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Abstract

The parametric Lemke algorithm is used to show the existence of
an odd number of solutions of a generalized bimatrix game in a certain
domain. These solutions are classi�ed into two types according to
the relative sign of two determinants. The British economist David
Ricardo made an implicit use of that algorithm at the beginning of
the nineteenth century.
Keywords. Complementarity problems, Generalized bimatrix game,

Oddity, Parametric Lemke algorithm, Ricardo.
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1 Introduction

The1 Lemke algorithm was �rst elaborated to �nd solutions of bimatrix
games. One of its variants, the parametric Lemke algorithm, follows the
deformations of a solution (w(t); z(t)) of a linear complementarity problem
LCP (q;M) when q = q(t) varies with a parameter t. An important property
is that the distribution of the zeroes in w(t) and z(t) remains the same by
intervals. A critical point is reached when some positive component of w(t)
or z(t) vanishes and, then, a switch in one basic variable is required. As long
as a new basic variable can indeed be de�ned at critical points, a solution
obtained for q = q(0) allows us to obtain a solution for q = q(1). We return
to that algorithm for cross-dual games, a nonlinear extension of bimatrix

�EconomiX, University Paris Ouest, 200 avenue de la République, F-92001 Nanterre.
Tel: +(33) 1 40 97 59 47. E-mail: christian.bidard@u-paris10.fr
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games (Sections 2 and 3). We show the connection between its working and
the existence of an odd number of solutions in a certain domain, with a clas-
si�cation of the solutions into two types according to the relative sign of two
determinants (Section 4). That (generic) oddity result holds in particular
for bimatrix games. In the historical Section 5, we attribute the idea of the
algorithm to the economist David Ricardo who applied it to the land prob-
lem two centuries ago and we illustrate the economic problem linked to the
presence of antitone moves.

2 The cross-dual game

By cross-dual game, we mean a complementarity problem of the type

f(x) � c [y] (1)

g(y) � d [x] (2)

x � 0; y � 0 (3)

where x is an n�1 vector in an open set 
f � Rn, withRn+ � 
f , f : 
f ! Rl

a continuous function, c an l� 1 vector, y an l� 1 vector in an open set 
g,
with Rl+ � 
g, g : 
g ! Rn a continuous function, and d 2 Rn is an
n � 1 vector (notation � 0 means nonnegativity, > 0 semipositivity, >> 0
positivity). The bimatrix game is obtained when f and g are respectively
represented by l � n and n � l matrices A and B. It is assumed that c is
negative

c << 0 (4)

The following Theorem generalizes a well known existence result for bimatrix
games, the extension of assumption A+BT � 0 being

8x � 0 8y � 0 yTf(x) + xTg(y) � 0 (5)

The proof makes use of the (simpli�ed) Gale-Nikaido-Debreu lemma:

Lemma 1 (GND Lemma). Let S be a compact convex set in Rm and z :
p 2 S ! z(p) 2 Rm be a continuous function satisfying the Walras identity
pT z(p) = 0. There exists a vector p0 2 S such that pT z(p0) � 0 for any
p 2 S.
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If S is the unit simplex, the conclusion is that p0 is a solution of the
complementarity problem z(p) � 0, p � 0, pT z(p) = 0. The following proof
(same idea as in Bidard (2011)) forces the Walras identity by considering the
function z(p; t) = (tz(t�1p);�pz(t�1p))

Theorem 1 Let f : Rn+ ! Rl and g : Rl+ ! Rn be continuous functions
satisfying condition (5). Let f be homogeneous of degree one, vector c 2 Rl�
be negative and vector d 2 Rn be such that

fx > 0; f(x) � 0g ) dTx < 0 (6)

Then the cross-dual game (1)-(2)-(3) admits a solution.

Proof. For " � 0, let the simplex S" in Rn+ �Rl+ �R+ be de�ned by

S" =

(
(x; y; t);x � 0; y � 0; t � ";

X
i

xi +
X
j

yj + t = 1

)

For any " > 0, the continuous function z : S" ! Rn �Rm �R de�ned by

z(x; y; t) = (tg(t�1y)� td; f(x)� tc; xTd+yT c�xTg(t�1y)�yTf(t�1x)) (7)

satis�es the Walras identity (x; y; t)T z(x; y; t) = 0 on S". According to the
GND lemma, there exists a point (x"; y"; t") 2 S" such that inequality

8(x; y; t) 2 S" (x; y; t)T z(x"; y"; t") � 0 (8)

holds. Taking into account assumption (5), we obtain in particular that

8(0; y; t) 2 S" yT (f(x")� t"c) + t(xT" d+ yT" c) � 0 (9)

Consider a cluster point (x0; y0; t0)2 S0 of (x"; y"; t") when " tends to zero.
By continuity, property (9) also holds for " = 0, therefore f(x0) � t0c � 0
and xT0 d + cy

T
0 � 0. Suppose t0 = 0. If x0 > 0, a contradiction is obtained

with assumption (6) and c << 0. If x0 = 0, then y0 > 0 and a contradiction
is again obtained with assumption c << 0: Therefore t0 6= 0 and property
(8) can be extended by continuity to " = 0. This shows that g(t�10 y0) �
d � 0; f(t�10 x0) � c � 0; xT0 d + y

T
0 c � xT0 g(t�10 y0) � yT0 f(t�10 x0)) � 0, and

(t�10 x0; t
�1
0 y0) is a solution of the cross-dual game.
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In the remaining of the paper, we shall not use Theorem 1 directly but
proceed to a constructive proof. It will be assumed that f is linear and
represented by matrix A. After introducing an asymmetric treatment of
inequalities (1) and (2), inequality (2) will be replaced by an equality. Vector
d can then be interpreted as a parameter in the problem CD(d). Note �rst
that, when d is negative, the solution of CD(d) is unique:

Lemma 2 Under hypotheses (4) and (5), the unique solution of CD(d) for
d << 0 is x = 0, y = 0.

Proof. Complementarity implies that yT c + xTd = yTf(x) + xTg(y) � 0,
therefore x = 0 and y = 0. Conversely, (x = 0, y = 0) is indeed a solution
since inequality (5) implies f(0) � 0 and g(0) � 0.

Let the functions f : 
f ! Rl�Rn and g : 
g�Rn ! Rn be respectively
de�ned by

f(x) =

�
f(x)
x

�
(10)

g(y; z) = g(y)� z (11)

and c be the (l + n) � 1 vector c once completed by n zeroes. By setting
yT = (yT ; zT ), we have yTf(x) + xTg(y) = yTf(x) + xTg(y), assumption (5)
implies

8x � 0 8y � 0 yTf(x) + xTg(y) � 0 (12)

A solution (x; y) of the cross-dual game CD(d) generates a solution (x; y) of
the system

f(x) � c [y] (13)

g(y) = d (14)

y � 0 (15)

where y is the (l+n)� 1 vector obtained by stacking vectors y and g(y)� d.
Conversely, a solution (x; y) of (13)-(14)-(15) generates a solution (x; y) of
the initial system, where vector y consists of the �rst n components of y.
An n-set K � f1; :::; l + ng is said to sustain a solution of CD(d) if it is

the support of a nonnegative vector y (i.e., the set of its nonzero components)
in a solution of the equivalent problem (13)-(14)-(15). Let Rl+nK is the set of
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the (l + n) � 1 vectors with support K. Given a subset S � f1; :::; l + ng
with cardinal s, fS : 
f ! Rs is the projection of f on RS, i.e. it is the
function de�ned by its components f i for i 2 S. Function gK is the restriction
of function g to vectors with support K.

�
JfK

�
(respectively [JgK ]) is the

Jacobian matrix of fK , JfK (respectively JgK) its determinant (f and g are
now assumed to be of class C1). When f is linear and represented by an
l�n matrix A, f is represented by (l+n)�n matrix A obtained by stacking
A and the identity matrix In, and

�
JfK

�
= AK is the n� n sub-matrix of A

made of the rows corresponding to the set K:

3 The parametric Lemke algorithm

We consider the generic case, with no speci�c algebraic relationship between
the data (A; g; c; d). Flukes apart, the complementarity relationship in in-
equality (13) requires that the number n of components of x is at least equal
to the number of positive components of y, while equality (14) requires that
the number of positive components of y is at least equal to n. The number
of positive components of y is therefore generically equal to n (if g(0) = 0,
as in a bimatrix game, the point d = 0 is an exception, since y = 0 works)
and the number of strict inequalities in (13) is generically equal to l. If AK
and gK are injective, each arbitrary n-set K sustains at most one solution of
(14) and of (13), therefore the number of solutions is �nite: �nding a solution
amounts basically to identifying the n-set K of the positive components of
vector y. For that purpose, we make use of the parametric Lemke algorithm
(Cottle et al., 1992), where vector d is a parameter. The algorithm follows the
deformations of a solution (x(d); y(d)) of the cross-dual game CD(d) when d
varies, with a speci�c attention given to the support of y(d). An important
property is that the support remains the same by intervals. A critical point is
reached when some positive component of y(d) vanishes and, then, a switch
in one basic variable is required. As long as a new basic variable can indeed
be de�ned, a solution obtained for d0 = d(0) allows us to obtain a solution
for another vector d. The following Lemma reinterprets assumption (6) as a
condition for the working of the algorithm.

Lemma 3 Assume (5). Let d belong to the set D

D =
�
d;9bz � 0 d << �ATbz	 (16)
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and let y be a solution of CD(d). If detAK 6= 0 and JgK(y) 6= 0, the
parametric Lemke algorithm works in a neighborhood of d, except by �uke.

Proof. Let (x0; y0) be a solution of (13)-(14)-(15) at d0, and assume �rst that
y0 has n positive components (set K). Since gK is a local di¤eomorphism,
a slight change in d is met by an adaptation of the positive components of
y = y(d), with no change in x0. Assume now that some positive component
k of y(d) = g �1K (d) vanishes at point d1 2 D for y = y1 (�critical point�). The
component k which vanishes is unique, �ukes apart. For L = Kn fkg, let AL
be the corresponding rows of A. AL has dimension (n� 1)�n and the set of
solutions to equation ALx � cL = 0 is x = x0 + �x0 where � is an arbitrary
scalar and x0 a nonzero vector in the kernel of AL. Choose x0 such that
Akx

0 > 0 (otherwise, replace x0 by �x0), so that the kth inequality in (13)
with f = A is met for any nonnegative scalar �. Consider the complementary
subset K 0 of K, for which the strict inequality AK0x0 >> cK0 holds except
by �uke, and assume for a moment that inequality

AK0x0 � 0 (17)

also holds. Then, by de�nition of the nonzero vector x0;we have Ax0 � 0,
hence Ax0 � 0 and x0 � 0. Since x0 is nonzero, we obtain from (16) that
dT1 x

0 < �bzTAx0 � 0, and from gL(y1) = d1 that gL(y1)
Tx0 < 0. Let x00 be

the semipositive vector x0 completed by l zeroes. According to property (12)
applied to x = x00 and y = y1, we have y

T
1Ax

00 � �g(y1)Tx00 = �gL(y1)Tx
0
>

0, therefore yT1ALx
0 > 0. A contradiction being obtained with the de�nition

of x0, inequality (17) does not hold, i.e. there exists at least one row m
outside K such that Amx0 < 0. Consider the smallest positive value of � for
which one of the strict inequalities AK0x0 >> cK0 is turned into an equality
when x0 is replaced by x1 = x0+�x0 (�ukes apart, that inequality is uniquely
determined). Then (x1; y1) is another solution of CD(d1). When the positive
components of y remain close to those of y1, but its mth component ym
becomes positive (half-neighborhood of y1;with support M = L [ fmg),
(x1; y) sustains a solution of CD(d) for d varying in a half-neighborhood of
d1:
We now examine whether the half-neigborhoods associated with each of

the n-sets K and M coincide or are complementary. These n-sets have the
(n� 1)-set L in common.

Lemma 4 The determinants of the n�n matrices AK and AM have opposite
signs.
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Proof. AK and AM have the submatrix AL in common, which is such that
ALx

0 = 0. They only di¤er by one row, respectively Ak or Am and, by
construction, Ak and Am are such that Akx0 = a > 0 and Amx0 = b < 0,
therefore (bAk � aAm)x0 = 0. There follows that (bAK � aAM)x0 = 0, hence
det(bAK � aAM) = 0 and the result.

Lemma 5 Let d be close to a critical point d1 = g(y1). The components of
g �1K (d) (respectively, g �1M (d)) other than the kth (respectively, the mth) are
positive. The components (g �1K (d))k and (g �1M (d))m have the relative sign as
JgK(y1) and JgM(y1).

Proof. By continuity, the components of y = g �1K (d) are close to those of
g �1K (d1), therefore they are close to zero for the kth component and positive
for the others. For i 2 K, let bi be the gradient of gi at y1. The algebraic
equality d�d1 =

X
i2K
(y�y1)ibi holds up to a �rst order approximation, from

which there follows that the scalar det(bi; i 2 L; d� d1) has the same sign as
(y� y1)k det(bi; i 2 L; bk) = (g �1K (d))kJgK(y1). The same scalar has also the
sign of (g �1M (d))mJgM(y1). The result follows.

De�nition 1 Let K be an n-set sustaining a solution of the cross-dual game
CD(d). That solution is called white if det(�AK) and JgK(y) have the same
sign, black if they have opposite signs.

For instance, the unique solution obtained for c << 0 and d << 0 corre-
sponds to the subsetK = fl + 1; :::; l + ng for which AK = In and gK = �In,
therefore that solution is white.
Consider a path d = d(t) in the set D, a solution (x0; y(t)) of CD(d(t)) for

t 2 S = [t1 � �; t1[ for which the support of y(t) is the set K, with yk(d(t))
vanishing at d(t1) = d1. By Lemma 3, there exists an n-set M obtained from
K by replacing k by an adequately chosen m, such that M is the support of
another solution (x1; y0) of CD(d(t)) for t varying in one of the semi-intervals
S or T = ]t1; t1 + �] (the semi-interval for which y

0
m(d(t)) is positive). Both

values yk(t) = yk(d(t)) and y
0
m(t) = y

0
m(d(t)) change their sign at t = t1

when d(t) crosses the hypersurface corresponding to yk = y
0
m = 0, therefore

yk(t) and y
0
m(t) have either always opposite signs or always the same sign on

]t1 � �; t1 + �; [. Assume �rst they have opposite signs. For the �rst solution
with support K, yk(t) is positive when t is smaller than t1, therefore y

0
m(t)

is negative on S and positive on T . This means that M sustains a solution
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when t continues to move in the same direction after t1. By Lemma 5, this
case occurs when the Jacobians JgK(y1) and JgM(y1) have opposite signs
or, taking into account Lemma 4 and De�nition 1, when the successive sets
K and M have the same color. On the contrary, if yk(t) and y

0
m(t) have the

same sign, M sustains another solution on the same half-interval as K, i.e.
when d = d(t) makes a U-turn on the path (antitone move). That change of
direction occurs when K and M have opposite colors.

4 Main result

Consider CD(d) and let d = d(t) move on an oriented curve in D which does
not cross itself, starting from d0 << 0, going to a given point d, and coming
back to d1 << 0. Starting from the unique solution for d0, that solution
is transferred along the path. Even in the presence of antitone moves, the
important property of the algorithm is that the same solution is not found
twice (the law of succession of the setsK,M , ..., being uniquely de�ned along
the path and reversible, a contradiction would be obtained by considering
the �rst set which appears twice in that sequence), therefore the algorithm
starting at d0 goes �rst to d, then reaches d1. (The algorithm starting from d1
follows the reverse path.) Each time the algorithm reaches d, a new solution
of CD(d) is obtained. Taking into account the connection between the change
of color and the change of direction on the path, we obtain that the solutions
thus de�ned, which we call the accessible solutions (i.e., they are reached
by following the given path d(t)), satisfy the following existence and oddity
result:

De�nition 2 Functions f = A and g are called regular if, for any n-set
K � f1; :::; l + ng, AK and gK are di¤eomorphisms.

Theorem 2 Let A and g be regular and such that condition (5) holds. Let
c << 0. For d in the set D de�ned by (16), and �ukes apart, the number of
white solutions of the cross-dual game CD(d) exceeds by one the number of
black solutions.

Proof. Let us start from a given solution at d, which is sustained by a set K.
By Lemma 3, it can be transferred along the path. If either d0 or d1 is reached
ultimately, the solution belongs to the unique sequence of accessible solutions,
for which the oddity result holds. If not, the sequence starting from K makes
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a loop and returns to K, hence to d. Considering the corresponding move on
the path d(t), that loop sustains as many white as black solutions at d. The
non accessible solutions are therefore partitioned into subsets containing as
many solutions of each color. Hence the result when n � 2. The case
(n = 1; d > 0) is treated apart as any curve from d0 < 0 to d > 0 then to
d1 < 0 makes a to-and-fro movement and crosses itself. Then the inequalities
(1) are written a1x � c; :::; alx � c and the only constraint which matters
is the one corresponding to the smallest ai, therefore we may assume l = 1.
The system is reduced to the scalar inequalities

ax � c [y]

g(y) � d [x]

x � 0; y � 0

with c < 0, d > 0, ay + g(y) � 0 for any y � 0 and a < 0 (otherwise,
no scalar d > 0 belongs to D). If g(0) < d, the set of solutions is S =
f(x; y);x = c=a; g(y) = d)g; if g(0) > d, it is (x = 0; y = 0) [ S. Since the
color of a solution in S depends on the sign of g0(y) when g(y) = d, the result
holds in both cases (the limit case g(0) = d corresponds to a degeneracy).
One may wonder if the proof of Lemma 3 and the oddity result can be

extended to the case when f is nonlinear (then, one must distinguish between
the local behavior of f associated with its Jacobian matrix and its global
behavior). The proof.of the Lemma makes use of the following property:
consider the curve (C) =

�
x; ; fL(x) = cL

	
which we also parameterize as

x = x(�) with x(0) = x0, and choose a direction on that curve such that
fk(x(�)) is locally increasing when � becomes positive. Then, for any i,
function f i varies monotonously on the oriented curve and, if it is decreasing,
its decreases to �1.That property holds when f is linear (then (C) is a
straight line) but its extension to the nonlinear case seems rather arti�cial.
It follows from Theorem 2 that global uniqueness is obtained if and only

if any solution is white (Erreygers, 1995). A reason why the oddity property
has not been stated previously for bimatrix games is that it is not apparent,
as bimatrix games may have an even number of solutions: some of them are
located outside the set D on which the working of the parametric Lemke
algorithm and the existence of a solution are both guaranteed.
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5 A pioneer

5.1 Ricardo on lands

We would like to draw attention on the connection between the work of the
British economist David Ricardo (1772-1823) who, in the Principles (1817),
elaborated a theory of long-term prices and rents, and the parametric Lemke
algorithm. We follow here a modern formalization of Ricardo�s theory mainly
due to Sra¤a (1960). The data are the set of methods of production, the rate
of pro�t r per year (r � 0), the vector � (� � 0) of demand for consumption
and the vector � of scarcity constraints on lands. Let there be g goods and
h qualities of lands. The ith method of production is represented by a vector
ui 2 Rg+ of material inputs, a vector �i 2 Rh+ of land inputs and a quantity
�ci 2 R++ of labor (c << 0), and the product obtained one year after
investment is represented by a vector vi 2 Rg+. Nonnegative combinations of
these l methods are allowed. The unknowns are the price vector (the wage
being set equal to one) p 2 Rg+, the vector � 2 Rh+ of rents per acre of lands
and the vector y 2 Rm+ representing the activity levels of the methods. A
long-term equilibrium is a solution of the system

�V Tp+ (1 + r)UTp+ �T� � c [y] (18)

��y � �� [�] (19)

(V � U)y � � [p] (20)

Condition (18) states that all operated methods yield the ruling rate of
pro�t, while non-operated methods do not yield more. Condition (19) ex-
presses the scarcity constraints on lands, and the complementarity relation-
ship means that non fully cultivated lands yield a zero rent (competition
between landowners). Condition (20) means that the demand � for consump-
tion is met by the net product, the overproduced commodities being zero
priced. By introducing vector x obtained by stacking p and �; the problem
is transformed into a bimatrix game with A =

�
(1 + r)UT � V T ;�T

�
and

B = [V � U;��] for which condition A + BT � 0 is met. The parallel
was pointed out by Salvadori (1986), who applied the existence result to the
economic problem.
Ricardo was interested in the e¤ect of an increase of demand � (especially

an increase in the demand for corn) due to the increase in the number of
workers. He stressed that, starting from an equilibrium for the present level
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of demand, it su¢ ces to increase the activity levels on partially cultivated
lands, with no e¤ect on prices and rents, as long as no new scarcity constraint
on lands is met. He also expressed the idea that, when a scarcity constraint
is met, the price of corn rises up to the point where some new agricultural
method, which was not operated before because it was too expensive when
corn was cheap, becomes pro�table (law of succession of methods). A new
equilibrium, with higher prices and rents, is obtained. Ricardo�s ideas, even
if they remain informal (at that time, economists did not write equations)
are clearly the same as those sustaining the parametric Lemke algorithm
(Bidard, 2014).
Ricardo considered two ways, which he considered as basically equiva-

lent, to extend the production of corn. One consists in extending cultivation
on a new land (extensive cultivation), the other in changing a method al-
ready in use on some land and adopting a more productive one (intensive
cultivation). He did not see, however, that in the second case the incoming
method designated by the law of succession of methods, which is only based
on a pro�tability criterion, may in fact be less productive than the present
method it replaces. In other words, Ricardo missed the possibility of an an-
titone move: from a formal point of view, the �Ricardian dynamics�are the
parametric Lemke algorithm with no antitone move. Contemporary econo-
mists have pointed at the possible multiplicity of equilibria but missed the
link between the multiplicity phenomenon and the failure of the Ricardian
dynamics on the path leading from low to high levels of demand.

5.2 Numerical examples

Simple numerical examples illustrate the di¢ culties of the Ricardian dynam-
ics. Let there be a unique quality of land (h = 1) with total area � =100
acres, a unique commodity (g = 1), corn, and three available methods to
produce corn in one period by means of corn and labor. By setting li = �ci,
method i (i = 1; 2; 3) is described as

(ui quarters corn, li days labor, �i acres land)! vi quarters corn

with, respectively:

u1 = 5; l1 = 5; �1 = 1; v1 = 15

u2 = 5; l2 = 20; �2 = 1; v2 = 20

u3 = 5; l3 = 40; �3 = 1; v3 = 25
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Let the rate of pro�t be r = 1 and labor be chosen as numeraire. We solve
system (18)-(19)-(20) for these data, the level � of demand being the para-
meter. For low levels of demand, land is not fully cultivated and the rent is
zero. Method 1 is operated because it is the cheapest (competition among
farmers) and then the price of corn is p = 1. Since the net product per acre
of method 1 amounts to 10 quarters, that solution sustains a �nal demand
for corn up to level � = 1; 000 when land is fully cultivated. At this stage,
the price p of corn rises and the rent � per acre becomes positive. As method
1 will continue to be operated in the next equilibrium, equality

2(5p) + 5 + � = 15p

will hold, i.e. a rise of the price of corn from its present level to p = 1+� goes
with a rise of the rent per acre from 0 to � = 5�. These moves improve the
pro�tability of the alternative methods and method 2 is the �rst to reach the
ruling rate of pro�t r = 1 for � = 2: The next equilibrium price is p = 3, with
� = 10: Method 2 is introduced and progressively substituted for method 1.
As it is more productive per acre, that equilibrium sustains any demand �
in the interval [1; 000; 1; 500]. At level � = 1; 500, land is fully cultivated by
method 2, the price of corn and the rent rise up to p = 4 and � = 20, allowing
for the progressive replacement of method 2 by the more productive method
3: the Ricardian dynamics work.
Consider now the economy described by methods 1, 2 and 4, where

method 4 is characterized by the data

u4 = 3; l4 = 7; �4 = 1; v4 = 12

For low levels of demand, method 1 is operated, with p = 1 and � = 0.
When the price of corn rises to p = 1 + � and the rent to � = 5�, method
4 becomes pro�table at level � = 1, before method 2. Method 4 should be
progressively substituted for 1 but, since it is less productive per acre, its
introduction would lead to a fall in the net product: the Ricardian dynamics
fail. By contrast, the Lemke algorithm goes on by reducing demand from
1; 000 to 900. In the next step, method 4 is maintained and the algorithm
proceeds to the introduction of method 2 which replaces method 1. For the
intermediate level � = 920; two white solutions (method 1 alone, or joint use
of methods 2 and 4) are found, as well as one black solution corresponding
to the joint use of methods 1 and 4.
Finally, consider the economy described by methods 1 and 4 alone. At

level � = 920, there are two solutions, but this is not a counter-example to
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Theorem 2 since, after the disappearance of method 2, that level is outside
the set D de�ned by (16).
For the economy de�ned by methods 1, 4 and 6

u6 = 1; l6 = 17:5; �6 = 1; v6 = 11:5

the set D corresponds to levels of demands lower that 950. For demand
starting from low levels and growing up to � = 920, the equilibrium de�ned
by method 1 is reached, but the black equilibria made of methods 1 and 4
and the white equilibrium made of methods 4 and 6 (with p = 3, � = 11) are
not accessible.

6 Conclusion

Oddity results are not so infrequent in mathematics. In this paper we link
the property and the distinction of two types of equilibria to the working
of the parametric Lemke algorithm. It is likely that, beyond the bimatrix
and the cross-dual games, the strategy of proof applies to other types of
complementarity problems and similar results can be obtained.
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