill-overs are important in
crisis periods, they are only weakly present in upswing times. Such a result
constitutes an important feature for the European stock markets.

The paper is sketched as follows: the second Section presents the Granger-
causality test in distribution. The properties of this test are analysed in Section
3 via a Monte-Carlo simulation experiment. Section 4 proposes the empirical

application whereas Section 5 concludes.

2. Nonparametric test for Granger-causality in distribution

This Section presents our kernel-based test for Granger-causality in distri-
bution between two time series. As this test is a multivariate extension of the
Granger-causality test in tail-event introduced by Hong et al. (2009), we begin
with the presentation of Hong et al. (2009) test and then introduce the new
approach.



2.1. Granger-causality in tail-event

For two time series X; and Y;, the Granger-causality test in tail-event de-
veloped by Hong et al. (2009) checks whether an extreme downside risk from
Y; can be considered as a lagged indicator for an extreme downside risk for X;.
Hong et al. (2009) identify an extreme downside risk as a situation where X
and Y; are lower than their respective Value-at-Risk (VaR) at a prespecified
level .. Recall that VaR is a risk measure often used by financial analysts and
risk managers to measure and monitor the risk of loss for a trading or invest-
ment portfolio. The VaR of an instrument or portfolio of instruments is the
maximum dollar loss within the a%-confidence interval (Jorion, 2007). For the

two time series X; and Y;, we have
Pr[X; < VaR} (6%) |71 ] = a, (1)

Pr[Y, < VaR} (6%)|F) ] = o, (2)

with VaR; (0%) and VaR} (69 ) the VaR of X, and Y; respectively at time
t, 0% and 6y the true unknown finite-dimensional parameters related to the
specification of the VaR model for each variable. The information sets F;*

and FY | are defined as
Fily ={X, 1<t -1}, (3)

In the framework of Hong et al. (2009), an extreme downside risk occurs at
time t for X, if the tail-event variable ZX (99() is equal to one, with
1 oif Xy < VaR)X (6%)
Zi (0%) = ()
0 else.
Similarly, an extreme downside risk for Y; corresponds to Z} (9‘5),) taking

value one, with

1 if Y; < VaRY (69)
Z(0y) = (6)



Hence, the time series Y; does not Granger-cause (in downside risk or tail-

event at level «) the time series Xy, if the following hypothesis holds
Ho: B [Z (0%) |[FEY] = E[2° (0%) [F5a] (7)

with
FXEY — (X, V), 1<t—1}. (8)

Under the null hypothesis and at the risk level «, it means that spill-overs
of extreme downside movements from Y; to X; do not exist. Hong et al. (2009)
propose a nonparametric approach for testing for the null hypothesis in (7) based
on the cross-spectrum of the estimated bivariate process of tail-event variables

{ZX, ZY}, with components
Z¥=7zx(0x), 2y =2 (b)), (9)

where 0 ¥ and é\y are consistent estimators of the true unknown parameters 99(
and 69, respectively. To present their test statistic, let us define the sample
cross-covariance function between the estimated tail-event variables as

T

-1 % (ng—ax>(2t{j—ay), 0<j<T-1
~ t=1+j
C(j) = (10)
T ~
> (28, -ax) (7 —av), 1-T<j<,
t=1—j

with T the sample length, @x and @y the sample mean of ZX and ZY | respec-
tively. The sample cross-correlation function p(j) is then equivalent to
C ()

Sx Sy’

pj) = (11)

where S% and S% are the sample variances of Z\tX and ny , respectively. Using
the cross-correlation function, the kernel estimator for the cross-spectral density

of the bivariate process of tail-event variables corresponds to

2i Z (G /M) p () e 5, (12)



with x (.) a given kernel function and M the truncation parameter. The trun-
cation parameter M is function of the sample size T such that M — oo and
M/T — 0 as T — oo. The kernel is a symmetric function defined on the real

line and taking value in [—1, 1], such that

k(0)=1, (13)
/ k% (2) dz < oo. (14)

Under the null hypothesis of non Granger-causality in tail-event from Y; to

X, the kernel estimator for the cross-spectral density is equal to
T
Rw) =gz > rG/ADDG . (15)

This suggests using the distance between the two estimators f(w) and j/”\lo (w)
to test for the null hypothesis. Hong et al. (2009) consider the following

quadratic form
~ ~ 2
2 (F.R) =2 [ [Fw)- R @) de. (16)
which is equivalent to
R T—1
L2 (F 1) = 322G /M) 7 ). (7)
j=1

The test statistic is a standardized version of the quadratic form given by

-

Uy_x = TZ (G /M) P /DT )%, (18)

and follows under the null hypothesis a standard Gaussian distribution, with

Cp (M) and Dy (M) the location and scale parameters

T-1
Cr(M) =3 (1=j/T)x*(j /M), (19)
Dr(M)=2 Y (1-5/T) (1~ G+ 1) /T G /M), (20)



2.2. Granger-causality in distribution
In this section, we present our multivariate extension of the test of Hong et
al. (2009) which helps checking for Granger-causality in the whole distribution

between two time series.

2.2.1. Notations and the null hypothesis

The setting of our testing procedure is as follows. We consider a set A =
{aq, ..., me1} of m+ 1 VaR risk levels which covers the distribution support
of both variables X; and Y;, with 0% <= a3 < ... < a1 <= 100%. For
the first time series X;, the corresponding VaRs at time t are VaRffS (99(, as),

s=1,...,m+ 1, with
VaRffl (0%, 1) < ... < VaR,fferl (6%, 1) s (21)

where the vector 6% is once again the true unknown finite-dimensional pa-
rameter related to the specification of the VaR model for X;. We adopt the
convention that VaRffs (09(,a5) = —o0 for ay = 0% and VaR;ffS ((99(, as) =00
for ag = 100%.

We divide the distribution support of X; into m disjoint regions, each related

to the indicator or event variable

1 if X > VaRffs (99(,045) and X; < VaRt)fSH (09(,ozs+1)
z5 (0%) =
0 else,

(22)
for s = 1,...,m. For illustration, let m + 1 = 5 and suppose that the set
A = {1, @z, a3, a4, a5} = {0%, 20%,40%, 60%, 80%}. Figure B.1 displays the
support of X;, along with the VaRs and the event variables defining the m = 4
distinct regions.®

Now, let H;X (99() be the vector of dimension (m,1) with components the

m event variables

H¥ (0%) = (205 (0%) 202 (0%) s s 200 (0%)) - (23)

5Remark that we do not consider the event variable corresponding to the extreme m 4+ 1
region identified by X; > VozRi(erl (99(, am+1). Indeed this variable is implicitly defined by
the first m event variables.



We similarly define for the second time series Y; these event variables col-

lected in the vector HY (69), with
HY (0%) = (2], (09),255(6%), ... 2}, (6%)) . (24)

The time series Y; does not Granger-cause the time series X; in distribution

if the following hypothesis holds
Ho : E [H (6%) | FEFY ] = E [HY (0%) |75 ] - (25)

Therefore, Granger-causality in distribution from Y; to X; corresponds to
Granger-causality in mean from H) (99,) to HX (99(). When the null hypoth-
esis of non causality in distribution holds, this means that the event variables
defined for the variable Y; along its distribution support, do not have any predic-
tive content for the dynamics of the same event variables over the distribution
support of X;.

Remark that our null hypothesis is flexible enough as it can be used to
check for Granger-causality in specific regions on the distribution supports, like
the center or the tails (left or right). This can be done by restricting the set
A = {a1,...,ams1} of VaR levels to some selected values. For instance, we
can check for Granger-causality in the left-tail distribution by setting A to
A = {0%,1%,5%,10%}. In this case, the rejection of the null hypothesis is
of great importance in financial risk management, as it suggests the existence
of spill-over effects from Y; to X; that take place in the lower tail. Similarly
Granger-causality in the center of the distribution can be checked by setting for
example A to A = {20%, 40%, 60%, 80%}. In the next subsection, we construct
a nonparametric kernel-based test statistic to test for our general null hypothesis

in (25), and analyze its asymptotic distribution.

2.2.2. Test statistic and asymptotic distribution
Bouhaddioui and Roy (2006) introduce a generalized portmanteau test for
the independence between two infinite order vector auto-regressive (VAR) series.

Our test statistic relies for (25) on their work. However, the asymptotic analysis

10



differs because (i) we are not in a VAR framework, (ii) and the event variables
z5X, (0%) and Z}, (69 are indicator variables which are not differentiable with
respect to the unknown parameters 6% and 63, respectively. The latter challenge
is solved relying on some asymptotic results in Hong et al. (2009).

To present the test statistic, let ]?ItX = HY <§X) and fItY = HY (éy)
be the estimated counterparts of the multivariate processes of event variables
HX (99() and HY (0?,), respectively, with ) x and gy VT consistent estimators
of the true unknown parameter vectors #% and 6%. Denote A (j) the sample

cross-covariance matrix between H;X and H}Y , with

T_lt_ilérj (ﬁtX —EX) (ﬁt{j—ﬁy)T 0<j<T-1
AG) = (26)

T ~ ~ ~ \T
71 P> ‘(Ht{iijX) (HtYfAy) 1-T<j<o0,

t J
where the vector Ay (resp. A\y) of length m is the sample mean of }AItX (resp.

ﬁtY ). The corresponding sample cross-correlation matrix R (j) equals
—~ N —1/2 o\ —1/2
RG)=D(Sx) TAGD(Sy) (27)
where D (.) stands for the diagonal form of a matrix, Sy and Xy the sample
covariance matrices of I?ItX and ﬁty , respectively. We consider the following
weighted quadratic form that accounts for the dependence between the current
value of ﬁtX and lagged values of ﬁtY
T—1
T=3 &*(/M)QU), (28)
j=1

where « (.) is a kernel function, M the truncation parameter and @ (j) equal to

~

~ T /o ~ ~
Q) = Tvec (R(7)) (T3} @ T5") vee (R () (29)
with T x and fy the sample correlation matrix of FAItX and }AItY , respectively.

Following Bouhaddioui and Roy (2006), our test statistic is a centered and scaled

version of the quadratic form in (28), i.e.,

(30)



with Cp (M) and D7 (M) as defined in (19) and (20) respectively. The above
test statistic generalizes in a multivariate setting the one in Hong et al. (2009).
Indeed when m is equal to one, which corresponds to the univariate case where
each of the vectors I/{TtX and Iiy has only one event variable, the test statistic
Vv x in (30) is exactly equal to the Hong et al. (2009) test statistic in (18).

The following proposition gives the asymptotic distribution of our test statistic.

Proposition 1. Suppose that Assumptions of Theorem 1 in Hong et al. (2009)
hold. Then under the null hypothesis of no Granger-causality in distribution as
stated in (25), we have

T —m?Cr (M)

—(mQD ) —IN(0,1).

Wox =

Assumptions of Theorem 1 in Hong et al. (2009) impose some regulatory
conditions on the time series X; and Y;, on the VaR models used including
smoothness, moment conditions and adequacy, on the kernel function & (.), and
also on the truncation parameter M. The latter should be equal to M = T
with 0 < ¢ < 00,0 <v<1/2, v <min (ﬁ,%) if d = max (dx,dy) > 2 and
dx (resp. dy) is the dimension of the parameter 6x (resp. 0y ). See Hong et al.
(2009, pp. 275) for a complete discussion on these assumptions.

The proof of Proposition 1 proceeds as follows. Consider the following de-
composition of our test statistic
T* —m2Cr (M) T-T"
(m2Dr (M)'?  (m2Dy (M))"*

Wox = (31)

with 7* the pseudo version of the weighted quadratic form in (28-29) computed

using the true correlation matrices I'x and I'y, i.e.,

T-1
T = Z K (/M) QT (), (32)
Q" (j) = Tvee (R (j))T (rx! @yt vee (R (). (33)

Under the decomposition in (31), the proof of Proposition 1 is given by the

following two lemmas:

12



Lemma 2. Under Assumptions of Theorem 1 in Hong et al. (2009), we have

w 4 AC(0.1 34
wenrany O o

Lemma 3. Under Assumptions of Theorem 1 in Hong et al. (2009), we have

Lm_)p 0. (35)
(m?Drp (M))
The proofs of these two Lemmas are reported in Appendix A.

3. Small sample properties

In this section, we study the finite sample properties of our test via Monte
Carlo simulation experiments. We analyze the size in the first part of the section

and the remaining one is devoted to the analysis of the power.

3.1. Empirical size analysis

We simulate the size of the nonparametric test of Granger-causality in dis-
tribution assuming the following data generating process (DGP) for the first

time series X;:
Xt = oy,

o2 = 0.1+ 0.502_, + 0.2X2 |,
ve ~m.d.s. (0,1),

which corresponds to a GARCH(1,1) model. We make the assumption that the
second time series Y; follows the same process. Because the two processes are
generated independently, there is no Granger causality in distribution between
them. For a given value of the sample size T' € {500, 1.000, 2.000}, and for each
simulation, we compute our test statistic in (30) and make inference using the
asymptotic Gaussian distribution. For the computation of the test statistic, we
need to specify a model to estimate the VaRs (at the risk level aq, ..., @mt1)
and the m event variables for each variable X; and Y;. The m + 1 VaRs are
computed using a GARCH(1,1) model estimated by quasi-maximum likelihood.
The estimated values of the m + 1 VaRs at time ¢ are

13



VaRffS =0, xq (U, ), s=1,...m+1, (36)

where 7, x is the fitted volatility at time ¢, and ¢ (0;, a5) the empirical quantile
of order ay of the estimated standardized innovations. We proceed similarly
to compute the m + 1 VaRs and the corresponding m event variables for the
second time series Y;. Note that we set the parameter m + 1 to 14 and the set
Ato A={a,aqs,..,a14} = {0%, 1%, 5%, 10%, 20%, ..., 90%, 95%, 99%}, which
covers regions in the tails and the center of the distribution support of each
time series.® We also need to make a choice about the kernel function in order
to compute our test statistic. We consider the four different usual kernels, i.e.
the Daniell (DAN), the Parzen (PAR), the Bartlett (BAR) and the Truncated
uniform (TR) one.

Lastly for the choice of the truncation parameter M, we use three different
values: M = [In(T)], M = [1.5T7%3] and M = [27°-3], with [] the integer part
of the argument. These rates lead to the values M = 6,10,13 for T" = 500,
M = 7,12,16 for T = 1.000, and M = 8,15,20 for T' = 2.000. These values
cover a range of lag orders for the sample sizes considered. Table B.1 displays
the empirical sizes of our test over 500 simulations and for two different nominal
risk levels € (5%, 10%). Results in Table B.1 show that our test is well-sized.
Indeed, the rejection frequencies are close to the nominal risk levels. Hence, the
standard Gaussian distribution provides asymptotically a good approximation
of the distribution of our test statistic. This result seems to hold regardless of

the kernel function used and the value of the truncation parameter M.

3.2. Empirical power analysis

We now simulate the empirical power of our test. Since causality in distri-
bution springs from causality in moments such as mean or variance, we assume
different DGPs which correspond to these cases. The first DGP assumes the

existence of a linear Granger-causality in mean in order to generate data under

SRecall that for acs = 0%, the VaR corresponds to —oo.

14



the alternative hypothesis:
Y;f = 0-5}/15—1 + Uty ,

Uty = 0t Y VLY, (37)

O'f,y =01+ 0.5Ut2_Ly + 0.2uf_17y,

X =05X;_1+03Y:_1 + Ut, X
Ut X = 0t, XVt X, (38)

JiX =01+ 0.50?_1,)( + 0.2uf_17X,

where both v,y and v, x are martingale difference sequences with mean 0 and
variance 1. The empirical powers of our test are computed over 500 simulations
for T € {500, 1.000,2.000}. As in the analysis of the size, we consider three val-
ues of the truncation parameter M, and two nominal risk levels n = 5%, 10%.
The results are reported in Table B.2, only for the Daniell kernel to save space.”
For comparison we also display in Table B.2 results for the Granger-causality
test in mean. In order to have a fair comparison, we do not use the usual
parametric Granger-causality test in mean derived from a vector autoregressive
model. We consider instead the kernel-based non-parametric Granger-causality
test in mean introduced by Hong (1996). Results in Table B.2 show that our
kernel-based nonparametric test for Granger-causality in distribution has ap-
pealing power properties. For instance, the rejection frequencies of the null
hypothesis for (T, M) = (500,6) are equal to 93.6% and 95.6% for n = 5%
and 10%, respectively. For T' = 1.000, 2.000 the powers are equal to one. The
rejection frequencies of the Granger-causality test in mean are always equal to
100% and hence are slightly higher than the ones of our Granger-causality test
in distribution for the smallest sample. This result is expected as the assumed
causality in distribution springs from causality in mean.

To stress the relevance of our testing approach, we consider a second repre-

sentation of the DGPs under the alternative hypothesis, assuming causality in

"Results for the other kernels are similar and available from the authors upon request. The
only exception occurs for the uniform kernel which has a relatively low power, because of its
uniform weighting which does not discount higher order lags.
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distribution stemming from a non-linear form of causality in mean. Precisely,
we generate data for the time series Y; using the specification in (37), and the

second time series is generated as follows
Xt = 0.5Xt71 + 03}/;271 + Ut, X

U X = 0t xVt,X, (39)

fo =0.1+ 0.50152_1,)( + O.2uf_1,X.

Table B.3 reports the rejection frequencies over 500 simulations. The pre-
sentation is similar to Table B.2. We observe that while the Granger-cauality
test in mean fails to reject the null hypothesis for most of the simulations, our
test still exhibits good power in detecting this non-linear form of causality. For
illustration the rejection frequency of the null hypothesis for (T, M) = (500, 6)
is equal to 75.2% for n = 5%, while it is only equal to 18.2% for the causality
test in mean in the same configuration. Remark that for our test, the power
drops as the truncation parameter M increases. Moreover, the power increases
as the sample size increases and converges to 100%.

Lastly, we generate data under the alternative hypothesis, assuming Granger-
causality in variance. Formally, we suppose once again that Y; has the specifi-

cation in (37), and X; is generated as

X = 0.5X¢—1 +ue x,
U, X = O, XV, X5 (40)

02y =01+ 0507 |  +0.2u? |  +0.7Y2 .

Results displayed in Table B.4 are qualitatively similar to the ones in Table
B.3. Our causality test in distribution has good powers in rejecting the null
hypothesis, while the causality test in mean exhibits low powers. Overall the
reported values are lowers to the ones in Tables B.2 and B.3. This pattern can
be explained by the fact that (i) causality in variance takes place mainly in the
tails, (ii) and the dynamics of the tails are more difficult to fit due to the lack
of data.
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4. Empirical part

Recent financial crises have all been characterized by quick and large re-
gional spill-overs of negative financial shocks. For example, consecutively to
the Greek distress (2009), South European countries have been contaminated,
facing skyrocketing refinancing rates. Besides it has impacted North European
states in an opposite way. Considered as safe harbors for investors, they were
able to refinance their debt on markets at lower rates. It is obvious that the
degree of globalization within European Union as well as the low degree of fiscal
federalism has fostered the speed as well as the amplitude of the transmission
mechanism of such a shock. And as Southern European countries used foreign
capital markets to finance their domestic investments and boost their growth,
they have been highly subject to financial instability.

It is of major importance for empirical studies to evaluate the importance of
these spill-overs. Theoretically it relies on the crisis-contingent theories, which
explain the increase in market cross-correlation after a shock issued in an ori-
gin country as resulting from multiple equilibria based on investor psychology;
endogenous liquidity shocks causing a portfolio recomposition; and/or political
disturbances affecting the exchange rate regime.® ® The presence of spill-overs
during a crisis can be thus tested empirically by a significant and transitory in-
crease in cross-correlation between markets. (See inter alia King and Wadhwani,
1990, Calvo and Reinhart, 1995 and Baig and Goldfajn, 1998). Nevertheless,
this intuitive approach, which presents the advantage of simplicity as it avoids
the identification of the transmission channels, presents many shortcomings:

First, Forbes and Rigobon (2002) show that an increase in correlation can
be exclusively driven by an higher volatility during crisis periods. In such a
case, it could not be attributed to a stronger economic interdependence. To

correct for this potential bias, they thus propose to use a modified version of

8see Rigobon (2000) for a survey.

90n contrary, according to the non-crisis-contingent theories, the propagation of shocks
does not lead to a shift from a good to a bad equilibrium, but the increase in cross-correlation
is the continuation of linkages (trade and/or financial) existing before the crisis.
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the correlation'® and test for its temporary increase during crisis period.

Second, correlation is a symmetrical measure: an increase in the correlation
between markets ¢ and j does not provide any information on the direction of
the contagion (from 4 to j, from j to 4, or both). For such a reason, Bodart and
Candelon (2009) prefer to consider an indicator of causality to measure spill-
overs. It is thus possible to evaluate asymmetrical spill-overs, which can then
move from ¢ to j, 7 to ¢ or in both directions. Besides, using Granger-causality
approach requires the estimation of multivariate dynamic models which are less
prone to potential misspecification issues.

It is, more or less, feasible to tackle both these shortcomings in a classical
framework. Nevertheless, even if comparing causality between pre- and crisis
periods allows to evaluate spill-overs, it does not permit to separate interde-
pendence and contagion. Interdependence deals with the long run structural
links between markets. It thus provides information on the extend to which
markets are integrated. Therefore, interdependence should be analysed without
considering extreme positive or negative events. On the contrary, contagion
deals with short-run abrupt increases in the causal linkages and takes place
exclusively during crisis’ period. Thus, testing for contagion requires to exclu-
sively focus on the extremal left tail of the distribution, as it is performed in
extreme value theory (see Hartman et al., 2004). Our Granger-causality test
in distribution allows to tackle all these issues. Indeed, it offers an asymmetric
measure of spill-overs, based on a dynamic representation. Besides, it is possible
to investigate if causality has increased for the whole distribution but also for
specific percentiles of the distribution, in particular those located at the left tail
or right tails, corresponding to extreme events.

As an illustration, we analyse the recent European crisis and consider a set
of 12 European daily stock market indices (Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxemburg, the Netherlands, Portugal and
Spain) downloaded from datastream ranging from January 1, 2007 to May 6,

101n fact, they are using the unconditional correlation instead of the conditional one.
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2011 (i.e. T = 1.134 observations). The first empirical illustration consists in
testing for interdependence. It is performed implementing the pairwise Granger-
causality test for the whole distribution but removing crisis’s periods, i.e. the
right and left tails. Then, in a second analysis, we repeat this analysis for the
left tail in order to test for contagion during crisis. This part refers to the EVT
approach of spill-overs and extend Hartmann et al (2004). Similarly, the test
is conducted for the right tail, i.e. upswing period. We can then compare the
strength of contagion during crises vs boom periods and check in which periods
contagion is the most significant.
4.1. The general design of the Granger-causality test in distribution to test for
spill-over

To implement the Granger-causality test in distribution in our empirical
illustration, we first need to compute for each index, m + 1 series of VaRs
corresponding to m—+1 risk levels agy s = 1, ..., m=+1, which cover its distribution
support. As for the Monte Carlo simulations, we consider the following set for
the VaR levels A = {0%, 1%, 5%, 10%, ..., 90%, 95%, 99%} with m + 1 = 14. To
compute the VaRs, we use a semi-parametric model. Formally, we suppose that
each index returns series R;; i = 1,...,12, follows an AR (m)-GARCH (p,q)

model, with:

m
R = ijl GijRit—j + €it, (41)
€it = O tVit, (42)
q p
op = Ki+ Z]—:1 Vij€ii—j + ijl B0t (43)

and v; ; an i.i.d. innovation with mean zero and unit variance. The choice for an
AR (m)-GARCH (p, q) is in line with the Forbes and Rigobon (2002) correction.
It accounts for volatility increase that biases the causality analysis. For each
index, this model is estimated by quasi-maximum likelihood method. Hence,

the m + 1 series of VaRs are obtained as:

. m -~ ~ ~
VaR; , = Zj:l GijRit—j+ 019 (Vig, ), s=1,...,m+]1, (44)
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with 7, ; the fitted volatility at time ¢ for the index number 4, and ¢ (¥; ¢, as)
the empirical quantile of order o of the estimated standardized innovations j ;.
Table B.5 displays the estimation results of the AR(m)-GARCH(p, q) models
for the indices. As shown through the Ljung-Box test applied to the residuals
and their squares, the retained specifications succesfully capture the dependence
in the first two moments.

With the fitted series of VaRs at hand, we calculate for each index, the
multivariate process of dynamic inter-quantiles event variables, and compute
for each couple (i,7) of indices our kernel-based non parametric test statistic
Vj_; as defined in (30). For the computation we use the Daniell kernel and set
the truncation parameter M to [1.5T0'3] which leads to the value of M = 12
for the whole sample of length 7" = 1.134.

4.2. Testing for interdependence

To test for interdependence, we follow the general design of the pairwise test
of Granger-causality in distribution as described above except that we remove
from the distribution the extreme events. The new set A of VaRs risk levels is
equal to A = {20%, 30%, ..., 70%, 80%} with m + 1 = 7. Table B.6 displays the
results of the test. The reported values are the p-values in percentage. Hence,
for a nominal risk level of 5%, we reject the null hypothesis of no-causality from
index j to index 7 when the reported value is lower than 5%. Test statistics cor-
responding to the rejection of the null hypothesis of no causality are put in bold.
The last column labelled ”Sum” provides for a given index in row, the number of
time it is Granger-caused by the others. Similarly, the last row labelled ”Sum”
provides for a given stock market index the number of time it Granger-causes
others stock market indices. Lastly, the entry corresponding to the last row
and last column gives the total number of significant Granger-causality cases
for our set of indices. It turns out that interdependence is supported in only
9.8% of the cases (13 cases out of 132). This result indicates that European
stock market integration is far from being achieved. Looking at the countries

results, we observe that the Austrian and the French stock markets are the most
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integrated ones, as they are affected by 3 other European markets, respectively.
On the contrary, Greece, Ireland, Italy, Luxemburg and Netherlands appear as
independent from the other markets. It is interesting to notice that the causal
matrix is not symmetric: France which is among the most caused markets does
not affect any market. It hence supports our choice for causality as a measure
of spill-over rather than correlation. The most causal markets are Netherlands,
Greece and Portugal. The presence of these two last countries is interesting as
they were among the main drivers of the European crisis. Their causal impor-
tance, which can be qualified as systemic for the rest of Europe, should have

constituted a signal of alarm at the edge of the crisis.

4.3. Testing for contagion

Contagion is apprehended implementing our Granger-causality test in left-
tail distribution. The set A of VaRs risk levels is now set as A = {0%, 1%, 5%, 10%}
with m + 1 = 4. Table B.7 displays the outcomes of the tests. The number
of causal pairs increases to 35.6% of the cases supporting hence the presence
of contagion. We observe that the most causal markets are Portugal, Italy,
Netherlands, Greece and Ireland, and except Netherlands, this group includes
all the countries in turmoils (Portugal, Italy, Greece and Ireland), around which
the crisis was build. On the other side, the most caused markets are Austria,
Belgium, Italy, France, Luxembourg and Greece. Remark the predominant role
of Ttaly and Greece in the system, which cause and are caused in many cases.

The Granger-causality test is now repeated for the left-tail distribution with
A = {90%,95%,99%, 100%}, i.e., m + 1 = 4 and results are reported in Table
B.8. It appears that " positive” contagion is only supported in 7.5% of the cases
and concerns mainly Spain as spill-overs driver, and Luxembourg, Germany
and Belgium as spill-overs receivers. The asymmetry between causal tests in the
right and left tail is striking. Whereas spill-overs are important in crisis periods,
they are only weakly present in upswing times. Such a feature highlights that
European stock markets integration is strongly vulnerable to negative, and to

a lesser extend positive, shocks. European policy makers should acknowledge it
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and set up structural measures to limit it.

5. Conclusion

A kernel-based non-parametric test for Granger-causality in distribution be-
tween two time series is proposed in this paper. The test checks for spill-overs
between the multivariate processes of dynamics inter-quantile event variables as-
sociated to each variable. Beyond the existing approaches our testing methodol-
ogy has two main advantages. First, it can be used to test for Granger-causality
in specific regions of the distributions, like the center or the tails (left and right).
Second, it checks for a large number of lags discounting higher order lags, and
hence is consistent against causality which carries over long distributional lags.

We show that the test has a standard Gaussian distribution under the null
hypothesis which is free of parameter estimation uncertainty. We run a Monte
Carlo simulations exercise which shows that the Gaussian distribution is valid
in small samples. The test also has very appealing power properties in vari-
ous settings including linear and non-linear causality in mean and causality in
variance.

In an empirical part we implement our testing procedure to 12 European
daily stock market indices to analyze spill-overs during the recent European
crisis. As our test is designed to check for causality in specific regions of the
distribution (center or tails), it can be used to test for both the presence of
interdependence and contagion. Indeed interdependence can be checked through
Granger-causality in the center of the distribution, as interdependence is a long
run path that takes place in normal periods. On the contrary, contagion refers
to a short-run abrupt increase in the causal linkages taking place exclusively
during crisis period, and can be tested via Granger-causality in distribution’s
tails.

The empirical results indicate that European stock market integration is far
from being achieved, because we observe very weak evidence supporting inter-
dependence. On contrary, our results support the presence of contagion, with a

strong asymmetry between contagion in the right and left tails. More precisely,
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contagion is important in crisis periods, whereas it is weak in upswing times.
Such a result constitutes an important feature for the European stock markets,
and policy makers should acknowledge it in designing structural measures for

financial stability.

Appendix A. Proof of LEMMAS
Appendiz A.1. Proof of LEMMA 2

Lemma 2: Under Assumptions of Theorem 1 in Hong et al. (2009), we have

T* —m2Cr (M)

D ) —4 N (0,1). (A1)
m=Dr

Proof: Consider the pseudo version of the weighted quadratic form 7* de-

fined as _
T'= &G /M)Q (), (A.2)

j=1
Q* (j) = Tvec (ﬁ (j))T (F}l ®F{/1) vec (]/%\ (j)) , (A.3)

where I'y (resp. T'y) is the correlation matrix of the true unknown multivariate
process of event variables H;* (6%) (resp. HY (6%)). Recall that H;* (6%) is
defined as

HE (03) = (205 (05) s 25 (03) (A4)

where the event variables ZX, (0% ), s = 1,...,m, are related to distinct regions
on the distribution support of X;. Hence, they are mutually independent, and
the associated correlation matrix I'x is equal to the identity matrix. The same
reasoning applies for HY (9%), with the consequence that I'y is also equal to
the identity matrix. Hence, the pseudo weighted quadratic form 7* defined in
(A.2-A.3) takes the expression

-1 . T ~
T — TZ K2 (j /M) vec (R (j)) vee (R (j)) ) (A.5)
j=1

Since R (j) is defined as the cross-correlation matrix at lag-order j between

~

fItX = (251,,25(7”) and fItY = (Zg,/l,... zY, ), its components are given by

» “tm
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the correlations between Z\th and ZY_MJ with k =1,..mand p=1,...,m. Let

us denote pi , (j) such correlation, i.e.,

P (7) = corr (25,21 ,,) (A.6)

With the definition of the vec operator, it is easy to see that vec (E (4 )) has
m? components given by pr, (j), kK = 1,..m and p = 1,...,m. Consequently,

the pseudo quadratic form 7 in (A.5) becomes

T-1 m m
= T RGNS, )
j=1 k=1p=1

Sy (7 i G/M)RR, () ) (A7)

k=1p=1 j

For a given value of the couple (k,p), the quadratic form in the bracket of
(A.7) corresponds to the uncentered and unscaled test statistic in Hong et al.
(2009) for the Granger-causality from ZY to Zth, and these statistics are ob-
viously independent. We deduce from this that under Assumptions of Theorem

1 in Hong et al. (2009)
T Z (/M) P, () —* N (Cr (M), Dy (M)). (A.8)

Remark that the event variables in Hong et al. (2009) are related to one-
sided regions, whereas we have to deal with two-sided regions in our framework.
However in their proof of Theorem 1, it is easy to see that all of the technical
results remain valid even in the case of two-sided regions. For this, it suffices
to replace Z1¢(01) and Zs; (62) by Zt)fk (fx) and Zt}jp (fy), with 0x and 60y
any vector in the parameter spaces ©x and Oy, respectively. Moreover, the
martingale difference sequence Wy, (61) and Wa, (f2) in the proof of Theorem 1
in Hong et al. (2009) must be replaced by Wt{(k (0x) and W}, (By) respectively

in order to deal with two-sided regions, with

Wt),gc (OX) = tk(eX (99() ( EXk (QX)|~7:5£1) +E(Z£),(k (99() |]:£)£1)
= Zi% (0x) — Z{% (6%) = [Fx (VaR ., (6x)) — Fx (VaR, (6x))] +
+ [Fx (VaRffk 11 (%)) = Fx (VaRY, (6%))] ,



Wt},; (GY) = (QY (9%) ( tY (GY) "7_?:1) +E (Zt},/p (99’) |]:ty;1)
= Z',(0y)— 2}, (6y) — [Fy (VaR},,, (6y)) — Fy (VaR), (6y))] +
[Fy (VaRi, e (63)) — Fy (VaR, (69))]

with Fx(.) and Fy (.) the conditional cumulative distribution functions of X and
Y respectively. Hence, we can conclude using (A.8) that the pseudo quadratic

form 7* in (A.7) has the limiting distribution
T*—* N (m*Cr (M), m*Dr (M)) . (A.9)

and this completes the proof of LEMMA 2.

Appendiz A.2. Proof of LEMMA 3
Lemma 3: Under Assumptions of Theorem 1 in Hong et al. (2009), we have

T-T

(m2Drp (M))1/2 —" 0. (A.10)

Proof: The proof of Lemma 3 proceeds by combining elements in the proofs
of Proposition 3.2 in Bouhaddioui and Roy (2006) and Theorems A.1 and A.3
in Hong et al. (2009). Formally, given that

M/ 2dz[1+0(1)], (A.11)
as M — oo, the proof of Lemma 3 can be established showing that
T-T=0, (M/T1/2> . (A.12)

Based on Lemma 4.1 in El Himdi and Roy (1997), the quadratic forms T

and 7* can be rewritten in term of cross-covariances as

T=T Z ( ) vec (K (j))T (f];(l ® f);,l) vec (K (])) , (A.13)

=T Z ( ) vec (K (j))T (%' ® E;l) vec (]A\ (])) , (A.14)

with A (7) the sample cross-covariance matrix at lag-order j, ¥ x and Xy the co-

variance matrices of the true multivariate processes of event variables H;* (6% )
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and HY (99,), and & x and f]y their sample counterparts given by the covari-
ance matrices of IT[tX =HX (5){) and f[ty =HY (§y>, respectively. It follows
that

T-T"= TTz:l K2 (&) vec (/A\ (j))T {i}l ® i;l -3 e E;l} vec (K (])) .
= (A.15)

Now, let us study the asymptotic behavior of ) x. The components of this
matrix are given by the covariance between the estimated event variables ka,

k=1,...,m. Let 6;.37,, be a typical element of ix with
ék,p = cov (Z)fk, Efp) . (A.16)

Let C’,g)p be the true value of ék,p, i.e., the covariance between the true event
variables Zt)fk (6%) and Z¥, (6%). Note that C,g,p is a typical element of Xx.

The difference between aw, and C’,g’p can be decomposed as follows

Crp — CL, =M, (§X> + M, (§X) + M (§X) : (A.17)
with
M (6x) =17 ZTj (255~ 75, (0%)] (285, (%) = ] (A.18)
t=1
M (0x) =77 f: (2% (0%) = =i¥] | 2%, 755, (0%) (A.19)
t=1
T () =1 0 (7 - 25 0] [75 - 2 )] (ao)

t

Il
s

where we replace the sample means 77X and 7% of Z,  and Z,, by their true
respective values ¥ = E (Zt))(k (99()) and 7r;f =E (Zt)fp (6%))- Using the fol-
lowing result in the proof of theorem A.3 in Hong et al. (2009)
sup ‘Z/\l\l (9X)‘ =0, (T_1/2) : (A.21)
Ox€Ox
with 6x any v/T-consistent estimator of 6% in the space ©x, we have for the

first term

M, (éx) -0, (T*1/2> . (A.22)
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Similar arguments apply for the last two terms, with the consequence that

M, (§X) -0, (T*W) , (A.23)
M (éx) -0, (T*W) . (A.24)
‘We deduce that
Crp—C2, =0, (T—1/2) , (A.25)
and
Sx —9x =0, (T*l/z) . (A.26)

Using the same reasoning for the elements of EA]y we have that
Sy — Sy =0, (T—1/2) , (A.27)

and

PX oSy - nx ey =0, (T72). (A.28)

Hence equation (A.15) becomes

T-1

T 1 K2 (&) vec (JAX (j))T O, (T_l/Q) vec (K (j)) (A.29)

0O, (T1/2) TiIKJ2 (;4) vec (K (j))Tvec (K (j)) .

The rest of the proof proceeds by showing that

T-T"

T-1

B(T)= Z K2 (&) vec (K (j))T vec (K (])) =0, (M/T). (A.30)

j=1

We decompose B (T) into two parts

B(T) = By (T) + By (T), (A.31)
with
By (T) = T 2 (3) {ree (3@) " vee (R0)) = veca @) vee (1
= (A.32)
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T-1

B (1) = X () vee (M) vee (4 (). (A.33)

j=1
where A (j) is the cross-covariance matrix at lag-order j of the true event vari-
ables HX (0%) and H} (6)). Let us first consider B (T)) in (A.32). Since A (5)

is defined as the estimated cross-covariance matrix at lag-order j between

Y = (25,20, 2%) (A.34)
and

1Y = (200,20, Z0) (A.35)
its components are given by the covariances between Z\th and ny_ ipr k=

1,....m, p = 1,....,m. Denote 6k7p (j) such covariances. Using the definition

of the vec operator we thus have

BT) = 3 i (%) Sy @06}, ()

j=1 k=1p=1
which can be rewritten as
BT) - (£) 36000~ 6, 0) + (60, 0) - €, ) Gy )
j=1 k=1p=1
= ii{él +Q2}, (A.37)
k=1p=1
with . ‘
@ =Y (1) (Cr -G )” (A3
R T-1 . N
@= 32 (4) (G )=y ) Cp (). (439)

Using the results of Theorem A.1 in Hong et al. (2009), that is

Q1=0, (M1/2/T) : (A.40)
Q. =0, (M1/2 /T) : (A.41)

we have
B, (T) =0, <M1/2 /T) . (A.42)
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For the second term Bs (T'), using the Markov inequality, we have

T-1

Ba(1) = Y- w2 (3 ) vee (MG oec (8 6) = 0, (0/T). (A.3)
We deduce from (A.42) and (A.43) that
B(T) = O, (M/T), (A.44)

and

T -7 =0, (1) 0,(/T) = 0, (M/T"?). (A.45)

This completes the proof of Lemma 3.
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Appendix B. Tables and Figures

f'—’?%'ie»“«?'“l R l Rl l Rl l |

o vaR (e 20%) VaR (e 40%) VaR, (8 B0%) VaR) (e B0%)

Figure B.1: Distribution support of X and localization of VaRs and event variables
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Table B.1: Empirical sizes of the Granger-causality test in distribution

[T [ M] n | DAN BAR PAR TR
| | 6] 5% | 580 5.80 5.60 4.40
| | | 10% | 1040 10.40 11.40 9.80
| 500 [ 10 ] 5% [ 5.20 5.60 5.80 5.60
| | | 10% |  10.00 9.60 10.20 11.60
| | 1B 5% | 5.60 4.80 5.20 5.40
| | | 10% | 1040 10.60 10.20 11.80
| | 7] 5% | 500 4.20 4.40 5.20
| | | 10% | 9.00 9.40 8.40 10.80
| 127 5% | 5.00 5.20 5.00 6.00
| 1000 | | 10% | 9.40 10.00 9.00 11.80
| [ 16 ] 5% | 5.40 5.60 6.20 6.20
| | | 10% | 10.00 10.20 10.00 11.40
| | 8] 5% | 660 7.00 6.60 5.20
| | | 10% | 1180 11.80 13.40 8.80
| 15 5% | 5.60 6.20 6.40 6.20
| 2000 | | 10% | 1020 11.20 11.60 11.60
| [ 20] 5% [ 5.00 5.00 6.60 480
| | | 10% | 10.60 10.80 11.20 9.60

Notes: The table displays the empirical sizes (in %) of the Granger-causality
test in distribution. Rejection frequencies are reported over 500 simulations
for two nominal risk levels 7, with 7 the sample size and M the truncation
parameter. DAN, BAR, PAR and TR refer to the Daniell, the Bartlett, the
Parzen, and the truncated kernels, respectively.
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Table B.2: Empirical powers of the Granger-causality test in distribution:
DGP1

| T | M] 5 | Distribution |  Mean |
| | 6] 5% | 93.60 | 100.00 |
| | | 10% | 95.60 | 100.00 |
| 500 [ 10 [ 5% | 91.80 [ 100.00 |
| | | 10% | 93.20 | 100.00 |
| I3 % | 90.40 [ 100.00 |
| | | 10% | 92.40 | 100.00 |
| | 7] 5% | 100.00 | 100.00 |
| | | 10% | 100.00 | 100.00 |
| 2] 5% | 100.00 [ 100.00 |
| 1000 | | 10% | 100.00 | 100.00 |
| 16 5% | 100.00 [ 100.00 |
| | | 10% | 100.00 | 100.00 |
| | 8] 5% | 100.00 | 100.00 |
| | | 10% | 100.00 | 100.00 |
| 5] 5% | 100.00 [ 100.00 |
| 2000 | | 10% | 100.00 | 100.00 |
| 20 5% | 100.00 [ 100.00 |
| | | 10% | 100.00 | 100.00 |

Notes: The table displays the empirical powers (in %) of the
Granger-causality test in distribution. Rejection frequencies are
reported over 500 simulations for two nominal risk levels 7, with
T the sample size and M the truncation parameter. For compar-
ison, we also report the rejection frequencies of the kernel-based
nonparametric test in mean. For both test, results are reported
for the Daniell kernel. Data are generated under the alternative

hypothesis assuming Granger-causality in mean.
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Table B.3: Empirical powers of the Granger-causality test in distribution:
DGP2

| T | M] 5 | Distribution |  Mean |
| [ 6] 5% | 75.20 [ 1820 |
| | | 10% | 82.80 | 2140 |
| 500 [ 10 5% | 68.20 [ 1620 |
| | | 10% | 76.60 | 2060 |
| I3 % | 60.20 [ 1580 |
| | | 10% | 70.60 | 2060 |
| [ 71 5% | 97.80 [ 2060 |
| | | 10% | 98.40 | 2160 |
| 2] 5% | 95.80 [ 1920 |
| 1000 | | 10% | 97.00 | 2320 |
| 16 5% | 93.00 [ 1920 |
| | | 10% | 95.80 | 2260 |
| | 8] 5% | 100.00 | 2420 |
| | | 10% | 100.00 | 2860 |
| 5] 5% | 100.00 [ 1960 |
| 2000 | | 10% | 100.00 | 2440 |
| 20 5% | 100.00 [ 1760 |
| | | 10% | 100.00 | 2180 |

Notes: The table displays the empirical powers (in %) of the
Granger-causality test in distribution. Rejection frequencies are
reported over 500 simulations for two nominal risk levels 7, with
T the sample size and M the truncation parameter. For compar-
ison, we also report the rejection frequencies of the kernel-based
nonparametric test in mean. For both test, results are reported
for the Daniell kernel. Data are generated under the alternative

hypothesis assuming nonlinear Granger-causality in mean.

33



Table B.4: Empirical powers of the Granger-causality test in distribution:
DGP3

| T | M] 5 | Distribution |  Mean |
| [ 6] 5% | 51.40 [ 1880 |
| | | 10% | 61.40 | 2300 |
| 500 [ 10 5% | 50.20 [ 2040 |
| | | 10% | 60.40 | 25.80 |
| B3] 5% ] 48.20 [ 2140 |
| | | 10% | 57.80 | 2580 |
| [ 71 5% | 79.80 [ 1780 |
| | | 10% | 86.80 | 2160 |
| 2] 5% | 72.40 [ 2260 |
| 1000 | | 10% | 81.60 | 2740 |
| 16 5% | 67.00 [ 2180 |
| | | 10% | 76.20 | 29.00 |
| [ 8] 5% | 99.20 [ 1540 |
| | | 10% | 99.40 | 19.40 |
| 5] 5% | 96.60 [ 1880 |
| 2000 | | 10% | 97.60 | 2340 |
| 20 5% | 93.00 [ 19.00 |
| | | 10% | 95.80 | 2440 |

Notes: The table displays the empirical powers (in %) of the
Granger-causality test in distribution. Rejection frequencies are
reported over 500 simulations for two nominal risk levels 7, with
T the sample size and M the truncation parameter. For compar-
ison, we also report the rejection frequencies of the kernel-based
nonparametric test in mean. For both test, results are reported
for the Daniell kernel. Data are generated under the alternative

hypothesis assuming Granger-causality in variance.
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Table B.5: Estimation results of AR

-GARCH models

Index i1 K Yi,1 Yi,2 Yi,3 Bia LBﬁi,t (6) LB@? . (6)

AT 0.000 | 0.150 0.839 5.217 1.840
(4.148) | (7.752) (44.371)

BEL 0.000 | 0.137 0.839 4.738 2.857
(5.597) | (10.559) (63.863)

FI 0.000 | 0.081 0.907 5.750 0.758
(3.590) | (8.170) (75.696)

FR 0.000 | 0.127 0.857 3.445 7.400
(4.310) | (8.340) (50.623)

GER 0.000 | 0.117 0.863 3.717 6.317
(4.568) | (7.773) (50.254)

GRE | 0.072 | 0.000 | 0.116 0.881 10.665 8.400
(2.184) | (3.057) | (7.549) (62.744)

IE 0.000 | 0.131 0.853 7.161 1.985
(3.792) | (6.687) (40.945)

IT 0.000 | 0.000 | 0.179 0.797 3.523 5.840
(4.670) | (0.000) | (4.831) (34.446)

LU 0.000 | 0.081 0.912 2.789 1.073
(3.289) | (9.318) (96.818)

NL 0.000 | 0.129 0.854 4.441 3.166
(4.574) | (8.913) (56.663)

PT 0.000 | 0.183 0.800 5.986 1.622
(4.185) | (8.490) (39.230)

ES 0.000 | 0.058 | 0.034 | 0.160 | 0.708 3.374 9.580
(5.356) | (1.787) | (0.799) | (4.377) | (21.312)

Notes: For each index, the Table displays the estimation results of the AR-GARCH mod
in equations (41-43).

el

We report the parameters estimates followed in brackets by the

student statistics. The two last columns give the results of the Ljung-Box test applied to

the serie of the standardized innovations 7; ; and its square, respectively, with 6 the number

of lags. The critical value for the rejection of the null hypothesis at the 5% nominal risk

level is equal to 12.59.
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