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ABSTRACT 

Credit scoring models are commonly developed using only accepted Known Good/Bad (G/B) 

applications, called KGB model, because we only know the performance of those accepted in 

the past. Obviously, the KGB model is not indicative of the entire through-the-door 

population, and reject inference precisely attempts to address the bias by assigning an inferred 

G/B status to rejected applications. In this paper, we discuss the pros and cons of various 

reject inference techniques, and pitfalls to avoid when using them. We consider a real dataset 

of a major French consumer finance bank to assess the effectiveness of the practice of using 

reject inference. To do that, we rely on the logistic regression framework to model 

probabilities to become good/bad, and then validate the model performance with and without 

sample selection bias correction. Our main results can be summarized as follows. First, we 

show that the best reject inference technique is not necessarily the most complicated one: 

reweighting and parceling provide more accurate and relevant results than fuzzy 

augmentation and Heckman’s two-stage correction. Second, disregarding rejected 

applications significantly impacts the forecast accuracy of the scorecard. Third, as the sum of 

standard errors dramatically reduces when the sample size increases, reject inference turns out 

to produce an improved representation of the population. Finally, reject inference appears to 

be an effective way to reduce overfitting in model selection. 

 

Keywords: Reject inference, sample selection, selection bias, logistic regression, reweighting, 

parceling, fuzzy augmentation, Heckman’s two-stage correction. 
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1 INTRODUCTION 

Nowadays, credit scoring is of paramount importance to evaluate credit risk when banks 

decide whether or not to approve a credit. Such models are traditionally developed based on 

the repayment performance of previous applicants in the portfolio, assuming that the sample 

used for the development represents the overall population (Greene, 1998). In case of 

application scorecard, this assumption is not fully satisfied, because we only get information 

on the repayment behavior of those who have been accepted and finally booked for credit. 

The behavior of those who have been declined is unknown. Thus, by selecting only approved 

applicants and ignoring rejected ones, the modeling sample is intrinsically biased. If the 

model is to be used only to predict future bad rates of the approved sample (behavior 

scorecard), there will be no selection bias issue. However, since the model is typically 

designed to assess the whole through-the-door population to make new decisions on whether 

accept or reject an application (application scorecard), the bias turns to be a serious issue (see 

Chandler and Coffman, 1977, and Avery, 1977 for early discussions on this topic). Eisenbeis 

(1977), Reichert et al (1983), Joanes (1993/4), Hand (1998), Feelders (2000) among others, 

also report that using a model based solely on accepted applicants often generate misleading 

results. Reject inference techniques is then a way to address this concern. 

The importance of reject inference varies, depending on the current decision process, data, 

and approval/rejection rates. According to Siddiqi (2006), reject inference does not make 

much significant difference in the following situations: (i) a very high confidence level with a 

high approval rate assumes all rejects are equal to bads; (ii) a very low confidence level 

assumes that decisions are randomly made or using a mistaken adjudication tool. In cases 

with either low or medium approval rates, reject inference helps in identifying creditworthy 

applications that are currently rejected.  

Previous research has proposed different techniques to reduce selection bias (see Banasik and 

Crook, 2004 for example). While the performance of these techniques has largely been 

discussed at a theoretical level, very few studies have been done from an empirical point of 

view, as most datasets on which reject inference techniques have been tested are incomplete 

or simulated (Åstebro and Chen, 2012). We fill this gap in the present paper. Indeed, a 

significant contribution and novelty of our empirical analysis is to use a dataset coming from 

one of the biggest French consumer finance banks, which contains complete information on 

both rejected and accepted applications, and focus on the results that could be reached if reject 

inference would occur. The aim of the paper is to shed some new light on the relevance of 

reject inference procedures in the development of application credit scoring models.  

The rest of the paper is structured as follows. Section 2 discusses the issue of selection bias 

and different reject inference methods in credit scoring: manual estimation, bureau data-based 

method, reweighting, parceling, fuzzy augmentation and Heckman’s correction method. The 

pros and cons of each technique are also presented in this section, with a special focus on the 

Heckman’s two-stage estimation method which has been widely used to correct selection bias. 
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Section 3 is devoted to the empirical part of the paper. Using a real dataset of a leading 

French consumer finance bank, we evaluate the effectiveness of the practice of using reject 

inference. Finally, Section 4 concludes the paper with a discussion on the key findings of the 

study. 

 

2 REVIEW OF REJECT INFERENCE TECHNIQUES  

In the sense of Rubin (1976) and Little and Rubin (2002), missing data can be classified in 

one of three groups: missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR). In the first two cases, the missing data mechanism is 

ignorable. Indeed, missing at random means that the probability of default, given all the 

exogenous variables of the model, is the same whether an application is accepted or rejected. 

On the contrary, if the data is MNAR, the missing data mechanism is non-ignorable because 

extra information on future default is added by human judgment, and then this will change the 

probability of default. In this case, sample selection bias happens. Missing data must be 

included in the model to get proper estimates of the outcome. 

In this section, we discuss different applicable methods for non-ignorable missing data. 

2.1 Manual estimation 

Montrichard (2007) presents manual estimation, known as “expert rules”, as one of applicable 

reject inference methods. It corresponds to the case where the analysts use their own 

experience to manually simulate the performance of the rejects. For example, they argue that 

if one variable is greater than a specific limit, over 50% of that group will turn to be “bad” 

after 12 months. They will then select this segment from the declined dataset and randomly 

assign 50% of the applicants as “good” and the remaining as “bad”. For the remaining rejects, 

they assume an overall 30% bad rate. The use of the method is not statistically justified and it 

is consequently likely to be too subjective to be reliable. In fact, if one chooses different rates, 

the results will be completely different.  

2.2 Similar in-house or Bureau data-based method 

One of the most commonly used practices in reject inference is to obtain external performance 

data from credit bureaus on rejected applicants, suggested by Ash and Meester (2002), Siddiqi 

(2006), Barkova et al. (2013), and Etimova et al. (2013). Using performance data coming 

from other creditors over an observation period allows lender to infer how the rejects would 

have performed if they had been approved. It is assumed that default on other products is 

equivalent to default on the interested product; the new model is then created with 

consideration of the behavior of the reject. Thus, using real historical data and giving a more 

realistic perspective of the market and other clients’ behaviors are the core advantages of this 

method.  
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However, it also contains several downsides. First, obtaining bureau data is costly and time 

consuming. It requires extra effort for data preparation and extraction. Second, the quality of 

the data is uncertain. Third, the main assumption of this approach requires a significant 

bureau match rate. Finally, the approach cannot completely eliminate bias, since rejects 

without performance information are probably considered to be non-random. 

2.3 Reweighting 

Reweighting is a well-used technique that involves weighting accepted applications in such a 

way as to scale up to the total population (Hsia, 1978; Banasik & Crook, 2004, 2007). The 

technique uses the ratio between the number of approved accounts in a cluster and the number 

of declines. Based upon this ratio, the approved accounts will be reweighted such that the 

number of the weights will equal the total number of applications. As accepted scores are 

monotonically related to the probability of being accepted, we can replace scores by their 

probabilities, and consider each individual record in spite of clusters. Each accepted record 

has a probability to be approved (𝑝𝐴), and correspondingly a sampling weight of 𝑤 = (1/𝑝𝐴). 

A new model using weighted accepts is then estimated. 

Simplicity is a major advantage of this technique. It contains, however, several drawbacks. 

Banasik and Crook (2004), using their data, demonstrate that reweighting does not really 

improve the performance of the good-bad model. First, the scope for improving on a model 

parameterized only on the approvals appears small. Second, reweighting applications within 

an approval sample and adopting a cut-off point based on those approvals do not seem to 

perform better than an unweighted estimation. Third, reweighting may undermine the ability 

to apply good/bad knowledge of the population, without giving any compensating advantage. 

Reweighting in Parnitske (2005) also appears unsuitable to completely get rid of selection 

bias. Lacking knowledge of the tendency to become delinquent of the rejects, this method can 

only lead to improvements by chance. Though, combining reweighting and supplementary 

data improves the results. 

2.4 Extrapolation 

Extrapolation involves assigning a default status to the rejects, based on the same model that 

is fitted to the approvals only, and then re-estimating the model (Ash and Meester, 2002). To 

simulate outcomes for the rejects, we should follow three steps. 

Step 1: Construct a G/B model on the approvals (KGB population) as usual to get the 

scorecard A. 

Step 2: Estimate probabilities to be bad that can be assigned to rejects based on outcomes 

given by the scorecard A. These estimated bad rates will be then used to simulate outcomes 

on the rejects, either by Monte Carlo parceling methods or by fuzzy augmentation. 

The Monte Carlo parceling method simulates a 0/1 outcome (𝑦 =  1 if default/bad, 𝑦 =  0 if 

non-default/good) for each reject. Next, we generate a random number 𝑟 ⋲  [0,1] from a 
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uniform distribution. A reject with score  𝑠𝐴 , calculated with scorecard A, is simulated 

with 𝑦 =  1 if and only if 𝑟 <  𝑝(𝑦 = 1 ∣ 𝐴, 𝑠𝐴). This option is realistic. However, since there 

is a random factor, the outcome may vary if one changes the random seed generator. Several 

repeated simulations should be done to get more accurate results. 

Fuzzy augmentation, in a different way, considers rejects as being both partially “Good” and 

partially “Bad” (0/1 outcomes with probabilities for each reject). Two records are created to 

each reject: (i) 𝑦 =  1 with weight  𝑝(𝑦 = 1 ∣ 𝐴, 𝑠𝐴) , and (ii) 𝑦 =  0 with weight  (1 −

 𝑝( 𝑦 = 1 ∣∣ 𝐴, 𝑠𝐴 )). The overall weight of each reject is equal to 1. Accepted applications are 

given by real outcomes with weights equal to 1. This option is more complicated. However, it 

is more stable and repeatable, thanks to the deterministic nature of the augmentation 

(Montrichard, 2007). 

Step 3: Construct a new model on the approvals and the rejects with their simulated outcomes 

to get the scorecard B. 

These extrapolation methods have been discussed with different points of view. Banasik and 

Crook (2004) argue that extrapolation tends to remain parameter estimates unchanged, but the 

good/bad rate it provides appears to be insufficiently appropriate. These methods may be 

quite arbitrary and result incorrectly or lead to a distortion of the actual default data (Kiefer 

and Larsen, 2006). 

However, Parnitske (2005) shows that extrapolation needs no additional risk and leads to a 

significant improvement to the model. Zeng and Zhao (2014) also state that fuzzy 

augmentation technique appears more accurate among others. The authors introduce a rule of 

thumb, in which one can specify a factor to increase the bad rate of rejected applicants. 

2.5 Heckman’s two-step correction method 

Heckman (1979) discusses the bias that results from using nonrandom selected samples to 

estimate behavioral relationships as an ordinary specification error or “omitted variables” bias.  

The performance of the rejected applicants in credit scoring can then be inferred from 

Heckman’s method (Mok, 2009). The model is composed of two mechanisms, which are the 

selection mechanism  𝑧𝑖  and the outcome mechanism  𝑦𝑖 , and are modeled by the latent 

variables 𝑧𝑖
∗ and 𝑦𝑖

∗ for observation 𝑖 (𝑖 = 1, … , 𝑁) respectively:  

    𝑧𝑖  = {
  1      𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑,     𝑧𝑖

∗ ≥ 0

     0      𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑,         𝑧𝑖
∗  < 0

 

𝑦𝑖  = {
     1      𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 𝑖𝑠 𝑔𝑜𝑜𝑑,         𝑦𝑖

∗ ≥ 0

    0      𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 𝑖𝑠 𝑏𝑎𝑑,          𝑦𝑖
∗ < 0

 

The latent variables 𝑧𝑖
∗ and 𝑦𝑖

∗ depend on explanatory variables 𝑤𝑖 with parameters 𝛾 and 𝛽, 

and random errors 𝑢𝑖 and 𝑒𝑖: 

𝑧𝑖
∗ = 𝑤𝑖𝛾 + 𝑢𝑖 
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𝑦𝑖
∗ = 𝑤𝑖𝛽 +  𝑒𝑖 

The errors 𝑢𝑖 and 𝑒𝑖 are assumed to be bivariate normally distributed as follows: 

[
𝑢𝑖

𝑒𝑖
] ~ Ν(𝜇, ∑)        𝜇 =  [

0
0

]        ∑  = [
1 𝜌
𝜌 1

] 

A selectivity problem arises because the performance indicator  𝑦𝑖 is observed only when the 

applicant is accepted (𝑧𝑖 = 1) and the errors 𝑢𝑖  and  𝑒𝑖  are correlated (𝜌 ≠ 0). In such a 

situation, the usual least squares estimators of 𝛽 are biased and inconsistent. 

Consistent estimators are based on the conditional expectation: 

 Ε[𝑦𝑖
∗|𝑧𝑖

∗ > 0] = 𝑤𝑖𝛽 +  Ε[𝑒𝑖
∗|𝑧𝑖

∗ ≥ 0]  

                                                                     =  𝑤𝑖𝛽 +  Ε[𝑒𝑖
∗|𝑢𝑖

∗ ≥ − 𝑤𝑖𝛾]  

                                          =  𝑤𝑖𝛽 +  𝜌𝐻𝑖 

Selection bias is corrected by formulating the conditional expectation with the correlation 

coefficient 𝜌 and the hazard function 𝐻𝑖, also called the inverse of Mills ratio: 

𝐻𝑖 =  
𝜙(− 𝑤𝑖𝛾)

1 − Φ(− 𝑤𝑖𝛾)
 

where ∅ and Φ denote, respectively, the density and the cumulative distribution function for a 

standard normal random variable. 

The parameters in Heckman’s correction method can be estimated in two stages. First, the 

parameter 𝛾 is estimated by probit analysis to obtain an estimate 𝐻̂𝑖  of 𝐻𝑖 . The maximum 

likelihood estimation (MLE) of 𝛾 can be calculated by means of probit analysis, where the 

data is assumed to be complete. 

Ε[𝑧𝑖
∗] =  Φ(𝑤𝑖𝛾) 

The corresponding log-likelihood function 𝐿 is derived as follows: 

𝐿 =  ∑ 𝑧𝑖  𝑙𝑛 Ρ(𝑧𝑖 = 1) = 

𝑁

𝑖

∑ 𝑧𝑖 ln Ε (𝑧𝑖) =  ∑ 𝑧𝑖 ln Φ (𝑤𝑖𝛾)

𝑁

𝑖

𝑁

𝑖

 

The MLE of 𝛾 is obtained by taking 𝛾 that sets the derivative of 𝐿 to zero. An estimate 𝐻̂𝑖 

of 𝐻𝑖  is also calculated by applying the inverse of Mills ratio. 

Second, the parameters 𝛽 and 𝜌 are estimated by ordinary least squares (OLS) estimation. The 

OLS estimates of  𝛽  and 𝜌  are obtained by minimizing the sum of squared errors (SSE) 

defined as follows: 

𝑆𝑆𝐸 = ∑  (𝑦𝑖 − Ε[𝑦𝑖
∗|𝑧𝑖

∗ ≥ 0])2

𝑁

𝑖=1
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In case of no sample bias, the errors 𝑢𝑖 and 𝑒𝑖 are not correlated. The presence of sample bias 

can be then re-checked by testing the null hypothesis that 𝜌 = 0. 

The Heckman’s two-step correction method has been widely recommended by 

econometricians (see Poirier, 1980; Meng and Schmidt, 1985; and Boye et al., 1989, for early 

discussions). Greene (1998) analyzes the impact of Heckman’s procedure on selection bias 

and points out that the coefficients of default change significantly compared to the results 

obtained without correcting bias. Using a proprietary data set, Banasik et al. (2003) find that 

the Heckman-type selection procedure can get an improvement in terms of performance, but 

the gain is relatively small. Banasik and Crook (2007) also indicate that using a bivariate 

probit model to address selection bias can improve model accuracy. A recent study by Bucker 

et al. (2013) shows that the model using Heckman’s method yields parameter estimates 

significantly different, both statistically and economically, from the case where rejects are 

disregarded. 

Other researchers demonstrate that Heckman’s bivariate two-stage model does not work well 

for reject inference. Puhani (2000)’s findings show that the estimators of Heckman’s model 

are inefficient. Since the bivariate model is assumed to be linear with errors which are 

normally distributed and homoscedastic, the estimations are then not reliable when the 

assumptions are broken. Åstebro and Chen (2012) also agree with this point of view. The 

authors believe that in practice, we cannot determine a true model specification and a strong 

sensitivity makes the usefulness of the approach questionable. Hand and Wu (2007), using 

simulated data, point out that even if the normality assumption holds, when enough customers 

are rejected and accepted, or when the original accept/reject decision depends largely on the 

unobserved variables, correcting selection bias through Heckman’s method cannot really help. 

2.6 How well do these methods? 

Literature raises a question of whether we should use reject inference methods, or in other 

words, how to validate a method and assess its potential gains. Little empirical research on 

reject inference has been performed on datasets which are incomplete or simulated. Different 

studies demonstrate that it is difficult to have a reliable model based on reject inference 

because the assumptions are often strong and easily violated. However, when the information 

loss due to selection bias is significant and it cannot consequently be neglected, it is 

recommended to perform reject inference and test different approaches to find out which one 

is better to reduce the bias.  

Table 1 summarizes pros and cons of each reject inference approach. 
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Table 1: Comparison of different reject inference methods 

 Description Advantages Disadvantages 

Manual estimation Build a model on the total population: 

- Use  known performance for the 

accepts 

- Use experiences to manually 

simulate the performance of the 

rejects 

- Easy and quick  

- May reduce selection bias 

 

- Require solid experience to manually 

simulate the performance of the rejects 

- Too subjective to be reliable 

Bureau data-based 

method 

Build a model on the total population: 

- On known performance for accepts 

- On reference performance for rejects 

- Use real historical data 

- Give a more realistic perspective of the 

market and other clients’ behaviors 

- May reduce selection bias 

 

- Costly and time-consuming 

- Require extra effort for data preparation 

and extraction 

- Uncertain data quality 

- Require a significant bureau match rate 

Reweighting - Create an “approve/decline” model 

on the entire dataset. Each record 

will have a probability to be 

approved associated with it (p). 

- Apply a weight (1/p) to scale up to 

the total population 

- Simplicity 

- Relatively quick 

- May reduce selection bias 

- Require sufficient historical data, then 

may not work well on small samples with 

high reject rates 

- The assumption 𝑃(𝑏𝑎𝑑 | 𝑋, 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑)  =

 𝑃(𝑏𝑎𝑑 | 𝑋, 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑)  is strong and 

generally unrealistic.  

Extrapolation Assign a default status to the rejects, 

based on the model built on the 

accepted applicants only, and then re-

estimate the model. 

- Finely adjust probabilities to common 

expectations. 

- May lead to a significant improvement to 

the model 

- Time-consuming   

- Complicated 

- Simulations may lead to incorrect results 

Heckman’s two-

step correction  

Consider the likelihood of approval and 

the likelihood of bad performance 

associated with the predictive attributes. 

- Test bias 

- Have a quite solid basis in statistical 

theory 

- Complicated 

- Assume that the bivariate model is linear 

with errors that are normally distributed 

and homoscedastic. If the assumptions do 

not hold, the estimates will not be 

reliable. 
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3 REJECT INFERENCE IN PRACTICE  

We aim to investigate the performance of reject inference to correct selection bias, using a 

recent dataset provided by a major French consumer finance bank (hereafter called bank A).  

Our sample comprises 198,587 credit histories from January 2013 to December 2013 

provided by bank A. For 56,016 applications, the repayment status is known; and all other 

142,571 applications are rejected by score (the applications rejected due to a police rule are 

excluded from the scope of our analysis
1
), then we do not possess any information on their 

potential repayment. These applications come from bank A’s retail loan portfolio for new 

customers. With such a high-risk portfolio, the rejection rate is consequently high (in excess 

of 70%); and bias due to selection is typically not ignorable. Thus, reject inference needs to be 

accounted for to reduce selection bias.   

Each of 56,016 applications is observed over a one-year performance window. Figure 1 

describes twelve outcome windows selected for scorecard development. Applications are 

defined as “bad” if they become delinquent for thirty days or more within one year.
2
 The 

worst-ever definition is used. An application is considered as “bad” if the condition holds true 

at any point over one year, and not at the end of the period. All other applications are defined 

as “good”. 

Figure 1: Observations and outcome windows 

 

 

Next, we create three different datasets (Table 2) for our analysis: (i) “full” dataset contains 

all observations, both approval and declined applications, (ii) “approve” dataset includes 

approvals only, and (iii) “decline” dataset includes declines only.  

  

                                                        
1
 The following rules are applied when selecting rejects to be incorporated into the study:  

- If the applications are rejected due to a hard policy rule, which is still in force, then they should not be 

put into the model. 

- The applications rejected due to a soft policy rule and then overridden should be included in the model. 

- The applications rejected due to a hard policy rule, which is no longer in force, should also be included. 
2
 The definition of bad used in this study is strictly chosen by bank A for this specific portfolio. 

Jan ‘13 Jan‘14 

Feb ‘13 Feb‘14 

12 observation dates 
- Approvals   

- Declines  

Predict outcome status 
Known Good/Bad (observed) 

Inferred Good/Bad (unobserved) 

 

Dec ‘13 Dec ‘14 
… 
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Table 2: Full/Approve/Decline datasets 

Dataset # % 

“full”  198,587 100% 

“approve”  56,016 28% 

“decline  142,571 72% 

Our KGB scorecard is developed on the “approve” dataset. As mentioned in Nguyen 

 (2015a), when reviewing variables for possible inclusion in the scorecard, we need to 

consider the following primary factors: (i) the variables have a significant degree of predictive 

power (through fine and coarse classing); (ii) they are stable for use; (iii) they have a low 

correlation to each other; and (iv) they are reasonable enough to explain the business, and also 

compliant (no legal or ethical restrictions on their use). Only variables that passed this pre-

screening step are selected for modeling. Next, we fit a logistic regression model to the 

dataset. The logistic regression is still the most common method used in credit scoring since it 

is easy to implement, understand and interpret (Thomas, 2000, and Kocenda & Vojtek, 2006). 

Moreover, the method works best for binary outcomes, and then it is adopted to build the 

scorecard since our outcome is typical binary good/bad. 

After several trials (see Nguyen, 2015b for criteria allowing selecting the best model among 

candidates), we find out a scorecard which works best on the “approve” dataset. The final 

scorecard consists of the following characteristics: marital status, occupation, age of the 

client, time at job, time at present address, household income, residential status, loan 

duration, and type of credit. Table 3 on the next pages presents a detailed characteristic 

analysis. 

Table 3 shows that the variables selected in the final scorecard have a good predictive power 

in overall. The highest predictive ability to separate goods from bads comes from marital 

status, household income, residential status, loan duration and type of credit. For example, it 

is obvious that the risk is lower for married than single or divorced clients, given the fact that 

marital status has an effect on the applicant’s responsibility, reliability, and financial wealth. 
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Table 3: Characteristic analysis  

 

Variable Attribute  # Good   # Bad   Bad rate 
Weight of 

evidence
3
 

Information 

value
4
 

1. Marital status 

Married        27 682               873    3.1% 0.48 9.5% 

Divorced, Widowed, 

Cohabiting 
       16 314               946    5.5% -0.13 0.5% 

Single, Separated          9 303               898    8.8% -0.64 10.0% 

        53 299           2 717        20.0% 

2. Occupation 

Managers and 

professionals  
         6 920               220    3.1% 0.47 2.3% 

Technicians and 

associated 

professionals 

       17 602               701    3.8% 0.25 1.8% 

Service and sales 

workers 
       18 502            1 018    5.2% -0.08 0.2% 

Other jobs        10 275               778    7.0% -0.40 3.7% 

          53 299           2 717        8.0% 

3. Age of the 

client 

(in years) 

>= 64        10 655               349    3.2% 0.44 3.2% 

50 - 63         16 369               732    4.3% 0.13 0.5% 

40 - 49         13 687               749    5.2% -0.07 0.1% 

20 - 39         12 588               887    6.6% -0.32 2.9% 

          53 299           2 717        6.7% 

4. Time at jobs  

(in months) 

>= 246          9 019               273    2.9% 0.52 3.6% 

164 - 245 & retired        20 169               808    3.9% 0.24 2.0% 

63 - 163        13 251               824    5.9% -0.20 1.1% 

<= 62 & unemployed        10 860               812    7.0% -0.38 3.6% 

          53 299           2 717        10.3% 

5. Time at 

present address 

(in months) 

>= 210        13 572               432    3.1% 0.47 4.5% 

102 - 209        13 399               563    4.0% 0.19 0.9% 

28 - 101        15 840               954    5.7% -0.17 0.9% 

<= 27        10 488               768    6.8% -0.36 3.1% 

          53 299           2 717        9.4% 

6. Household 

income 

(in euros per 

month) 

> 3725        13 657               343    2.5% 0.71 9.2% 

2756 - 3724        13 416               595    4.2% 0.14 0.5% 

2004 - 2755         13 281               721    5.1% -0.06 0.1% 

<= 2003        12 945            1 058    7.6% -0.47 6.9% 

          53 299           2 717        16.7% 

7. Residential 

status 

House owner        33 114               934    2.7% 0.59 16.4% 

Non-house owner        20 185            1 783    8.1% -0.55 15.3% 

          53 299           2 717        31.7% 

       

       

                                                        
3
 Weight of evidence is a measure of how good or bad the accounts are within a particular attribute:  

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑙𝑜𝑔(
%𝑔𝑜𝑜𝑑

%𝑏𝑎𝑑
) 

If the weight is negative, this means there are more bads than goods. If it is positive, this means there are more 

goods than bads. If it is close to 0, there is a similar number of bads and goods. 

4
 The Information value measures the predictive ability of a characteristic to separate between good and bad 

accounts.  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡 ×  (%𝑔𝑜𝑜𝑑 − % 𝑏𝑎𝑑) 
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Variable 
Attribute  # Good   # Bad   Bad rate 

Weight of 

evidence 

Information 

value 

8. Loan duration 

(months) 

<= 35          6 576               183    2.7% 0.61 3.4% 

37 - 48        14 864               466    3.0% 0.49 5.2% 

36        13 220               781    5.6% -0.15 0.6% 

>= 49        18 639            1 287    6.5% -0.30 3.8% 

          53 299           2 717        13.0% 

9. Type of credit 
Installment loans        40 058            1 489    3.6% 0.32 6.4% 

Revolving        13 241            1 228    8.5% -0.60 12.2% 

          53 299           2 717        18.6% 

 

The Kolmogorov–Smirnov (KS) statistic and the Gini statistic are generally used to measure 

the discrimination of a scorecard (Nguyen, 2015b). The KS measures the widest spread 

between cumulative goods and cumulative bads. The divergence between the two curves 

determines the strength of the scorecard to differentiate good customers from bad ones. The 

higher the KS, the better the model, since goods are more separated from bads. Like the KS, 

the Gini coefficient is a quantitative measure of how well the model discriminates between 

goods and bads but by looking at actual discrimination versus perfect discrimination. A good 

scorecard in general has a KS greater than 35% and Gini higher than 40%. However, in 

practice, these thresholds are applicable for scorecards having at least some behavioral 

variables, e.g. behavioral scorecard or application scorecard for a known-customers portfolio. 

In our case study, as we have no behavioral variables or high discriminatory variables which 

can give us a high Gini like other scorecards, we expect then a Gini higher than 35% which 

could be considered to be satisfactory. 

As a result, our scorecard shows a good performance with 𝐾𝑆𝑑𝑒𝑣 of 35% and 𝐺𝑖𝑛𝑖𝑑𝑒𝑣 of 46%. 

The results turn out to be better than expected for such an application scorecard for new 

customers. 

To validate the scorecard, we use a test sample which contains 90,928 credit histories from 

January to June 2014, which will be observed until June 2015. The choice of the sample is 

based on the last available repayment behavior information we possess (June 2015). The 

repayment status is known for 35,726 applications, which are finally financed; and unknown 

for the remaining 55,202 applications, which are rejected by score. Each of 35,726 

applications is observed over a one-year performance window. A “test” dataset which 

includes these 35,726 approvals and their repayment status is then created for the sake of 

validation. 

Validating the scorecard on the “test” dataset shows a quite significant decrease in terms of 

performance with 𝐾𝑆𝑡𝑒𝑠𝑡  of 30%  and 𝐺𝑖𝑛𝑖𝑡𝑒𝑠𝑡  of 39% . We use ∆𝐺𝑖𝑛𝑖 , which is the gap 

between 𝐺𝑖𝑛𝑖𝑑𝑒𝑣  and 𝐺𝑖𝑛𝑖𝑡𝑒𝑠𝑡 , as a representative indicator to measure overfitting. In fact, 

overfitting occurs when the model is typically trained by maximizing its performance on 

training data, while its efficiency is defined by its ability to perform well on an unobserved 

data and not by its performance on training data. In this paper, we aim to test different reject 
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inference techniques to adjust for sample selection bias and find out the one maximizing 

performance while minimizing overfitting effects. 

The following reject inference techniques are incorporated into the study: reweighting, 

parceling, fuzzy augmentation and Heckman’s two-step correction method. The bureau data-

based method is not discussed in our empirical analysis since there is no credit bureau in 

France.
5
 The results are summarized in Table 4. 

Table 4: Comparison of results of different reject inference methods 

 Overall 

Bad rate 

Known GB Odds/ 

Inferred GB Odds 
𝑮𝒊𝒏𝒊𝒅𝒆𝒗 𝑮𝒊𝒏𝒊𝒕𝒆𝒔𝒕 Overfitting 

KGB model 5% NA 46% 39% 7% 

Reweighting 10% 2.8 44% 38% 6% 

Parceling 11% 3.2 38% 39% -1% 

Fuzzy augmentation 43% 19.6 21% 39% -18% 

Heckman’s bivariate two-stage model 1% NS
6
 NS NS NS 

The overall bad rate in Table 4 is defined as the ratio between the number of bad accounts 

(both known and inferred bad accounts, but only known bad accounts in case of KGB model) 

and the total number of good and bad accounts. Since (i) reject inference only provides an 

estimation of performance if an application had been accepted, and (ii) rejects are more 

probable to become bad than good, the bad rate with correcting bias should be greater than the 

one without correcting bias.  

In practice, there is a convention that the ratio of the known GB odds to the inferred GB odds 

should be between two and four times (Siddiqi, 2006). If the ratio is lower, we may infer that 

the rejects are too similar to the approvals, which is unlikely to be true. If it is higher, then we 

may be too harsh on the rejects, and may infer too many bad accounts. In this case, the rejects 

may have too much influence on the final model which is dangerous as their performance has 

been inferred rather than based on actual history.  

Table 4 shows that fuzzy augmentation has a known-to-inferred GB odds ratio of 19.6, given 

its associated new bad rate is 43%, which is too high. The Heckman’s correction method has a 

non-significant ratio because its associated new bad rate is only 1%. In our case study, the 

Heckman’s method does not produce better results, as expected. Only reweighting and 

parceling give better results in terms of performance (38% and 39% respectively), while 

reducing overfitting effect (from 7 points to 6 points and 1 point respectively). The results of 

KGB model, reweighting and parceling are illustrated in Appendixes A, B and C. 

Table 5 displays the estimates of the parameters of the model with and without correcting 

selection bias, using reweighting and parceling techniques. The results show that reject 

inference reduces dramatically the sum of standard errors (0.42 vs. 0.99, and 0.58 vs. 0.99).  

                                                        
5
 According to Viola de Azevedo Cunha (2013), the sole public register is the French Central Bank (Banque de 

France), which is responsible for supplying credit institutions with credit information. 
6
 NS stands for non-significant. 
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Moreover, ignoring rejects may impact the forecast accuracy of the scorecard. In fact, the full 

model (with reweighting and parceling) yields parameter estimates, which are different, both 

statistically (when the sign of the estimate is reversed, e.g. time_at_job2) and economically 

(when the estimates change significantly, e.g. occupation2, age1, time_at_job4, 

household_income4, loan_duration4), from the case when rejects are disregarded (KGB 

model). 

 

4 CONCLUSION 

Reject inference is of great importance to correct sample selection bias which may affect 

credit scoring. Literature has mostly focused on presenting different reject inference 

techniques, and only few efforts have been made to quantify their potential gains. In this 

paper, we benefit from a real dataset from a known French consumer finance bank to assess 

the effectiveness of the reject inference techniques. In fact, when applied to a dataset of 

almost 200,000 new customers requesting credit with a high reject rate in excess of 70 %, our 

results turn out to be particularly interesting since they have not yet been found by previous 

researchers. First, we prove that the most suitable reject inference technique is not necessarily 

the most complicated one. In our case study, reweighting and parceling provide more accurate 

and relevant results than fuzzy augmentation and Heckman’s two-step correction method.  

Second, we find that ignoring the rejected applicants may impact the forecast accuracy of the 

scorecard: the full model yields parameter estimates, which are different, both statistically and 

economically. Third, we demonstrate that reject inference turns out to produce an improved 

representation of the population since it reduces dramatically the sum of standard errors. 

Finally, and most importantly, reject inference appears to be an effective way to reduce 

overfitting in model selection. 

On the whole, our results highlight that reject inference can reduce sample bias, and its effect 

is not modest as it is stated in the literature. Especially in case of a portfolio with a high 

rejection rate, we cannot ignore rejected applications. Since the techniques are complicated to 

be implemented, reject inference has been performed with care and caution to find out the 

most pertinent model developed on the entire through-the-door population.  
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Table 5: Parameter Estimates 

Variables
7
 

KGB model  Reweighting  Parceling 

Coefficient SE
8
 P-value  Coefficient SE P-value  Coefficient SE P-value 

Intercept 2.9191 0.0639 <.0001  2.8657 0.0330 <.0001  2.9071 0.0355 <.0001 

Marital_status1 0.2487 0.0518 <.0001  0.2746 0.0349 <.0001  0.2450 0.0341 <.0001 

Marital_status3 -0.3148 0.0512 <.0001  -0.4020 0.0208 <.0001  -0.2933 0.0218 <.0001 

Occupation1 0.4353 0.0769 <.0001  0.2814 0.0236 <.0001  0.4277 0.0234 <.0001 

Occupation2 -0.1620 0.0741 0.0289  NS
9
 NS NS  -0.1588 0.0401 <.0001 

Occupation4 -0.2233 0.0515 <.0001  -0.5115 0.0167 <.0001  -0.2377 0.0164 <.0001 

Age1 0.2938 0.0797 0.0002  NS NS NS  0.3330 0.071 <.0001 

Time_at_job1 0.3896 0.0739 <.0001  0.3169 0.0639 <.0001  0.4119 0.067 <.0001 

Time_at_job2 0.1379 0.0694 0.047  -0.2193 0.0244 <.0001  0.1142 0.0547 0.0368 

Time_at_job4 -0.1837 0.0524 0.0005  NS NS NS  -0.2028 0.0257 <.0001 

Time_at_present_address1 0.2846 0.0617 <.0001  0.1610 0.0270 <.0001  0.2758 0.0229 <.0001 

Time_at_present_address2 0.1718 0.0521 0.001  0.1766 0.0251 <.0001  0.2113 0.0253 <.0001 

Household_income1 0.3202 0.0642 <.0001  0.3589 0.0576 <.0001  0.3240 0.0567 <.0001 

Household_income4 -0.3634 0.047 <.0001  0.0511 0.0213 0.0164  -0.3527 0.0219 <.0001 

Residential_status1 0.7664 0.0449 <.0001  0.7063 0.0382 <.0001  0.7736 0.0385 <.0001 

Loan_duration4 -0.4761 0.0413 <.0001  -0.0918 0.0161 <.0001  -0.4753 0.0147 <.0001 

Type_of_credit2 -0.6379 0.0411 <.0001  -0.6999 0.0160 <.0001  -0.6456 0.0156 <.0001 

Sum of Standard Errors  0.9971    0.4186    0.5853  

                                                        
7
 The following attributes are not presented in Table 5 : 

- The reference attribute in each variable with its weight of evidence in absolute value closest to 0; 

- The attributes which are not statistically significant at the 0.05 level; 

- The attributes which are correlated with each other. 
8 
SE stands for standard error. 

9
 NS means non-significant. 
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Appendix A:  KGB model’s performance statistics 
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Appendix B: Full model’s performance statistics using reweighting technique 
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Appendix C: Full model’s performance statistics using parceling technique 
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