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Abstract

This paper compares the performance of five classes of forecasting models in an ex-

tensive out-of-sample exercise. The types of models considered are standard univariate

models, factor-augmented regressions, dynamic factor models, other data-rich models and

forecast combinations. These models are compared using four types of data: real series,

nominal series, the stock market index and exchange rates. Our findings can be summa-

rized in a few points: (i) data-rich models and forecasts combination approaches are the

best for predicting real series; (ii) ARMA(1,1) model predicts inflation change incredibly

well and outperform data-rich models; (iii) the simple average of forecasts is the best

approach to predict future SP500 returns; (iv) exchange rates can be predicted at short

horizons mainly by univariate models but the random walk dominates at medium and long

terms; (v) the optimal structure of forecasting equations changes much over time; and (vi)

the dispersion of out-of-sample point forecasts is a good predictor of some macroeconomic

and financial uncertainty measures as well as of the business cycle movements among real

activity series.
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1 Introduction

During recent decades, researchers and practitioners in economics and related fields have wit-

nessed a fast improvement of data collection and storage capacity. Many economic and financial

data sets have now reached astronomical sizes, both in terms of the dimension (number of vari-

ables) and the sample size (e.g. high-frequency data in finance). For instance, the Federal

Reserve of St-Louis Economic Database (FRED) contains more than 390,000 macroeconomic

and financial time series. As all these series will not be relevant for a given forecasting exercise,

one will have to preselect relevant candidate predictors according to economic theories, the

empirical literature and own heuristic arguments. In a data-rich environment, however, the

econometrician can easily still be left with a few hundreds of candidate predictors after the

preselection process. Unfortunately, the performance of standard econometric models tends to

deteriorate as the dimensionality of the data increases. Moreover, the numerical algorithms

routinely used to train standard econometric models quickly break down as the number of

variables increases. This is the well-known curse of dimensionality.

The new challenge faced by applied econometricians is to design computationally efficient

methods capable of turning big datasets into concise information. Bayesian techniques de-

veloped in recent years to handle larger than usual VAR models can be viewed as an effort

toward this objective. See (Banbura, Giannone & Reichlin 2010), (Koop 2013), (Carriero,

Clark & Marcellino 2015) and (Giannone, Lenza & Primiceri 2015), among others. Another

promising route to deal with big data is provided by factor models, where a potentially large

number of variables is assumed to be driven by a smaller number of latent “factors”. The latter

class of models is largely advocated in the current paper, as done by precursors like (Stock &

Watson 2002b) and (Ludvigson & Ng 2005), among others.

Since the seminal work of (Stock & Watson 2002), many forecasting methods utilizing

factor-based models have been proposed to deal with data-rich environment. Given their grow-

ing popularity in the literature, there is a need for an extensive study that compares the

performance of these methods. Few studies have done such a comparison exercise. See (Boivin

& Ng 2005), (Kim & Swanson 2014), (Cheng & Hansen 2015), (Carrasco & Rossi 2016) and

(Groen & Kapetanios 2016). This paper contributes to filling this gap by comparing the per-

formance of five classes of models at forecasting four types of variables.

The first class of forecasting models considered consists of standard and univariate speci-

fications, namely the Autoregressive Direct model (ARD), the Autoregressive Iterative model

(ARI), the simplest Autoregressive Moving Average ARMA(1,1) model and the Autoregressive

Distributed Lag (ADL) model. The second class of models consists of autoregressions that

are augmented with exogenous factors: the Diffusion Indices (DI) of (Stock & Watson 2002b),

the Targeted DI of (Bai & Ng 2008) and the DI with dynamic factors of (Forni, Hallin, Lippi
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& Reichlin 2005). The third type of models assume that the factors are endogenous, meaning

that the dynamics of the series being predicted obey the assumed factor structure. In the latter

category, we have the Factor-Augmented VAR (FAVAR) of (Boivin & Ng 2005), the Factor-

Augmented VARMA (FAVARMA) of (Dufour & Stevanovic 2013) and the Dynamic Factor

Model (DFM) of (Forni et al. 2005). The fourth category consists of two recent and prominent

data-rich models: the Three-pass Regression Filter (3PRF) of (Kelly & Pruitt 2015) and the

Complete Subset Regression (CSR) of (Elliott, Gargano & Timmermann 2013). Finally, the

fifth category consists of methods that average the previous forecasts. Here we consider the

naive average of all forecasts (AVRG), the median of all forecasts (MED), the trimmed average

of all forecasts (T-AVRG) and the inversely proportional average of all forecasts (IP-AVRG).

The latter forecasting method is considered in (Stock & Watson 2004). For the sake of com-

pleteness, the simple random walk (RW) and the random walk with drift (RWD) are considered

as well.

The data employed for this study come from an updated version of Stock and Watson’s

macroeconomic database that was used in (McCracken & Ng 2015). We compare the fore-

casting methods listed above on (i) real series (Industrial Production and Employment), (ii)

nominal series (Consumer Price Index and Core CPI), (iii) financial series (SP500) and (iv)

exchange rates (US-UK and US-Canada). These variables are selected for their popularity in

the forecasting literature. The comparison approach is based on a pseudo out-of-sample scheme

that uses the Mean Square Prediction Error (MSPE) and the Mean Absolute Prediction Error

(MAPE) as metrics. More precisely, we compute the Relative MSPE and MAPE of all models

with respect to the ARD model used as a benchmark. We also consider the sign prediction.

For each series, horizon and out-of-sample period, the hyperparameters of our models (number

of lags, number of factors, etc.) are calibrated using the Bayesian Information Criterion (BIC).

To the best of our knowledge, our paper is the first to put so many different forecasting

models together and compare their performance on several types of data. Our first contri-

bution is to compare these models in an extensive out-of-sample exercise and document their

performance and robustness across the business cycles. Disentangling which type of models

have significant forecasting power for real activity, prices, stock market and exchange rates is

a valuable information for practitioners and policy makers. The second contribution of the

current work is to provide a laboratory for future development of forecasting models. 1

We find that data-rich models and forecast combination approaches perform well at pre-

dicting real series. The two dominating techniques to forecast Industrial Production growth

and Employment growth are the IP-AVRG and the CSR. The worst performing here are the

RW models, which suggests that real series are highly predictable. In addition, we identify the

1All the data used in the paper are public. Our Matlab codes will be made publicly available so that they
can be updated to include any new forecasting model.
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best models to be used during recession periods. In a real-life application, the most pessimistic

forecast can be used as a worse case scenario that becomes more and more realistic on the eve

of economic crises.

The ARMA(1,1) model emerges as the best to forecast inflation change. This result holds re-

gardless of whether the CPI or the Core CPI is considered. Curiously enough, data-rich models

do worse than the ARD benchmark at forecasting inflation growth. One possible explanation

for this good performance of univariate models is that inflation change is largely exogenous

with respect to the conditioning information set available to us. As a result, data-rich models

are over-parameterized for this series and therefore have poor generalization performance.

The best forecasts of the SP500 returns at short horizons are obtained by averaging the other

forecasts (AVRG and T-AVRG). At longer horizons, the CSR dominates. While the relative

performance of the RW and RWD models with respect to the ARD benchmark improves much,

these models underperform CSR, AVRG and T-AVRG at all horizons. This suggests that stock

returns are predictable to some extent. Finally, we find that data-rich models are of no use when

it comes to predicting exchange rates as they all underperform the ARD benchmark. At short

horizon, univariate models deliver the best forecasts while at longer horizons, the RW models

dominate. This suggests that of all series considered, exchange rates are the most difficult to

predict. However, data-rich models improve the prediction of the direction of change.

Given the tremendous amount of information produced in this extensive out-of-sample horse

race, we are able to study the stability of forecasting relationships as well as the out-of-sample

forecasts dispersion. We find evidence of widespread structural changes in all dimensions of

forecasting equations. However, they are not evenly distributed across the forecasted series and

forecasting horizons. We find that the dispersion of out-of-sample point forecasts is significantly

correlated with some macroeconomic and financial uncertainty measures used in the literature.

The remainder of the paper is organized as follows. Section 2 presents the standard time

series models. Section 3 presents the data-rich environment and the corresponding models.

Forecasts combinations are shown in Section 4. Section 5 presents the data, the design of

the pseudo out-of-sample exercise and the results. Section 6 presents the stability of some

forecasting models and the links between the forecasts dispersion and uncertainty. Section

7 concludes. Additional empirical results and simulation analysis are reported in a separate

supplementary material.
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2 Standard Forecasting Models

Let Yt denote a macroeconomic or financial time series of interest. If lnYt is a stationary

process, we will consider forecasting its average over the period [t+ 1, t+ h] given by:

y
(h)
t+h = (freq/h)

h∑
k=1

yt+k, (1)

where yt ≡ lnYt and freq depends on the frequency of the data (400 if Yt is quarterly, 1200 if

Yt is monthly, etc.).

Most of the time, we are confronted with I(1) series in macroeconomics. For such series,

our goal will be to forecast the average annualized growth rate over the period [t+ 1, t+ h], as

in (Stock & Watson 2002b) and (McCracken & Ng 2015). We shall therefore define y
(h)
t+h as:

y
(h)
t+h = (freq/h)

h∑
k=1

yt+k = (freq/h)ln(Yt+h/Yt), (2)

where yt ≡ lnYt − lnYt−1.

In cases where lnYt is better described by as an I(2) process, we define y
(h)
t+h as:

y
(h)
t+h = (freq/h)

h∑
k=1

yt+k = (freq/h) [ln(Yt+h/Yt+h−1)− ln(Yt/Yt−1)] , (3)

where yt ≡ lnYt − 2 lnYt−1 + lnYt−2.

Indeed, y
(h)
t+h is given by the same function of yt everywhere while yt is lnYt in (1), the

first difference of lnYt in (2) and the second difference of lnYt in (3). In the remainder of the

section, we describe the standard univariate and multivariate forecasting models advocated in

the paper.

Autoregressive Direct (ARD) Our first univariate model is the so-called autoregressive

direct (ARD) model, which is specified as:

y
(h)
t+h = α(h) +

L∑
l=1

ρ
(h)
l yt−l+1 + et+h, t = 1, . . . , T, (4)

where h ≥ 1 and L ≥ 1. A direct prediction of yhT+h is deduced from the model above as

follows:

ŷhT+h|T = α̂(h) +
L∑
l=1

ρ̂
(h)
l yT−l+1,
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where α̂(h) and ρ̂(h) are OLS estimators of α(h) and ρ(h). The optimal L will be selected using

the Bayesian Information Criterion (BIC) for every out-of-sample (OOS) period. This makes

the forecasting model more flexible by allowing the optimal L to vary over the OOS period.

Autoregressive Iterative (ARI) Our second univariate model is a standard AR(L) model

specified as:

yt+1 = α +
L∑
l=1

ρlyt+1−l + et+1, t = 1, . . . , T. (5)

where L ≥ 1. This model is termed autoregressive iterative (ARI) because ŷhT+h|T must be

deduced from recursive calculations of ŷT+1|T , ŷT+2|T ,...,ŷT+h|T . We have:

ŷT+k|T = α̂ +
L∑
l=1

ρ̂lŷT+k−l|T , k = 1, ..., h,

with the convention ŷt|T ≡ yt for all t ≤ T and:

ŷhT+h|T = (freq/h)
h∑
k=1

ŷT+k|T . (6)

Equation (6) will remain the appropriate prediction formula for all iterative models as long as

the definition of yt is adapted to whether lnYt is I(0), I(1) or I(2).

Here too, the optimal lag L will be selected using the Bayesian Information Criterion (BIC)

for every out-of-sample period. If the true DGP of yt is an AR(L), both the direct and iterative

approaches should produce the same predictions for any horizon asymptotically as the sample

size goes to infinity. However, none of the two specifications strictly dominates in finite samples.

The iterative approach is found to be better when a true AR(L) process prevails for yt while the

direct approach is more robust to misspecification, see (Chevillon 2007). (Marcellino, Stock &

Watson 2006) compare the forecasting performance of direct and iterative models for hundreds

of time series. They conclude that the direct approach provides slightly better results but does

not dominate uniformly across time and series.

ARMA(1,1) (Dufour & Stevanovic 2013) showed that ARMA models arise naturally as the

marginal univariate representation of observables when they jointly follow a dynamic factor

model. This suggests that the ARMA(1,1) is a natural benchmark against which to evaluate

the performance of data-rich models.2 The following representation is therefore considered and

2The ARMA(1,1) model has been used extensively in the empirical finance literature to forecast the realized
volatility, but has been considered much less for the prediction of macroeconomic series.
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estimated by maximum likelihood:

yt+1 = α + ρyt + θet + et+1. (7)

After estimation, the residuals êT of the ARMA(1,1) model are generated in-sample using

the recursion starting from the initial value ê1 = 0:

êt+1 = yt+1 − α̂− ρ̂yt − θ̂êt, t = 1, ..., T.

The prediction of yT+h for any horizon h is computed using the formula (6) along with the

output of the following recursion:

ŷT+k|T = α̂ + ρ̂ŷT+k−1|T + θ̂êT+k−1|T , k = 1, ..., h,

where ŷT |T = yT , êT |T = êT and êT+k|T = 0 for all k = 1, ..., h.

An alternative approach to forecast the ARMA(1,1) model is given by the finite order

approximation of its AR(∞) representation. A truncation to L lags leads to the following

forecasting formula:

ŷT+k|T =
α̂

1 + θ̂
+

L∑
l=1

(
ρ̂+ θ̂

)(
−θ̂
)l−1

ŷT+k−l|T , k = 1, ..., h,

with ŷt|T ≡ yt for all t ≤ T . This approach assumes that the ARMA(1,1) is invertible. The

optimal truncation lag L could be chosen using the Bayesian Information Criterion (BIC).

Autoregressive Distributed Lag (ADL) A simple extension of the ARD model is obtained

by adding exogenous predictors Zt to its right-hand side. This leads to the so-called ADL model

given by:

y
(h)
t+h = α(h) +

L∑
l=1

ρ
(h)
l yt−l+1 +

K∑
k=1

Zt−k+1β
(h)
k + et+h, (8)

where Zt contains a small number of selected series. The precise content of Zt is discussed in

the empirical section.

3 Data-Rich Models

There is a growing literature on how to deal with a large number of predictors when forecast-

ing macroeconomic time series. The factor-based approaches started with the diffusion indices

model of (Stock & Watson 2002) and (Stock & Watson 2002b). Since then, several modifica-
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tions and extensions of this model have been proposed. Among others, it has been combined

with Lasso-type shrinkage in (Bai & Ng 2008), while (Elliott et al. 2013) proposed a forecast

combination approach.

Let Xt be an N -dimensional stationary stochastic process. We consider a general DFM

representation of Xt that will serve as a basis for subsequent analyses. Following the notation

of (Dufour & Stevanovic 2013) and (Stock & Watson 2005), we assume that:

Xt = λ(L)ft + ut , (9)

ut = δ(L)ut−1 + νt , (10)

ft = γ(L)ft−1 + θ(L)ηt , i = 1, . . . , N, t = 1, . . . , T, (11)

where ft is a q × 1 vector of latent common factors, ut is a N × 1 vector of idiosyncratic

components, νt is a N × 1 vector of white noise that is uncorrelated with the q × 1 vector of

white noise ηt, λ(L), δ(L), γ(L) and θ(L) are matrices of lag polynomials.

We have:

λ(L)
(N×q)

=

pλ−1∑
k=0

λkL
k; δ(L)

(N×N)

=

pδ−1∑
k=0

δkL
k,

γ(L)
(q×q)

=

pγ−1∑
k=0

γkL
k; θ(L)

q×q
= Iq −

pθ∑
k=1

θkL
qf

with pλ, pδ, pγ, pθ ≥ 1 are the highest degrees of polynomials in each matrix. Indeed, the

matrices of coefficients λk, δk, γk and θk are allowed to become sparse as k increases to the

maximum degrees so that the orders of the polynomials in a given matrix may vary.

For instance, the i th element of Xt is represented as:

Xit =

pλ−1∑
k=0

λk,ift−k + ui,t ≡ λ(i)(L)ft + uit, (12)

uit =

pδ−1∑
k=0

δk,iui,t−1−k + νit ≡ δ(i) (L)ui,t−1 + νit, (13)

where λk,i is the i th row of λk, λ
(i)(L) =

pλ−1∑
k=0

λk,iL
k, δk,i is the i th row of δk and δ(i) (L) =

pδ−1∑
k=0

δk,iL
k.

The exact DFM is obtained if the following assumption is satisfied:

E(uitujs) = 0 , ∀i, j, t, s, i 6= j.
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The approximate DFM is obtained by allowing for some limited cross-section correlations among

the idiosyncratic components.3 We assume the idiosyncratic errors νit are uncorrelated with

the factors ft at all leads and lags.

To obtain the static factor representation, we define Ft = [f ′t , f
′
t−1, . . . , f

′
t−pλ+1]

′, a vector

of size K = qpλ such that:

Xt = ΛFt + ut, (14)

ut = δ(L)ut−1 + νt, (15)

Ft = ΓFt−1 + Θ(L)ηt, (16)

where

Λ
(N×qpλ)

=
[
λ0 λ1 ... λpλ−1

]

Γ(L)
(qpλ×qpλ)

=


γ0 γ1 ... γpγ−1

0 I 0 . . .
...

. . . . . . . . .

0 . . . 0 I

 ; Θ(L)
(qpλ×q)

=


θ(L)

0
...

0

 .

Equations (14)-(16) define the FAVARMA model proposed in (Dufour & Stevanovic 2013).

A simplified version of this model where pλ = 1 (so that K = q and Θ(L) = θ(L)) has been

used in (Bedock & Stevanovic 2016) to estimate the effects of credit shocks. A similar model

with θ(L) = Iq has been used to forecast time series in (Boivin & Ng 2005) and study the

impact of monetary policy shocks in (Bernanke, Boivin & Eliasz 2005).

In practice, q and pλ cannot be separately identified due to the latent nature of f . Therefore,

we shall rewrite (16) in the static representation as a standard K-dimensional VARMA with

no particular structure imposed on the matrices of coefficients. We have:

Ft = Φ(L)Ft−1 + Θ(L)ηt, (17)

where Φ(L) =
∑pφ−1

k=0 φkL
k and Θ(L) is redefined as Θ(L) =

∑pθ−1
k=0 θkL

k. The optimal values

of pφ and pθ can be selected by BIC.

3Intuitively, only a small number of largest eigenvalues of the covariance matrix of the common component,
λ̃i(L)ft, may diverge when the number of series tends to infinity, while the remaining eigenvalues as well as
the eigenvalues of the covariance matrix of specific components are bounded. See technical details in (Stock &
Watson 2005) and (Bai & Ng 2008).
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3.1 Factor-Augmented Regressions

The first category of forecasting models considered below are the factor-augmented regressions,

where an autoregressive direct model is augmented with estimated static factors. In these

models, there is no need to specify the dynamics of the factors as in (16) because static factors

are extracted by principal component analysis. The second category of models are more directly

related to the DFM model presented previously.

Diffusion Indices (ARDI) The first model is the (direct) autoregression augmented with

diffusion indices from (Stock & Watson 2002b):

y
(h)
t+h = α(h) +

phy∑
l=1

ρ
(h)
l yt−l+1 +

phf∑
l=1

Ft−l+1β
(h)
l + et+h, t = 1, . . . , T (18)

Xt = ΛFt + ut (19)

where Ft are K(h) consecutive static factors and the superscript h stands for the value of K

when forecasting h periods ahead. The optimal values of phy , p
h
f and K(h) are simultaneously

selected by BIC. The h-step ahead forecast is obtained as:

ŷhT+h|T = α̂(h) +

phy∑
l=1

ρ̂
(h)
l yT−l+1 +

phf∑
l=1

FT−l+1β̂
(h)
l .

The feasible ARDI model is obtained after estimating Ft as the first K(h) principal components

of Xt. See (Stock & Watson 2002) for technical details on the estimation of Ft as well as their

asymptotic properties.

Below, we consider two variations of the ARDI model. In the first version, we select only a

subset of K(h) factors to be included in (18) while in the second the Ft are obtained as dynamic

principal components.

Variation I: ARDI-tstat The importance of the factors as predictors of y
(h)
t+h may be inde-

pendent of their importance as principal components. Indeed, the ordering of the factors in Ft

is related to their capacity to explain the (co-)variations in Xt. The selection of factors into the

ARDI model automatically includes the first K(h) principal components. A natural variation

of this approach is to select only those that have significant coefficients in the regression (18).

This leads to forecast y
(h)
t+h as:

9



ŷhT+h|T = α̂(h) +

phy∑
l=1

ρ̂
(h)
l yT−l+1 +

∑
i∈K∗

F̂i,Tβ
(h)
i (20)

K∗ = {i ∈ 1, . . . , K | ti > tc}.

where K∗ ∈ K refers to elements of Ft corresponding to coefficients βhi having their t-stat larger

(in absolute terms) than the critical value tc (here we omit the superscript h for simplicity).

Another difference with respect to the ARDI model is that the optimal number of factors

changes over time.

Variation II: ARDI-DU The second variation of the ARDI model is taken from (Boivin

& Ng 2005). The model is the same as the ARDI except that Ft is estimated by one-sided

generalized principal components as in (Forni et al. 2005). Hence, the working hypothesis

behind the dimensionality reduction is the DFM equation (9).

Targeted Diffusion Indices (ARDIT) Another critique of the ARDI model is that not

necessarily all series in Xt are equally important to predict y
(h)
t+h. The ARDIT model of (Bai

& Ng 2008) takes this aspect into account. Instead of shrinking the factors space as in ARDI-

tstat variation, the idea is first to pre-select a subset X∗t of the series in Xt that are relevant

for forecasting y
(h)
t+h and next predict the factors using this subset. (Bai & Ng 2008) propose

two ways to construct the subset X∗t :

• Hard threshold (OLS): ARDIT-hard

y
(h)
t+h = α(h) +

3∑
j=0

ρ
(h)
j yt−j + β

(h)
i Xi,t + εt (21)

X∗t = {Xi ∈ Xt | tXi > tc} (22)

• Soft threshold (LASSO): ARDIT-soft

β̂lasso = arg minβ

[
RSS + λ

N∑
i=1

|βi|

]
(23)

X∗t = {Xi ∈ Xt | βlassoi 6= 0} (24)

In the hard threshold case, a univariate regression (21) is performed for each predictor Xit

at the time. The subset X∗t is then obtained by gathering those series whose coefficients β
(h)
i

have their t-stat larger than the critical value tc. We follow (Bai & Ng 2008) and consider 3

10



lags of yt in (21), and set tc to 1.28 and 1.65. The second approach uses the LASSO technique

to select X∗t by regressing yht+h on all elements of Xt and using LASSO penalty to discard

uninformative predictors.4

3.2 Factor-Structure-Based Models

The second category of forecasting models relies directly on the factor structure when predicting

the series of interest. The working hypothesis will be the DFM (9)-(11) or its static form (SFM)

(14)- (16) with some variations. Another important difference is that the series of interest, yt,

is now included in the informational set Xt.

Factor-Augmented VAR (FAVAR) Suppose that Xt obeys the SFM representation (14)-

(16) with Θ(L) = θ(L) = I. We have:

Xt = ΛFt + ut (25)

ut = δ(L)ut−1 + vt (26)

Ft = ΦFt−1 + ηt. (27)

This model implicitly assumes that pλ = 1 so that K = q and Ft reduces to a first order VAR.

The optimal order of the polynomial δ(L) is selected with BIC while the optimal number of

static factors is chosen by (Bai & Ng 2002) ICp2 criterion. After estimation, one forecasts

the factors using (27) upon assuming stationarity. The idiosyncratic component is predicted

using (26) and then F̂t and ût are combined into (25) to obtain a prediction of Xt. (Boivin &

Ng 2005) compare the direct and iterative approaches:

• Iterative

F̂T+h|T = Φ̂F̂T+h−1|T

ûT+h|T = δ̂(L)ûT+h−1|T

X̂T+h|T = Λ̂F̂T+h|T + ûT+h|T

• Direct

F̂
(h)
T+h|T = Φ̂(h)F̂T

û
(h)
T+h|T = δ̂(L)(h)ûT

X̂
(h)
T+h|T = Λ̂F̂

(h)
T+h|T + û

(h)
T+h|T

4As in (Bai & Ng 2008) we target 30 series. It is possible to optimally select the number of retained series,
but the procedure is very long and (Bai & Ng 2008) did not find significant improvements.
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The forecast of interest, ŷ
(h)
T+h|T , is then extracted from X̂T+h|T or X̂

(h)
T+h|T . The accuracy

of the predictions depends on the validity of the restrictions imposed by the factor model.

As ARDI type models are simple predictive regressions, they are likely to be more robust to

misspecification than the factor model.

Factor-Augmented VARMA (FAVARMA) (Dufour & Stevanovic 2013) show that the

dynamics of the factors should be modeled as a VARMA and suggest the class of Factor-

Augmented VARMA models represented in (14)-(16). Since the VARMA representation is not

estimable in general, they suggest four identified forms of Equation (16): Final AR (FAR),

Final MA (FMA), Diagonal AR (DAR) and Diagonal MA (DMA). Only the iterative version

is considered:

F̂T+h|T = Φ̂F̂T+h−1|T +

pθ∑
k=1

θ̂kη̂T+h−k|T

ûT+h|T = δ̂(L)ûT+h−1|T

X̂T+h|T = Λ̂F̂T+h|T + ûT+h|T

with η̂T+h−k|T = 0 if h− k > 0. The forecast ŷhT+h|T is extracted from X̂T+h|T .

DFM Contrary to the FAVAR(MA) approach, (Forni et al. 2005) propose to use a nonpara-

metric estimate of the common component to forecast the series of interest.5 The forecasting

formula for the idiosyncratic component remains the same. The forecast of Xt is constructed

as follows:

ûT+h|T = δ̂(L)ûT+h−1|T

X̂T+h|T = λ̂(L)f̂T+h|T + ûT+h|T

and ŷ
(h)
T+h|T is extracted from X̂T+h|T . The number of underlying dynamic factors ft is selected

by (Hallin & Liska 2007)’s test. The advantage of the current approach over the FAVAR(MA)

clearly lies in the nonparametric treatment of the common component, which might be more

robust to misspecifications. However, the nonparametric method may struggle in finite samples.

5See (Boivin & Ng 2005) for discussion about this forecasting models. It is the ‘DN’ specification in their
paper.
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3.3 Other data-rich methods

We now present two recent methodologies that have been shown to compare favorably to ARDI

models.

Three-Pass Regression Filter (3PRF) (Kelly & Pruitt 2015) propose another approach

to construct predicting factors from a large data set. The factors approximation is in the spirit

of the Famma-MacBeath two-step procedure:

1. Time series regression of Xit on Zt for i = 1, . . . , N

Xi,t = φ0,i + Z ′tφi + εi,t

2. Cross-section regression of Xit on φ̂i for t = 1, . . . , T

Xi,t = ς0,t + φ̂′ift + εi,t

3. Time series regression of y
(h)
t+h on f̂t

y
(h)
t+h = β0 + βf̂ ′t + ηt+h

4. Prediction

ŷ
(h)
T+h|T = β̂0 + β̂f̂T

We follow (Kelly & Pruitt 2015) and use 4 lags of yt as proxies for Zt. They also suggest

an information criterion to optimally select the proxy variables.

Complete Subset Regression (CSR) (Elliott et al. 2013) do not use directly the factor

structure of the data. They generate a large number of forecasts of y
(h)
T+h|T using several subsets

of the predictors in Xt. The final forecast is then obtained as the average of the individual

forecasts:

ŷ
(h)
T+h|T,m = ĉ+ ρ̂yt + β̂Xt,m (28)

ŷ
(h)
T+h|T =

∑M
m=1 ŷT+h|T,m

M
(29)

where Xt,m contains L series for each model m = 1, . . . ,M .6 Note that this method can be

computationally demanding when the number of predictors in Xt is large.

6In (Elliott et al. 2013) L is set to 1, 10 and 20. M is the maximum number of models that is set to 20,000
when needed.
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4 Forecasts Combinations

Instead of looking at individual forecasts, one can also aggregate them into a single prediction.

Equal-Weighted Forecast (AVRG) The simplest, but often very robust, method is to set

equal weights on each individual forecast, wit = 1
M

, i.e. take a simple average over all forecasts:

y
(h,ew)
t+h|t =

1

M

M∑
i=1

y
(h,i)
t+h|t

Trimmed Average (T-AVRG) Another approach consists of removing the most extreme

forecasts. First, order the M forecasts from the lowest to the highest value(
y
(h,1)
t+h|t ≤ y

(h,2)
t+h|t . . . ≤ y

(h,M)
t+h|t

)
. Then trim a proportion λ of forecasts from both sides:

y
(h,trim)
t+h|t =

1

M(1− 2λ)

b(1−λ)Mc∑
i=dλMe

y
(h,i)
t+h|t

where dλMe is the integer immediately larger than λM and b(1− λ)Mc is the integer imme-

diately smaller than (1− λ)M .

Inversely Proportional Average (IP-AVRG) A more flexible solution is to produce

weights that depend inversely on the historical performance of individual forecasts as in (Diebold

& Pauly 1987). Here, we follow (Stock & Watson 2004) and define the discounted weight on

the ith forecast as follows

wit =
m−1it∑M
j=1m

−1
jt

,

where mit is the discounted MSPE for the forecast i:

mit =
t−h∑
s=T0

ρt−h−s(ys+h − y(h,i)s+h|s)
2,

and ρ is a discount factor. In our applications, we consider ρ = 1 and ρ = 0.95.

Median Finally, instead of averaging forecasts one can use the median, another measure of

central location, that is less subject to extreme values than the mean:

y
(h,median)
t+h|t = median(y

(h,i)
t+h|t)

M
i=1

The median further avoids the dilemma regarding which proportion of forecasts to trim.
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5 Empirical Performance of the Forecasting Models

We use historical data to evaluate and compare the performance of all the forecasting models

described previously.7 The data employed consists of an updated version of Stock and Watson

macroeconomic panel available at Federal Reserve of St-Louis’s web site (FRED). It contains

134 monthly macroeconomic and financial indicators observed from 1960M01 to 2014M12.

Details on the construction of the series can be found in (McCracken & Ng 2015).

The empirical exercise is easier when the data set is balanced. In practice, there is usually

a trade-off between the relevance and the availability (and frequency) of a time series. Not all

series are available from the starting date 1960M01 in the (McCracken & Ng 2015) database,

but this can be accommodated when a rolling window is used. Indeed, a series that is not

available at the starting date will eventually appear in the informational set as the window

moves forward.8

Our models all assume that the variables yt and Xt are stationary. However, most macroe-

conomic and financial indicators must undergo some transformation in order to achieve sta-

tionarity. This suggests that unit root tests must be performed before knowing the exact

transformation to use for a particular series. The unit root literature provides much evidence

on the lack of power of unit root test procedures in finite samples, especially with highly persis-

tent series. Therefore, we simply follow (McCracken & Ng 2015) and (Stock & Watson 2002b)

and assume that price indexes are all I(2) while interest and unemployment rates are I(1).9

5.1 Pseudo-Out-of-Sample Setup

The pseudo-out-of-sample period is 1970M01 - 2014M12. The forecasting horizons considered

are 1, 2, 3, 4, 6, 8 and 12 months. There are 540 evaluation periods for each horizon. All models

are estimated recursively on rolling windows. For each model, the optimal hyperparameters

7In principle, a real-time forecasting exercise could be preferable but not all the data are yet available in
real-time vintages. Hence, we choose to evaluate the models with the most recent releases and not consider
their performance in the presence of revisions.

8However, this is a problem when conducting a structural FAVAR analysis as in (Bernanke et al. 2005).
Another source of unbalanced panels is mixing frequencies. (Stock & Watson 2002b) construct a monthly data
set using monthly and quarterly series. They transform the quarterly series into monthly indicators using an
expectation-maximization (EM) procedure that also works to fill the holes of unobserved monthly data points.
This EM technique has also been used in (Boivin, Giannoni & Stevanović 2013) when estimating the effects of
credit shocks.

9(Bernanke et al. 2005) keep inflation, interest and unemployment rates in levels in Xt. Choosing (SW) or
(BBE) transformations has important effects on correlation patterns in Xt. Under (BBE), the group of interest
rates is highly correlated as well as the inflation and unemployment rates. Hence, the principal components will
tend to exploit these clusters such that the initial factors will be related to those groups of series. As pointed
out by (Boivin & Ng 2006), the presence of these clusters may alter the estimation of common factors. Under
(SW), these correlation clusters are less important. Recently, procedures have been proposed to deal directly
with the unit root instead of differentiating the data, see (Banerjee, Marcellino & Masten 2014) and (Barigozzi,
Lippi & Luciani 2016).
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(number of factors, number of lags, etc.) are selected specifically for each evaluation period

and forecasting horizon. The size of the rolling window is 120 − h months, where h is the

forecasting horizon. The following metrics are used to compare the models: (i) mean squared

predictive error (MSPE); (ii) mean absolute predictive error (MAPE); (iii) pseudo-R2 from

(Galbraith 2003); (iv) (Pesaran & Timmermann 1992) sign test. MSPE and MAPE will often be

reported relative to ARD (autoregressive direct) used as a benchmark, along with the (Diebold

& Mariano 1995) (DM) test.

We consider the prediction of four types of macroeconomic and financial variables: real

activity, prices, stock market returns and exchange rates. As in (McCracken & Ng 2015), the

real activity measures to be forecasted are Industrial Production (IP), Employment (EMP),

while the Consumer Price Index (CPI) and the Core Consumer Price Index (CPICORE) rep-

resent the nominal sector. As usual, the stock market is represented by the SP500. Finally,

we consider two US bilateral exchange rates: the UK (EXUSUK) and Canada (EXUSCA).

The real activity series (IP and EMP) as well as the SP500 and the exchange rates are treated

as I(1). The CPI and CPICORE are assumed to be I(2), as in (Stock & Watson 2002b) and

(McCracken & Ng 2015).

5.2 Empirical Results

This subsection presents the main results separately for each series. There are in total 19

individual forecasts and five forecast combinations. The supplementary material contains ad-

ditional results.

5.2.1 Real Activity

Industrial Production We first examine the performance of the various models for the

industrial production. Figure (1) plots the relative MSPE (RMSPE) with respect to ARD for

all models and all horizons. Table (1) reports the RMSPEs with the results of the standard

Diebold-Mariano (DM) test at 1%, 5% and 10% significance levels.

First, we note that all data-rich models outperform the standard univariate models. Depend-

ing on the forecasting horizon, the relative efficiency gains approach 40%. The two dominating

techniques to forecast the industrial production are the IP-AVRG of all forecasts and the CSR

with 20 effective predictors (CSR-20). This clearly suggests that model averaging is the best

approach (in the MSPE sense) to predict the annualized growth rate of industrial production.

As shown by Figure (1), most data-rich models are close to the envelope. The 3PRF and the

FAVARMA-FAR models are the worst performing data rich models.

Table (2) reports the minimum RMSPE and relative MAPE (RMAPE) values for the Full

Out-of-sample period (1970-2014), and for NBER recession and non-recession periods. Again,
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model averaging dominates under the RMAPE criterion for the full sample. However, during

NBER recessions the best models are FAVAR(MA) and ARDI-soft.10 Note that the RMSPE

and RMAPE are systematically smaller during recessions than during non-recession periods.

This indicates that the relative efficiency gain of the data-rich models improves during reces-

sions.

Finally, Figure (3) plots the realized industrial production growth, the forecast of the best

RMSPE model as well as the distribution of all forecasts 1-3 periods ahead during the full

out-of-sample period. The trajectories of forecasts delivered by the IP-AVRG and CSR track

the actual industrial production quite well although they are less volatile. The most pessimistic

forecasts appear to be the best predictor of the industrial production during downturns (see

e.g. the 2007-09 recession). In a real-life application, the most pessimistic forecast can be used

as a worse case scenario that becomes more realistic on the eve of economic crises.

Figure 1: Relative MSPE: Industrial Production
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Employment We now examine the empirical results for the employment growth. Figure (2)

shows the RMSPE while Table (3) shows the results of the DM test for all models and horizons.

Here too, it appears that forecast combination is the best technique to forecast employment

growth. The two dominating methods are the CSR-20 and the IP-AVRG-1. Factor-based

models (DFM, FAVARD and FAVARMA-FMA) continue to dominate univariate models as

10That is, if the horizon of interest (t+ h) belongs to recession episodes.
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Figure 2: Relative MSPE: Employment
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The figure shows the MSPE of all models relative to ARD. When the value is below the blue line the corresponding model produces

smaller MSPE than ARD. The thick gray line shows the inferior envelope, i.e. the lowest RMSPE for each horizon.

well. The ARMA(1,1) dominates the ARD model at between 1 and 4 horizons but not at

longer horizons.

Table (4) shows the best performing models in terms of RMSPE and RMAPE under re-

cession and non-recession episodes. The results suggest that employment growth is better

forecasted by the ARDI-tstat and ARDI-hard models during recessions. This finding is robust

to the metrics used to evaluate the forecasts. Forecast combination approaches dominate during

expansions.

Figure (4) shows the trajectories of forecasts of the best performing models as well as

the actual series and the distribution of all forecasts for horizons 1 to 3. We see that the best

performing models track the actual data quite well, although they are slightly optimistic during

recessions and pessimistic during expansions. This is not surprising since forecasts have to be

smoother than the actual data.
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Table 1: Relative MSPE for INDPRO

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 0.999 1.046* 1.096** 1.025 1.027 1.084
ARMA(1,1) 0.963 0.969 1.011 1.057 1.023 1.056 1.192*
ADL 1.016 1.006 1.064** 1.094** 1.022 1.030 0.996
Factor-Augmented Regressions
ARDI 0.878** 0.808*** 0.801*** 0.753** 0.738** 0.749** 0.652***
ARDI-soft 0.924 0.865* 0.733*** 0.793** 0.681** 0.729** 0.847
ARDI-hard,1.28 0.901* 0.781*** 0.793*** 0.767** 0.736** 0.674*** 0.672***
ARDI-hard,1.65 0.874** 0.768*** 0.771*** 0.790** 0.733** 0.676*** 0.705**
ARDI-tstat,1.96 0.925 0.826** 0.818** 0.786** 0.727*** 0.696** 0.691***
ARDI-DU 0.852*** 0.788*** 0.784*** 0.833** 0.721** 0.699** 0.692**
Factor-Structure-Based Models
FAVARI 0.861** 0.791*** 0.793*** 0.794*** 0.737*** 0.746*** 0.782***
FAVARD 0.865** 0.821** 0.837** 0.835* 0.765** 0.735** 0.689**
FAVARMA-FMA 0.864** 0.783*** 0.792*** 0.786*** 0.706*** 0.681*** 0.652***
FAVARMA-FAR 0.951 0.883* 0.894 0.921 0.916 0.908 0.981
DFM 0.859*** 0.801*** 0.824*** 0.819*** 0.761*** 0.747*** 0.769***
Other Data-Rich Models
3PRF 0.884** 0.828*** 0.862** 0.884** 0.878** 0.862*** 0.901*
CSR,1 0.969* 0.960 0.971 0.977 0.927** 0.913*** 0.933***
CSR,10 0.848*** 0.767*** 0.762*** 0.771*** 0.705*** 0.673*** 0.674***
CSR,20 0.848*** 0.732*** 0.723*** 0.746*** 0.670*** 0.621*** 0.636***
Forecasts Combinations
AVRG 0.834*** 0.757*** 0.749*** 0.749*** 0.682*** 0.657*** 0.635***
Median 0.841*** 0.767*** 0.761*** 0.762*** 0.708*** 0.685*** 0.664***
T-AVRG 0.838*** 0.762*** 0.757*** 0.755*** 0.695*** 0.667*** 0.647***
IP-AVRG,1 0.834*** 0.756*** 0.743*** 0.739*** 0.664*** 0.641*** 0.613***
IP-AVRG,0.95 0.834*** 0.757*** 0.747*** 0.747*** 0.677*** 0.654*** 0.623***

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 2: Relative MSPE and MAPE across business cycles for INDPRO

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 IP-AVRG,0.95 CSR,20 FAVARMA-FMA FAVARI CSR,10 CSR,10
0.834*** 0.913*** 0.640*** 0.795*** 0.901*** 0.942***

h=2 CSR,20 CSR,20 FAVARMA-FMA FAVARI CSR,10 CSR,10
0.732*** 0.870*** 0.607*** 0.733*** 0.786*** 0.906***

h=3 CSR,20 CSR,20 ARDI-soft ARDI-soft CSR,10 CSR,10
0.723*** 0.882*** 0.547*** 0.707*** 0.767*** 0.903***

h=4 IP-AVRG,1 CSR,10 ARDI-soft ARDI-soft CSR,10 CSR,10
0.739*** 0.879*** 0.581*** 0.729*** 0.772*** 0.901***

h=6 IP-AVRG,1 CSR,20 FAVARD FAVARMA-FMA CSR,10 CSR,10
0.664*** 0.835*** 0.484*** 0.648*** 0.722*** 0.882***

h=8 CSR,20 CSR,20 FAVARMA-FAR FAVARMA-FMA CSR,20 CSR,20
0.621*** 0.798*** 0.533*** 0.667*** 0.635*** 0.830***

h=12 IP-AVRG,1 IP-AVRG,1 FAVARMA-FMA FAVARMA-FMA IP-AVRG,1 IP-AVRG,1
0.613*** 0.770*** 0.526*** 0.682*** 0.585*** 0.775***

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Figure 3: Out-of-sample forecasts: Industrial Production

The figure shows the pseudo-out-of-sample forecasts of the Industrial Production annualized monthly growth rate for horizons 1,

2, and 3 months. The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area

around these lines presents the forecasts of all models considered in this exercise.
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Table 3: Relative MSPE for Employment

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 0.950** 0.908** 0.915** 0.929** 0.960* 0.998
ARMA(1,1) 0.966 0.974 0.960 0.979 1.014 1.066 1.105
ADL 0.980 1.025 1.032* 1.047* 1.082* 1.066 1.048
Factor-Augmented Regressions
ARDI 0.856* 0.815** 0.816** 0.803** 0.823** 0.871* 0.825*
ARDI-soft 0.901 0.852 0.799* 0.818* 0.845 0.758** 0.817*
ARDI-hard,1.28 0.826** 0.779** 0.773** 0.750** 0.720*** 0.753** 0.851
ARDI-hard,1.65 0.844* 0.801** 0.752** 0.761** 0.720*** 0.734*** 0.839*
ARDI-tstat,1.96 0.911 0.767** 0.741** 0.761** 0.767** 0.754*** 0.783**
ARDI-DU 0.872* 0.838* 0.764** 0.770** 0.813** 0.774** 0.848*
Factor-Structure-Based Models
FAVARI 0.882 0.869 0.857 0.876 0.912 0.969 0.939
FAVARD 0.862* 0.818* 0.779** 0.771** 0.785** 0.807** 0.791***
FAVARMA-FMA 0.842* 0.828* 0.818* 0.815* 0.865 0.906 0.863**
FAVARMA-FAR 0.874 0.846* 0.834* 0.853* 0.920 0.974 0.958
DFM 0.895 0.847* 0.803** 0.799** 0.799** 0.806*** 0.791***
Other Data-Rich Models
3PRF 0.951 0.927 0.908 0.912 0.956 1.000 1.015
CSR,1 1.086*** 1.075* 1.029 0.999 0.975 0.987 0.966**
CSR,10 0.898** 0.817*** 0.775*** 0.766*** 0.762*** 0.774*** 0.771***
CSR,20 0.860* 0.730*** 0.695*** 0.705*** 0.710*** 0.707*** 0.735***
Forecasts Combinations
AVRG 0.817** 0.751*** 0.719*** 0.718*** 0.729*** 0.736*** 0.724***
Median 0.820** 0.748*** 0.720*** 0.733*** 0.746*** 0.771*** 0.770***
T-AVRG 0.813** 0.752*** 0.718*** 0.719*** 0.734*** 0.745*** 0.737***
IP-AVRG,1 0.817** 0.750*** 0.716*** 0.716*** 0.722*** 0.726*** 0.720***
IP-AVRG,0.95 0.817** 0.750*** 0.718*** 0.721*** 0.731*** 0.736*** 0.727***

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 4: Relative MSPE and MAPE across business cycles for Employment

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 T-AVRG IP-AVRG,0.95 ARDI-soft ARDI T-AVRG T-AVRG
0.813** 0.934*** 0.659** 0.838*** 0.835* 0.944**

h=2 CSR,20 CSR,20 ARDI-tstat,1.96 ARDI-tstat,1.96 Median CSR,20
0.730*** 0.884*** 0.636*** 0.817*** 0.724** 0.885***

h=3 CSR,20 CSR,20 ARDI-tstat,1.96 ARDI-tstat,1.96 Median AVRG
0.695*** 0.873*** 0.637*** 0.796*** 0.670** 0.872***

h=4 CSR,20 AVRG ARDI-tstat,1.96 ARDI-tstat,1.96 T-AVRG AVRG
0.705*** 0.864*** 0.681** 0.822*** 0.639*** 0.842***

h=6 CSR,20 CSR,20 ARDI-hard,1.28 ARDI-hard,1.28 AVRG AVRG
0.710*** 0.856*** 0.653*** 0.791*** 0.665*** 0.845***

h=8 CSR,20 CSR,20 ARDI-hard,1.65 ARDI-hard,1.65 IP-AVRG,1 IP-AVRG,1
0.707*** 0.845*** 0.688** 0.773*** 0.666*** 0.846***

h=12 IP-AVRG,1 IP-AVRG,1 CSR,20 CSR,20 AVRG AVRG
0.720*** 0.834*** 0.702*** 0.771*** 0.700*** 0.835***

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Figure 4: Out-of-sample forecasts: Employment

The figure shows the pseudo-out-of-sample forecasts of the Employment annualized monthly growth rate for horizons 1, 2, and 3

months. The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around

these lines presents the forecasts of all models considered in this exercise.

22



5.2.2 Prices

CPI We now examine the performance of the various models at forecasting the inflation

change deduced from the consumer price index (CPI). Indeed, the series of interest here is

the second difference of the CPI, which basically is the CPI acceleration. Figure (5) shows

the RMSPE while Table (5) displays the significance levels for the DM tests. Surprisingly,

the ARMA(1,1) dominates all data-rich models at almost all forecasting horizons (from h = 1

to 8). The performance of data-rich models first deteriorate as h increases and then start

improving at long horizons (h > 6), but not enough to be attractive in front of the ARD and

the ARMA(1,1). The efficiency gains of the best performing models over the ARD benchmark

are lower than what we obtained for the industrial production growth and employment growth.

This may be suggesting that as a nominal variable, inflation change is harder to predict than real

variables. The best performing data-rich model is the IP-AVRG-1, which slightly dominates the

ARD. Factor based models are not recommended for predicting inflation growth. In particular,

FAVARMA should be avoided.

Table (6) shows the best performing models for each forecast horizon during expansions

and recessions. The results confirm the superiority of the ARMA(1,1) model. The ARDI-hard

appears as the winning model at long horizons (h ≥ 8) during recessions. During expansions,

however, the IP-AVRG-0.95 does better than the ARMA(1,1) at horizons h ≥ 8.

Figure (7) shows the trajectories of the best performing models in terms of RMSPE and

RMAPE for horizon h = 1 to h = 3. Clearly, the inflation growth is much harder to track

than the two previous real activity variables. Indeed, the trajectories of forecasts delivered

by the best performing models are much smoother than the realized data, especially during

non-recession episodes.

Core CPI We now present the empirical results for the inflation growth deduced from the

Core consumer price index (CPI). Figure (6) shows the RMSPE of each model at all horizons

while Table (7) shows the results of formal DM tests. The results confirm the domination of the

ARMA(1,1) model at predicting inflation growth. Indeed, data-rich models perform worse than

previously. Taking the simplicity and ease of implementation into account, we must recognize

that the ARD model dominates all data-rich models as well. One possible explanation for

this good performance of univariate models is that inflation growth is largely exogenous with

respect to the conditioning information set available to us. This explanation implies that all

data-rich models are over-parameterized for this series and are therefore doomed to perform

poorly out of samples.

Table (8) shows that the ARDI and ARDI-hard models slightly dominate at the horizon

h = 12, but the previous Figure and Table shows that the improvement over the benchmark is

tiny. Figure (8) confirms the difficulty of the best forecasting models at replicating the volatility

of the inflation growth.
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Figure 5: Relative MSPE: CPI
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Figure 6: Relative MSPE: Core CPI
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The figure shows the MSPE of all models relative to ARD. When the value is below the blue line the corresponding model produces

smaller MSPE than ARD. The thick gray line shows the inferior envelope, i.e. the lowest RMSPE for each horizon.
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Table 5: Relative MSPE for CPI

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 1.019 1.143** 1.209** 1.354*** 1.372*** 1.407**
ARMA(1,1) 0.889** 0.780** 0.798** 0.841** 0.873 0.869 0.996
ADL 1.003 1.027 1.116 1.124 1.275 1.120 1.037
Factor-Augmented Regressions
ARDI 0.960 1.099 1.240 1.181 1.257 1.082 0.844**
ARDI-soft 0.909 0.925 1.083 1.158 1.146 1.059 0.903
ARDI-hard,1.28 0.969 1.018 1.048 1.095 1.254 1.133 0.838*
ARDI-hard,1.65 0.963 1.000 1.122 1.077 1.158 1.127 0.884
ARDI-tstat,1.96 1.007 0.972 1.033 0.983 1.024 1.011 0.852**
ARDI-DU 0.952* 1.068 1.159 1.249 1.441 1.120 0.832**
Factor-Structure-Based Models
FAVARI 1.165*** 1.259*** 1.590*** 1.835*** 2.290*** 2.499*** 2.953**
FAVARD 1.134** 1.248** 1.518*** 1.790*** 2.277*** 2.618*** 3.308***
FAVARMA-FMA 1.131** 1.262** 1.561*** 1.783*** 2.299*** 3.045** 2.921**
FAVARMA-FAR 1.390*** 2.051*** 3.195*** 4.430*** 7.364*** 10.502*** 15.809***
DFM 0.944* 0.956 1.086 1.148 1.371** 1.444** 1.601*
Other Data-Rich Models
3PRF 1.073* 1.177** 1.301*** 1.332*** 1.453*** 1.319*** 1.265***
CSR,1 1.027 1.071 1.224** 1.326*** 1.534*** 1.530*** 1.537***
CSR,10 0.999 1.068 1.224** 1.311** 1.476*** 1.437*** 1.400**
CSR,20 0.979 1.055 1.229** 1.324** 1.599*** 1.411*** 1.355**
Forecasts Combinations
AVRG 0.889*** 0.891** 0.959 0.963 1.057 1.073 1.064
Median 0.889** 0.894** 0.979 0.962 0.994 0.956 0.931
T-AVRG 0.894** 0.890** 0.951 0.944 1.006 1.002 0.944
IP-AVRG,1 0.888*** 0.885** 0.940 0.927* 0.992 0.965 0.867*
IP-AVRG,0.95 0.891*** 0.891** 0.935 0.909** 0.964 0.941 0.833**

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 6: Relative MSPE and MAPE across business cycles for CPI

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 IP-AVRG,1 ARMA(1,1) Median ARDI-soft ARMA(1,1) ARMA(1,1)
0.888*** 0.940** 0.772** 0.879** 0.867*** 0.927***

h=2 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARDI-soft ARMA(1,1) ARMA(1,1)
0.780** 0.911*** 0.725** 0.895** 0.823*** 0.915***

h=3 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1)
0.798** 0.936** 0.725** 0.894** 0.864* 0.954

h=4 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARDI ARMA(1,1) ARMA(1,1)
0.841** 0.940** 0.946 0.979 0.777** 0.922**

h=6 ARMA(1,1) IP-AVRG,0.95 ADL ADL ARMA(1,1) IP-AVRG,0.95
0.873 0.992 0.765* 0.921* 0.799 0.966

h=8 ARMA(1,1) IP-AVRG,0.95 ARDI-hard,1.65 ARDI-hard,1.65 ARMA(1,1) IP-AVRG,0.95
0.869 0.963* 0.689* 0.908 0.833 0.968

h=12 ARDI-DU IP-AVRG,0.95 ARDI-hard,1.65 ARDI-hard,1.65 IP-AVRG,0.95 IP-AVRG,0.95
0.832** 0.934** 0.640** 0.811** 0.846** 0.945*

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Figure 7: Out-of-sample forecasts: CPI

The figure shows the pseudo-out-of-sample forecasts of the CPI annualized monthly growth rate for horizons 1, 2, and 3 months.

The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around these lines

presents the forecasts of all models considered in this exercise.
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Table 7: Relative MSPE for Core CPI

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 1.038 1.146* 1.180** 1.248** 1.258** 1.459**
ARMA(1,1) 0.869** 0.771** 0.812** 0.818** 0.802* 0.827* 0.989
ADL 1.047 1.152 1.156 1.156 1.184 1.087 1.133
Factor-Augmented Regressions
ARDI 0.976 1.064 1.168 1.231 1.160 1.062 0.911*
ARDI-soft 0.910 0.994 1.134* 1.116 1.136 1.300 1.070
ARDI-hard,1.28 0.972 1.055 1.077 1.135 1.201 1.077 0.944
ARDI-hard,1.65 1.023 1.112*** 1.165 1.094 1.186 1.128 1.031
ARDI-tstat,1.96 1.003 0.992 1.065 1.001 1.006 1.016 0.960
ARDI-DU 0.988 1.172 1.223 1.301 1.428 1.100 0.950
Factor-Structure-Based Models
FAVARI 1.131** 1.219** 1.501** 1.706** 1.993** 2.150** 2.821**
FAVARD 1.105** 1.213** 1.446** 1.691** 2.007** 2.301** 3.249**
FAVARMA-FMA 1.097* 1.230** 1.482** 1.666** 2.013** 2.687* 2.817**
FAVARMA-FAR 1.338*** 1.920*** 2.921*** 3.926*** 6.112*** 8.631*** 14.611***
DFM 0.956 0.981 1.087 1.144 1.300* 1.367* 1.676*
Other Data-Rich Models
3PRF 1.086** 1.202*** 1.291** 1.297*** 1.371*** 1.266*** 1.358***
CSR,1 1.031 1.067 1.187** 1.260** 1.390** 1.383** 1.537**
CSR,10 0.996 1.075 1.194* 1.256** 1.369** 1.324** 1.424**
CSR,20 0.988 1.069 1.204* 1.286** 1.548** 1.319** 1.397**
Forecasts Combinations
AVRG 0.892** 0.918* 0.963 0.962 1.016 1.052 1.160
Median 0.884** 0.919* 0.990 0.966 0.944 0.933 0.985
T-AVRG 0.894** 0.915* 0.963 0.948 0.978 0.987 1.044
IP-AVRG,1 0.892** 0.916* 0.954 0.942 0.977 0.982 1.005
IP-AVRG,0.95 0.894** 0.920* 0.948 0.920** 0.940 0.945 0.943

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 8: Relative MSPE and MAPE across business cycles for Core CPI

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 ARMA(1,1) ARMA(1,1) ARDI-soft ARDI-soft ARMA(1,1) ARMA(1,1)
0.869** 0.936** 0.738* 0.864** 0.835*** 0.918***

h=2 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1)
0.771** 0.914** 0.705* 0.886 0.835*** 0.930**

h=3 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1) ARMA(1,1)
0.812** 0.929** 0.840* 0.957 0.796** 0.923**

h=4 ARMA(1,1) ARMA(1,1) ARMA(1,1) ARDI-tstat,1.96 ARMA(1,1) ARMA(1,1)
0.818** 0.934** 0.919 0.921** 0.744* 0.920**

h=6 ARMA(1,1) ARMA(1,1) ADL ADL ARMA(1,1) ARMA(1,1)
0.802* 0.966 0.753* 0.867** 0.701* 0.950

h=8 ARMA(1,1) ARMA(1,1) ARDI-hard,1.65 ADL ARMA(1,1) ARMA(1,1)
0.827* 0.965 0.736* 0.887** 0.767* 0.962

h=12 ARDI ARDI ARDI-hard,1.65 ARDI-hard,1.65 ARDI ARDI
0.911* 0.983 0.783* 0.907 0.956 1.005

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Figure 8: Out-of-sample forecasts: Core CPI

The figure shows the pseudo-out-of-sample forecasts of the Core CPI annualized monthly growth rate for horizons 1, 2, and 3

months. The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around

these lines presents the forecasts of all models considered in this exercise.
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5.2.3 Stock Market

We now examine the empirical results for the SP500 returns. As usual, Figure (9) shows the

RMSPE and Table (9) displays the significance levels of the DM test statistics. Given the

perpetual debate on the efficiency of stock markets, we have highlighted the performance of the

RW and RWD models. According to the results, these two models are dominated by the ARD

benchmark. This immediately suggests that stock returns are predictable to some extent.

Figure 9: Relative MSPE: SP500

1 2 3 4 6 8 12

0.95

1

1.05

1.1

1.15

1.2

Forecasting horizons (months)

R
el

at
iv

e 
M

S
P

E

SP500

 

 

Envelope
AVRG
CSR,1
T−AVRG
ARMA(1,1)
ADL
ARDI
ARDI−soft
FAVARD
FAVARMA−FMA
DFM
3PRF
RWD
RW

The figure shows the MSPE of all models relative to ARD. When the value is below the blue line the corresponding model produces

smaller MSPE than ARD. The thick gray line shows the inferior envelope, i.e. the lowest RMSPE for each forecasting horizon.

At horizons between h = 1 and h = 4, the best performing models are the AVRG and

T-AVRG. The CSR-1 dominates at h = 5 and beyond. The latter forecasting model is the

only one that consistently dominates the benchmark at all horizons. Except the DFM whose

performance is comparable to that of the CSR-1 at horizons between h = 1 and h = 4, all other

individual data-rich models are dominated by the ARD. It should be noted that the efficiency

gain of the best performing models over the standard RW approaches 5% at all horizons. At

the same time, the efficiency gain of the best performing models over the ARD benchmark lies
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below 4% at all horizons. This shows that stock market returns are much harder to forecast

than any of the series considered previously.

Table 9: Relative MSPE for SP500

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 0.995 0.991* 0.991 1.001 0.988 1.002
ARMA(1,1) 1.030** 1.018* 1.001 1.014 1.010 1.007 1.022
ADL 1.019 1.035 1.041 1.053* 1.099* 1.023 1.037
Factor-Augmented Regressions
ARDI 0.996 0.996 1.027 1.052 1.104 1.131 1.133
ARDI-soft 1.069* 1.039 1.123* 1.118 1.165 1.198* 1.216*
ARDI-hard,1.28 1.022 1.026 1.037 1.070 1.158 1.153 1.143*
ARDI-hard,1.65 1.033 1.000 1.047 1.063 1.158 1.208 1.164*
ARDI-tstat,1.96 1.007 1.030 1.074 1.129* 1.126 1.133 1.086
ARDI-DU 1.003 1.016 1.035 1.046 1.119 1.099 1.080
Factor-Structure-Based Models
FAVARI 1.027 1.019 1.016 1.032 1.111 1.164 1.229
FAVARD 1.023 1.038 1.052 1.065 1.162 1.188 1.234
FAVARMA-FMA 1.026 1.031 1.025 1.024 1.082 1.181 1.119
FAVARMA-FAR 1.039 1.071 1.108* 1.120* 1.231* 1.287* 1.353*
DFM 0.978 0.983 0.986 0.982 1.011 0.999 0.982
Other Data-Rich Models
3PRF 1.012 1.012 1.018 1.049 1.112 1.095 1.074
CSR,1 0.985*** 0.986** 0.984** 0.986 0.993 0.977 0.984
CSR,10 0.982 0.973 0.977 1.003 1.052 1.044 0.992
CSR,20 1.039 1.045 1.046 1.100 1.248* 1.450* 1.054
Forecasts Combinations
AVRG 0.971 0.961 0.966 0.974 1.009 0.998 0.976
Median 0.980 0.967 0.992 1.007 1.028 1.030 0.980
T-AVRG 0.973 0.963 0.974 0.988 1.014 1.004 0.972
IP-AVRG,1 0.971 0.962 0.967 0.975 1.009 1.002 0.984
IP-AVRG,0.95 0.972 0.964 0.969 0.974 1.007 1.005 0.983

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table (10) shows that the CSR approach dominates during non-recession periods while

other data-rich models (ARDI-hard, 3PFR, FAVARMA-FMA) do quite well during recession

episodes. This suggests that data-rich models (other than the CSR) capture bearish signals

better than the benchmark model. Figure (10) explains why the efficiency gain of our best

models over the RW is small. In fact, our best forecasts are much less volatile than the SP500

returns in general in addition to being too optimistic during recession periods. Given our

findings at Table (10), we can infer that the most pessimistic forecasts during recessions are

delivered by factor-based models and these forecasts are closer to the realized data than the

average forecast.

It may be of interest to compare the forecasting methods in terms of their ability to correctly

match the signs of the target series. Indeed, a forecasting model that is outperformed by the

RW according to the MSPE or MAPE can still have significant predictive power for the sign

of the target, see (Satchell & Timmermann 1995). This possibility can be assessed by means
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Table 10: Relative MSPE and MAPE across business cycles for SP500

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 AVRG CSR,10 ARDI-tstat,1.96 ARDI-tstat,1.96 CSR,10 CSR,10
0.971 0.974** 0.940 0.952* 0.978 0.969***

h=2 AVRG T-AVRG ARDI-hard,1.65 ARDI-tstat,1.96 CSR,1 T-AVRG
0.961 0.967** 0.892 0.910* 0.991* 0.975*

h=3 AVRG AVRG IP-AVRG,1 ARDI-hard,1.65 CSR,1 AVRG
0.966 0.980 0.916 0.936 0.988** 0.993

h=4 AVRG AVRG DFM DFM CSR,1 CSR,1
0.974 0.981 0.903 0.936 0.990 0.990**

h=6 CSR,1 ARI 3PRF 3PRF CSR,1 ARI
0.993 0.999 0.877* 0.918* 0.995 0.999

h=8 CSR,1 AVRG 3PRF FAVARMA-FMA CSR,1 CSR,1
0.977 0.986 0.807** 0.882* 0.974 0.988

h=12 T-AVRG DFM FAVARMA-FMA FAVARMA-FMA CSR,1 CSR,1
0.972 0.976 0.736** 0.823** 0.987 0.990

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.

of the (Pesaran & Timmermann 1992) sign forecast test. The test statistic is given by:

Sn =
p̂− p̂∗√

V ar(p̂)− V a(p̂∗)
,

where p̂ is the sample proportion of correctly signed forecasts (or the success ratio) and p̂∗ is

the estimate of its expectation. This test statistic is not influenced by the distance between the

realization and the forecast as is the case for MSPE or MAPE. Under the null hypothesis that

the signs of the forecasts are independent of the signs of the target, we have Sn −→ N(0, 1). 11

Table (11) reports the success ratios with the standard significance levels. At short horizons,

most models have significant predictive power for the sign of the SP500 return, with a maximum

of 64% at h = 1 for the CSR and forecast combinations, and 66% at h = 2 for the ARDIT.

At longer horizons, the factor-structure-based models correctly predict up to 72% of the signs

of the SP500 return. Interestingly, the performance of the models seems to improve with

the forecast horizon. The null hypothesis of independence between the forecast and realized

values is rejected most of the time for ADL, data-rich models and forecast combinations, but

not for univariate autoregressive models. Therefore, adding external information improves the

prediction of the sign of the SP500 returns.

11Let q denote the proportion of positive realizations in the actual data and q̂ the proportion of positive
forecasts. Under H0, the estimated theoretical number of correctly signed forecast is p̂∗ = qq̂ + (1− q) (1− q̂).
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Table 11: Success ratio for SP500

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARD 0.593 0.619 0.630 0.635* 0.661* 0.643 0.680
ARI 0.593* 0.619* 0.626 0.633* 0.646 0.646 0.663
ARMA(1,1) 0.593** 0.583 0.639** 0.617 0.644 0.637 0.654**
ADL 0.606*** 0.598** 0.611** 0.637*** 0.663*** 0.656** 0.661**
Factor-Augmented Regressions
ARDI 0.624*** 0.657*** 0.648*** 0.665*** 0.678*** 0.681*** 0.689***
ARDI-soft 0.630*** 0.652*** 0.654*** 0.669*** 0.667*** 0.676*** 0.661***
ARDI-hard,1.28 0.630*** 0.663*** 0.652*** 0.657*** 0.659*** 0.669*** 0.674***
ARDI-hard,1.65 0.613*** 0.652*** 0.650*** 0.661*** 0.667*** 0.654*** 0.657*
ARDI-tstat,1.96 0.604*** 0.652*** 0.631*** 0.626*** 0.661*** 0.656*** 0.670***
ARDI-DU 0.613*** 0.654*** 0.637*** 0.654*** 0.674*** 0.672*** 0.698***
Factor-Structure-Based Models
FAVARI 0.630*** 0.654*** 0.669*** 0.687*** 0.707*** 0.698*** 0.700***
FAVARD 0.631*** 0.637*** 0.652*** 0.676*** 0.685*** 0.698*** 0.709***
FAVARMA-FMA 0.630*** 0.648*** 0.669*** 0.678*** 0.711*** 0.711*** 0.706***
FAVARMA-FAR 0.600*** 0.628*** 0.635*** 0.659*** 0.674*** 0.681*** 0.672***
DFM 0.624*** 0.644*** 0.643*** 0.670*** 0.700*** 0.696*** 0.720***
Other Data-Rich Models
3PRF 0.620*** 0.641*** 0.661*** 0.672*** 0.700*** 0.687*** 0.680***
CSR,1 0.613*** 0.628** 0.639** 0.657*** 0.669** 0.667 0.693
CSR,10 0.639*** 0.650*** 0.665*** 0.674*** 0.681*** 0.674*** 0.681***
CSR,20 0.620*** 0.656*** 0.650*** 0.663*** 0.670*** 0.674*** 0.650*
Forecasts Combinations
AVRG 0.639*** 0.656*** 0.661*** 0.670*** 0.693*** 0.685*** 0.689**
Median 0.622*** 0.661*** 0.659*** 0.676*** 0.683*** 0.678*** 0.696***
T-AVRG 0.635*** 0.661*** 0.661*** 0.670*** 0.693*** 0.683*** 0.694***
IP-AVRG,1 0.639*** 0.657*** 0.663*** 0.674*** 0.694*** 0.685*** 0.691**
IP-AVRG,0.95 0.639*** 0.657*** 0.663*** 0.676*** 0.696*** 0.680*** 0.693***

Note: This table shows the success ratio with the (Pesaran & Timmermann 1992) sign forecast test significance where ∗∗∗, ∗∗, ∗

stand for 1%, 5% and 10% levels. Bold characters represent the maximum success ratio.
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Figure 10: Out-of-sample forecasts: SP500

The figure shows the pseudo-out-of-sample forecasts of the SP500 annualized monthly returns for horizons 1, 2, and 3 months.

The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around these lines

presents the forecasts of all models considered in this exercise.
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5.2.4 Exchange Rates

(Rossi 2013) has reviewed the recent literature on exchange rates forecasting and concluded

that some exchange rates may be predictable at short horizons. This conclusion is reached

by comparing some models to the driftless RW using the MSPE criterion. This subsection

provides further evidence on the predictability of exchange rates by evaluating the performance

of a large number of recent data-rich models in an extensive out-of-sample experiment.

EXUSUK We first examine the results of the EXUSUK annualized growth. Figure (12)

shows the RMSPE of all models while Table (12) shows the formal DM tests. First of all, we

note that the exchange rate growth is difficult to predict pointwise. The efficiency gains of the

best performing models over the standard RW are maximized at around 12% at h = 1 and

decreases fast with h to become negative beyond h = 4. Indeed, the ARMA(1,1) is the best

model at horizons between h = 1 and h = 4 and while the standard RW is the best at horizons

h = 5 and beyond. The CSR-1 does as well as the ARD benchmark at all horizons. Clearly,

data-rich methods are of no help when it comes to predicting the US-UK exchange rate growth.

Table (13) shows that the superiority of the ARMA(1,1) comes from its good performance

during non-recession periods. The best data-rich models are just as good as the ARD model

during recession periods. Figure (13) shows the same pattern as in the case of the SP500

returns, namely that the forecast is too smooth in general and more optimistic than the actual

series during recessions.

Although most of the models struggle with the point prediction of exchange rate growth,

Table (14) shows that they have good predictive power for the sign of the target. Indeed, some

models delivered up to 63% of correctly signed forecast for the US-UK exchange rate growth at

the horizon h = 1 and up to 58% at the horizon h = 2. DFM, CSR, ADL and ARMA exhibit all

achieve approximately 55% of correctly signed forecasts for exchange rate growth at horizons

h = 3, 4 and 6 months. The proportion of correctly signs forecasts drops below 50% at longer

horizons. Our results are in line with those of (Satchell & Timmermann 1995), who found that

nonlinear models produce a larger proportion of correctly signed exchange rates forecasts than

a RW model despite the fact that their MSPE is higher.

EXUSCA Figure (12) shows the RMSPEs for the Canada-US exchange rate and Table (15)

shows the DM tests at different significant levels. The main difference with the US-UK exchange

rate is that the standard RW dominates all models as soon as the forecast horizon exceeds

h = 1. The efficiency gain of the RW over the benchmark increases with the forecast horizon

and approaches 11% for h = 12. ARI and ARMA(1,1) slightly dominate the ARD for horizons

between h = 2 and h = 8.
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Table (16) shows that they are fewer models that significantly outperform the benchmark

during recession periods than during no recession periods. Indeed, the only model that beats

the ARD during the recession is the ARMA(1,1) model and this occurs at horizons h = 2 and

h = 3. Figure (14) confirms the well-known stylized fact that the volatility of exchange rates

is hard to replicate.

While the RW model dominates in predicting the point values of US-CA exchange rate

growth, Table (17) shows that several data-rich models and forecast combinations have predic-

tive power for the sign of the EXUSCA growth at all horizons. The ARMA(1,1) model delivers

57% of correctly signed predictions at horizon h = 1. The ARDI-tstat is the only model with

significant predictive power at the horizon h = 2. The AVRG is correctly signed 55% (resp.

56%) at horizon h = 3 (resp. h = 8). The ARDIT model with hard threshold predicts correctly

the sign of EXUSCA returns 58% of time at horizons 6 and 12 months ahead. Interestingly,

most data-rich models and all forecasts combinations have significant predictive power at 1-year

horizon despite the fact that they are all outperformed by the RW in terms of the MSPE and

MAPE. Overall, the aggregation of forecasts is a robust strategy as it permits to better forecast

the sign of the target than individual models at most horizons.
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Figure 11: Relative MSPE: EXUSUK
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Figure 12: Relative MSPE: EXUSCA
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The figure shows the MSPE of all models relative to ARD. When the value is below the blue line the corresponding model produces

smaller MSPE than ARD. The thick gray line shows the inferior envelope, i.e. the lowest RMSPE for each horizon.
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Table 12: Relative MSPE for EXUSUK

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 1.001 0.993 0.998 1.011* 1.012 0.988
ARMA(1,1) 0.985 0.992 0.987 0.989* 1.000 1.005 0.985
ADL 1.041* 1.045* 1.063* 1.051 1.096** 1.198** 1.203***
Factor-Augmented Regressions
ARDI 1.004 1.036 1.074* 1.069* 1.082** 1.103*** 1.208***
ARDI-soft 1.107** 1.049* 1.093** 1.190** 1.196*** 1.264*** 1.328***
ARDI-hard,1.28 1.098*** 1.086*** 1.162*** 1.122*** 1.286*** 1.365*** 1.275***
ARDI-hard,1.65 1.106*** 1.129*** 1.147*** 1.173*** 1.315*** 1.363*** 1.324***
ARDI-tstat,1.96 1.053** 1.072*** 1.097*** 1.121*** 1.143*** 1.156*** 1.167***
ARDI-DU 1.010 1.027 1.051** 1.066** 1.139*** 1.168*** 1.186***
Factor-Structure-Based Models
FAVARI 1.056** 1.071*** 1.089** 1.110** 1.160** 1.172** 1.125
FAVARD 1.062** 1.070** 1.093** 1.122** 1.192** 1.210** 1.119**
FAVARMA-FMA 1.053** 1.072*** 1.085** 1.108** 1.147** 1.173** 1.065
FAVARMA-FAR 1.035* 1.075** 1.095** 1.120*** 1.191*** 1.216** 1.169**
DFM 1.000 1.011 1.013 1.022 1.052** 1.068** 1.049*
Other Data-Rich Models
3PRF 1.117*** 1.075** 1.088** 1.085** 1.116** 1.108** 1.131***
CSR,1 0.991* 0.999 1.003 1.003 1.005 1.009** 0.994
CSR,10 0.993 1.016 1.038** 1.057** 1.073** 1.088*** 1.065*
CSR,20 1.016 1.055** 1.093*** 1.181*** 1.165*** 1.218*** 1.161***
Forecasts Combinations
AVRG 0.998 1.017 1.034* 1.043* 1.076** 1.086** 1.034
Median 0.993 1.016 1.031 1.043* 1.063** 1.058** 1.022
T-AVRG 0.996 1.018 1.032 1.041* 1.066** 1.067** 1.025
IP-AVRG,1 0.997 1.017 1.032 1.041* 1.073** 1.080** 1.019
IP-AVRG,0.95 0.998 1.017 1.033* 1.042* 1.074** 1.083** 1.023

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 13: Relative MSPE and MAPE across business cycles for EXUSUK

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 ARMA(1,1) ARMA(1,1) CSR,10 Median ARMA(1,1) ARMA(1,1)
0.985 0.990* 0.972 0.991 0.985 0.990*

h=2 ARMA(1,1) CSR,1 ARI ARI ARMA(1,1) CSR,1
0.992 0.998 0.950 0.984 0.999 0.999

h=3 ARMA(1,1) ARMA(1,1) ARI DFM ARMA(1,1) ARMA(1,1)
0.987 0.998 0.953 0.978 0.996 1.000

h=4 ARMA(1,1) ARMA(1,1) 3PRF Median ARMA(1,1) ARMA(1,1)
0.989* 0.994* 0.982 0.982 0.988* 0.994*

h=6 ARMA(1,1) CSR,1 ADL 3PRF ARMA(1,1) ARMA(1,1)
1.000 1.002 0.994 0.959 0.998 1.001

h=8 ARMA(1,1) CSR,1 CSR,1 Median ARMA(1,1) ARMA(1,1)
1.005 1.005 1.006 0.988 1.004 1.004

h=12 ARMA(1,1) ARMA(1,1) CSR,20 CSR,20 ARMA(1,1) ARMA(1,1)
0.985 0.992 0.922 0.979 0.967 0.987

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 14: Success ratio for EXUSUK

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARD 0.607 0.543** 0.535* 0.535* 0.491 0.472 0.480
ARI 0.607*** 0.546** 0.552** 0.522 0.507 0.491 0.476
ARMA(1,1) 0.619*** 0.561*** 0.550** 0.533* 0.530* 0.504 0.480
ADL 0.622*** 0.559*** 0.528 0.554** 0.507 0.476 0.493
Factor-Augmented Regressions
ARDI 0.628*** 0.581*** 0.537* 0.520 0.485 0.494 0.439***
ARDI-soft 0.615*** 0.552** 0.531 0.493 0.470 0.489 0.483
ARDI-hard,1.28 0.596*** 0.559*** 0.548** 0.524 0.483 0.474 0.487
ARDI-hard,1.65 0.617*** 0.541* 0.500 0.502 0.506 0.476 0.478
ARDI-tstat,1.96 0.593*** 0.515 0.517 0.522 0.502 0.491 0.491
ARDI-DU 0.628*** 0.578*** 0.554** 0.504 0.483 0.483 0.461*
Factor-Structure-Based Models
FAVARI 0.606*** 0.559*** 0.522 0.509 0.472 0.480 0.456**
FAVARD 0.598*** 0.550** 0.517 0.493 0.467 0.456** 0.443***
FAVARMA-FMA 0.602*** 0.543** 0.509 0.506 0.459* 0.474 0.459*
FAVARMA-FAR 0.585*** 0.519 0.502 0.509 0.469 0.465 0.463*
DFM 0.619*** 0.569*** 0.556*** 0.528 0.478 0.481 0.452**
Other Data-Rich Models
3PRF 0.563*** 0.519 0.509 0.507 0.470 0.480 0.448**
CSR,1 0.619*** 0.550** 0.539* 0.546** 0.500 0.480 0.494
CSR,10 0.620*** 0.544** 0.556*** 0.531* 0.494 0.476 0.454**
CSR,20 0.591*** 0.561*** 0.554** 0.537* 0.487 0.483 0.454**
Forecasts Combinations
AVRG 0.620*** 0.557*** 0.533 0.520 0.476 0.463 0.446**
Median 0.633*** 0.552** 0.539* 0.519 0.478 0.469 0.441***
T-AVRG 0.630*** 0.559*** 0.541* 0.517 0.472 0.452** 0.446**
IP-AVRG,1 0.619*** 0.554** 0.531 0.517 0.478 0.465 0.443***
IP-AVRG,0.95 0.619*** 0.557*** 0.528 0.519 0.476 0.459* 0.446**

Note: This table shows the success ratio with the (Pesaran & Timmermann 1992) sign forecast test significance where ∗∗∗, ∗∗, ∗

stand for 1%, 5% and 10% levels.
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Figure 13: Out-of-sample forecasts: EXUSUK

The figure shows the pseudo-out-of-sample forecasts of the EXUSUK annualized monthly returns for horizons 1, 2, and 3 months.

The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around these lines

presents the forecasts of all models considered in this exercise.
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Table 15: Relative MSPE for EXUSCA

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARI 1.000 0.990 0.979** 0.982** 0.987 0.991 1.010
ARMA(1,1) 1.024 0.999 0.987** 0.986* 0.986 0.987 1.009
ADL 1.039 1.038 1.042 1.046 1.088* 1.058* 1.051*
Factor-Augmented Regressions
ARDI 1.031* 1.053 1.095* 1.123 1.177* 1.175* 1.025
ARDI-soft 1.090*** 1.125** 1.174** 1.164* 1.219* 1.165** 1.089
ARDI-hard,1.28 1.134*** 1.143*** 1.185** 1.204* 1.261** 1.251** 1.001
ARDI-hard,1.65 1.173*** 1.160*** 1.187** 1.250** 1.409** 1.352** 1.060
ARDI-tstat,1.96 1.052** 1.059* 1.105** 1.150* 1.197* 1.185* 1.024
ARDI-DU 1.033* 1.055* 1.081 1.119* 1.168* 1.165* 0.987
Factor-Structure-Based Models
FAVARI 1.071** 1.078* 1.099 1.152* 1.230* 1.265 1.330
FAVARD 1.065* 1.083* 1.128* 1.176* 1.270* 1.295* 1.283*
FAVARMA-FMA 1.061* 1.074* 1.088* 1.116* 1.161* 1.255 1.163
FAVARMA-FAR 1.066** 1.086** 1.121** 1.132** 1.264* 1.309* 1.370*
DFM 1.025 1.037 1.041 1.045 1.066 1.090 1.088
Other Data-Rich Models
3PRF 1.091** 1.071* 1.082 1.102 1.165 1.085 0.938**
CSR,1 1.000 1.001 1.004 1.008 1.017 1.014 1.007
CSR,10 1.032** 1.031 1.052* 1.105* 1.125* 1.087 0.990
CSR,20 1.114** 1.084*** 1.194** 1.673* 1.262** 1.155** 1.018
Forecasts Combinations
AVRG 1.027* 1.031 1.045 1.066 1.112 1.093 1.002
Median 1.032* 1.041 1.058 1.081 1.130 1.100 0.993
T-AVRG 1.026* 1.032 1.050 1.072 1.114 1.087 0.991
IP-AVRG,1 1.027* 1.031 1.044 1.064 1.110 1.094 1.005
IP-AVRG,0.95 1.026* 1.031 1.045 1.064 1.111 1.096 1.003

Note: Minimum values are in bold, while ∗∗∗, ∗∗, ∗ stand for 1%, 5% and 10% significance of Diebold-Mariano test.

Table 16: Relative MSPE and MAPE across business cycles for EXUSCA

Full Out-of-Sample NBER Recessions NBER Non-Recessions
RMSPE RMAPE RMSPE RMAPE RMSPE RMAPE

h=1 ARI CSR,1 CSR,1 CSR,1 ARI CSR,1
1.000 0.998* 1.000 0.995 1.000 0.998

h=2 ARI ARMA(1,1) ARI ARMA(1,1) ARI ARDI-tstat,1.96
0.990 0.996 0.976 0.984*** 0.995 0.996

h=3 ARI ARI ARI ARMA(1,1) ARI ARI
0.979** 0.990** 0.981 0.990* 0.978** 0.990**

h=4 ARI ARI ADL ARI ARI ARI
0.982** 0.992* 0.955 0.993 0.981* 0.991*

h=6 ARMA(1,1) ARMA(1,1) ADL CSR,1 ARMA(1,1) ARMA(1,1)
0.986 0.988* 0.970 1.002 0.980 0.985*

h=8 ARMA(1,1) ARMA(1,1) FAVARMA-FMA CSR,10 ARMA(1,1) ARMA(1,1)
0.987 0.987 0.915 0.979 0.983 0.981*

h=12 3PRF 3PRF ARDI-soft T-AVRG 3PRF 3PRF
0.938** 0.940*** 0.806 0.965 0.929** 0.928***

Note: This table shows the minimum relative (to ARD model) MSPE and MAPE values as well as the corresponding models for

the full out-of-sample and during recessions and non-recession periods during recessions as declared by the NBER. ∗∗∗, ∗∗, ∗ stand

for 1%, 5% and 10% significance of Diebold-Mariano test.
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Table 17: Success ratio for EXUSCA

h=1 h=2 h=3 h=4 h=6 h=8 h=12
Standard Time Series Models
ARD 0.554 0.530 0.515 0.489 0.507 0.526 0.530
ARI 0.554** 0.530 0.526 0.517 0.515 0.522 0.531
ARMA(1,1) 0.572*** 0.535 0.533 0.511 0.517 0.526 0.541*
ADL 0.567*** 0.526 0.528 0.509 0.487 0.496 0.507
Factor-Augmented Regressions
ARDI 0.546** 0.528 0.537 0.524 0.491 0.496 0.533
ARDI-soft 0.533 0.524 0.519 0.506 0.519 0.519 0.559***
ARDI-hard,1.28 0.543** 0.522 0.544** 0.531 0.548** 0.511 0.557***
ARDI-hard,1.65 0.548** 0.519 0.530 0.530 0.583*** 0.517 0.583***
ARDI-tstat,1.96 0.537* 0.546** 0.496 0.511 0.528 0.528 0.544**
ARDI-DU 0.541* 0.519 0.535 0.502 0.504 0.487 0.548**
Factor-Structure-Based Models
FAVARI 0.535 0.531 0.524 0.504 0.511 0.515 0.557***
FAVARD 0.535* 0.526 0.515 0.489 0.513 0.528 0.570***
FAVARMA-FMA 0.552** 0.531 0.530 0.506 0.519 0.507 0.561***
FAVARMA-FAR 0.552** 0.511 0.535 0.504 0.507 0.513 0.563***
DFM 0.543** 0.522 0.513 0.498 0.506 0.504 0.552**
Other Data-Rich Models
3PRF 0.543** 0.530 0.513 0.513 0.520 0.530 0.570***
CSR,1 0.556*** 0.519 0.507 0.485 0.504 0.511 0.522
CSR,10 0.561*** 0.519 0.519 0.515 0.539* 0.519 0.548**
CSR,20 0.550** 0.517 0.507 0.528 0.531 0.511 0.531
Forecasts Combinations
AVRG 0.539* 0.511 0.546** 0.524 0.556** 0.561*** 0.570***
Median 0.537* 0.520 0.524 0.507 0.543* 0.541* 0.572***
T-AVRG 0.528 0.522 0.537* 0.524 0.552** 0.548** 0.561***
IP-AVRG,1 0.539* 0.507 0.543* 0.522 0.552** 0.552** 0.569***
IP-AVRG,0.95 0.537* 0.509 0.544** 0.524 0.550** 0.552** 0.563***

Note: This table shows the success ratio with the (Pesaran & Timmermann 1992) sign forecast test significance where ∗∗∗, ∗∗, ∗

stand for 1%, 5% and 10% levels.
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Figure 14: Out-of-sample forecasts: EXUSCA

The figure shows the pseudo-out-of-sample forecasts of the EXUSCA annualized monthly returns for horizons 1, 2, and 3 months.

The bleu line presents the historical data and the black line the forecast of the best MSPE model. The gray area around these lines

presents the forecasts of all models considered in this exercise.
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5.2.5 Summary

The Table (18) summarizes the main findings from this out-of-sample exercise and the im-

plications for the prediction of US economic activity. We group the horizons into short-term

(1-3 months), mid-term (4 and 6 months), and long-term (8 and 12 months). In addition, we

report the recommended model during NBER recession periods and from the end of the Great

Recession onward (since 2009M06).

Industrial Production According to MSPE, the industrial production growth rate is best

predicted by the forecasts combinations: CSR-20 of (Elliott et al. 2013) and the IP-AVRG.

However, the results are sensitive to the business cycle: the best forecasting models during

recessions are the FAVARMA of (Dufour & Stevanovic 2013) and the ARDIT of (Bai & Ng

2008). The FAVARMA model is also the best since the end of the Great Recession. When it

comes to the prediction of the sign of the industrial production change, the factor-structure-

based models dominate (except at short horizons with CSR-20, and during recessions with

ARDIT).

Employment growth The conclusions drawn previously are valid for the second real activity

series as well. Overall, the CSR-20 and IP-AVRG are the models that minimize MSPE for all

horizons. During recessions, ARDI and its variations perform best while the recommendation

is not clear for the period following the Great Recession where CSR, DFM and ARDI emerge

as winners. In the case of the sign forecast, IP-AVRG and autoregressive iterative model are

the best at short horizon while ARDIT and ARDI-DU are winners at mid and long-term (and

also during recessions). Since 2009M06, the models ARI, CSR and ARDI-DU share the throne.

Total and Core CPI The ARMA(1,1) model emerges as the best in terms of the MSPE

criterion when it comes to predicting the CPI inflation growth. IP-AVRG is the second-best

approach to predict inflation growth pointwise. When only the sign of the target matter,

other models like ARDI-DU, ARDIT, ADL and forecast combinations are also useful as well,

especially at longer horizons and during expansions. The results for the Core CPI inflation

growth are very similar.

Stock market Few studies have found evidence of predictability of stock market returns,

even in a data-rich context, see (Ludvigson & Ng 2005). Our results show that several data-

rich models and forecast combinations are able to achieve lower MSPE and produce a higher

proportion of correctly signed predictions for the SP500 returns than the RW. AVRG and

CSR are the best models across all horizons according to distance-based criteria while factor-

43



structure-based models emerge as better candidates in terms of correctly signed forecast. Since

2009M06 the winning model is the FAVARMA, followed by the ARMA(1,1).

Exchange rates As suggested by the literature, the RW is a very tough benchmark to

beat when it comes to point-forecasting the exchange rate growth. However, the ARMA(1,1)

model outperforms the RW at the short horizon while CSR, ARI and ARD have quite good

performance during recessions and also since 2009M06. Data-rich models and the ARMA(1,1)

become more relevant here when the signs of the predicted values are compared to the sign of

actual exchange rates growth. The predictability is very low except for the short horizon and

during recessions.
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Table 18: Summary of forecasting performance

Industrial Production Employment
Distance-based criterion Predictability Direction-based criterion Distance-based criterion Predictability Direction-based criterion
MSPE Pseudo-R2 Sign forecast MSPE Pseudo-R2 Sign forecast

Short term CSR,20 / IP-AVRG 0.26-0.40 CSR,20 / FAVAR CSR,20 / IP-AVRG 0.56-0.68 IP-AVRG / ARI
Mid term CSR,20 / IP-AVRG 0.39 FAVAR(MA) CSR,20 / IP-AVRG 0.65-0.60 ARDIT
Long term CSR,20 / IP-AVRG 0.41 FAVAR CSR,20 / IP-AVRG 0.57-0.47 ARDIT / ARDI-DU
Recessions FAVARMA / ARDI-soft 0.5-0.63 FAVAR(MA) / ARDIT ARDI* 0.40-0.82 ARDIT / ARDI-DU
Since Great Recession FAVARMA 0.18-0.47 FAVARMA CSR / DFM / ARDI 0.60-0.80 ARI / CSR / ARDI-DU

CPI Core CPI
Distance-based criterion Predictability Direction-based criterion Distance-based criterion Predictability Direction-based criterion
MSPE Pseudo-R2 Sign forecast MSPE Pseudo-R2 Sign forecast

Short term ARMA / IP-AVRG 0.20-0.45 ARMA / ARDI-DU ARMA 0.19-0.41 AVRGs / ARDI-DU
Mid term ARMA 0.48-0.55 ARDI-DU / ADL ARMA 0.46-0.53 ARDI-DU / ADL
Long term ARMA / IP-AVRG 0.57-0.60 AVRG / Median ARMA/ARDI 0.53-0.54 ADL / ARDI-DU
Recessions ARMA / ARDIT / ADL 0.07-0.66 ARDIT / ADL / AVRGs ARMA / ARDIT / ADL 0.11-0.60 ARDIT / CSR / ADL
Since Great Recession ARMA / ARDI 0.25-0.57 ARDI-DU / ARMA ARMA / ARDI 0.22-0.61 ARMA / ARDI-DU

SP500
Distance-based criterion Predictability Direction-based criterion
MSPE Pseudo-R2 Sign forecast

Short term AVRG / CSR 0.07-0.04 AVRGs / ARDIT
Mid term AVRG / CSR 0.03-0.02 FAVAR(MA)
Long term AVRG / CSR 0.04-0.05 FAVARMA / DFM
Recessions ARDI* / 3PRF / FAVARMA 0.08-0.31 CSR / ARDIT / FAVAR(MA)
Since Great Recession FAVARMA / ARMA 0.02-0.15 FAVAR(MA)

Exchange rate: US-UK Exchange rate: US-CA
Distance-based criterion Predictability Direction-based criterion Distance-based criterion Predictability Direction-based criterion
MSPE Pseudo-R2 Sign forecast MSPE Pseudo-R2 Sign forecast

Short term ARMA 0.11-0.02 ARDI / Median ARD / RW 0.06-0.05 ARMA / ARDI-tstat
Mid term RW 0.03-0.04 ARMA / ADL RW 0.06-0.08 ARDIT
Long term RW 0.05-0.07 RW 0.11-0.15 AVRG / ARDIT
Recessions CSR,10 / ARI 0.05-0.17 AVRG / ARDI ARD / RW 0.08-0.18 ADL / ARDIT / AVRG*
Since Great Recession ARI / RW 0.01-0.08 ARDIT / ARDI-DU ARI / RW 0.05-0.17 CSR / ARDI*

Note: This table resumes the forecasting performance comparison. Under the Distance-based criterion the best models are chosen according to MSPE. The Direction-based criterion

is the sign forecast test of (Pesaran & Timmermann 1992) where the best models have the highest significant success ratio. Predictability is measured by the pseudo-R2 as in

(Galbraith 2003). We report maximum values per horizon. Short-term consists of 1-3 months ahead; mid-term 4 and 6; long-term consists of 8 and 12 months horizons. Recessions

stand for all NBER recession periods. Since 2009M06 corresponds to the period since the end of the Great Recession. We report the best models for each category and across

different horizons: 1-3 for the short term; 4 and 6 for the mid term; 8 and 12 for the long term; and all horizons combined for Recessions and since 2009M06.
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6 Miscellaneous

This horse race involving a large number of forecasting models in a very long out-of-sample

period of 44 years produces a tremendous amount of secondary information such as the selection

of models hyperparameters (lag polynomial orders, number of static and dynamic factors,

selected predictors, etc.) as well as the distribution of forecasts for all series and horizons of

interest. In this section we examine the stability of the forecasting equations over time and

relate the out-of-sample forecast dispersion to macroeconomic uncertainty.

6.1 Stability of Forecasting Relationships

Recently, several studies have suggested that factor loadings and the number of factors are likely

to change over time.12. Figure (15) shows the number of factors retained in ARDI, ARDI-tstat

and ARDI-DU models when predicting the industrial production growth rate 1, 3, 6 and 12

months ahead. Recall that in the case of ARDI (ARDI-DU) models, the BIC selects the number

of consecutive (generalized) principal components to be used , while the t-test selects a subset

of principal components. Figure (16) plots the selected hyperparameters of the ARDI model

(18) for all seven series of interest with 1-month horizon. The bottom right panel shows the

estimated number of factors in FAVAR(MA) and DFM models using (Bai & Ng 2002) and

(Hallin & Liska 2007) respectively.

The number of PCs used in ARDI-tstat and ARDI-DU models vary considerably across

the out-of-sample period as well as for different forecasting horizons. The number of factors in

ARDI model is more stable, but other hyperparameters of that model are quite unstable. From

figure (16) we see that the instability is not the same for all series. Forecasting real activity

measures require more factors (and their lags) than when predicting inflation and exchange

rate growths. In the case of SP500 we note that more lags of Ft are systematically used since

1997. Finally, the number of static factors used in FAVAR(MA) models is much larger than

the number of dynamic factors in the common component of DFM.

We now turn to the ARDIT model of (Bai & Ng 2008) to see whether the choice of pre-

selected predictors and their nature are stable over time. Figure (17) plots the number of series

selected by soft and hard thresholds when forecasting industrial production growth 1, 3, 6 and

12 months ahead. We note a lot of instability in the hard threshold model, with the number

of selected series ranging from a minimum of 20 when predicting industrial production in early

70s to almost 80 series at the end of the sample. In addition, there are large swings between

the 80s and the Great Recession. Figure (18) shows the type of series selected by ARDIT-hard

12See, among others, (Breitung & Eickmeier 2011), (D’Agostino, Gambetti & Giannone 2013), (Eickmeier,
Lemke & Marcellino 2015), (Cheng, Liao & Schorfheide 2016), (Mao Takongmo & Stevanovic 2015), (Stevanovic
2016) and (Guerin, Leiva-Leon & Marcellino 2016).
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Figure 15: Number of factors selected by BIC: Industrial Production

The figure shows the number of factors selected by the Bayesian Information Criterion (BIC) when predicting Industrial Production

annualized monthly growth rate at horizons 1, 3, 6 and 12 months.

model with tc = 1.65. We group the data as in (McCracken & Ng 2015) and calculate the

proportion of selected series from each of those groups. This proportion is relatively stable in

the case of industrial production, except that the stock prices start being important from late

90s for 1 and 2 months ahead and dominate the price series for longer horizons.

Figures (19) and (20) shows the same quantities but for all series and for 1-month horizon.

The patterns are similar to real activity and price series, except that the number of candidate

predictors is generally lower in the case of CPI and Core CPI inflation growths. In the case of

stock prices the number of selected series is declining until the Great Recession while it remains

relatively stable and small in the case of exchange rates. The proportions of variables per group
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Figure 16: ARDI specification and # factors in FAVARs: All series

The figure shows the specification of ARDI model selected by BIC for all series at 1-month horizons. Y − lags stands for the

estimated autoregressive lag order py in (18), while #Factors is the number of consecutive PCs kept in Ft and F − lags is the

lag order pf . The bottom right panel plots the estimated number of static and dynamic factors by (Bai & Ng 2002) and (Hallin

& Liska 2007) respectively.

are quite different across the predicted series. They are very similar and stable in the case of

industrial production and employment, but vary a lot when predicting the inflation growths.

Interestingly, there have been periods in the second half of 70s when almost no price series

have been selected to forecast the inflation growth. This can be explained by the aggressive

monetary policy during the Volcker period which shows up in the importance of interest rates
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group. The interest rates were important when predicting the stock returns in the first half

of the out-of-sample period, but they almost disappeared since 2004, replaced by money and

credit aggregates. Since the Great Recession, prices and real output and income series are

clearly the most important.

Overall, our very long out-of-sample period and the variety of forecasting models may serve

as a good laboratory to study the stability of factor structures and the forecasting relationships.

The results presented in this section document the prevalence of structural changes in all

dimensions. However, the occurrence of these changes are not evenly distributed across the

forecasted series and forecasting horizons.

Figure 17: Number of series selected by ARDIT-hard: Industrial Production

The figure shows the number of series selected by the hard and soft threshold ARDIT model when predicting Industrial Production

annualized monthly growth rate at horizons 1, 2, 3, 6 and 12 months.
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Figure 18: Type of series selected by ARDIT-hard: Industrial Production
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The figure shows the proportion of series selected by the hard threshold ARDIT model with tc = 1.65 when predicting Industrial

Production annualized monthly growth rate at horizons 1, 2, 3, 6 and 12 months. The content of each group is described in

(McCracken & Ng 2015).
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Figure 19: Number of series selected by ARDIT-hard: All series

The figure shows the number of series selected by the hard and soft threshold ARDIT model when predicting all series at 1-month

horizon.
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Figure 20: Type of series selected by ARDIT-hard: All series
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The figure shows the proportion of series selected by the hard threshold ARDIT model with tc = 1.65 when predicting all series at

horizon 1 month. The content of each group is described in (McCracken & Ng 2015).
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6.2 Forecasts Dispersion and Uncertainty

Since the seminal work by (Bloom 2009) there is a growing literature on the measurement

of the macroeconomic uncertainty and its relationship with economic activity. For instance,

(Bloom 2009) used the realized volatility of SP500 (and VIX) as a proxy for macroeconomic

uncertainty while (Jurado, Ludvigson & Ng 2015) (JLN) measure it as the common stochastic

volatility factor of forecasting errors estimated for more than a hundred of series. Another way

of measuring the forecasting error volatility is to take the dispersion of individual forecasts

for every out-of-sample period and every series for a particular forecasting horizon, see (Rossi,

Sekhposyan & Soupre 2016).

Here we consider two measures of dispersion: the standard deviation (STD) and the in-

terquartile range (IQR). Figure (21) plots the average (across seven series) of STD and IQR

against the JLN macroeconomic uncertainty measure and SP500 realized volatility for horizons

1, 3 and 12 months ahead. We see that the out-of-sample forecast dispersion co-moves with the

macroeconomic uncertainty during the business cycles irrespective of the forecasting horizon.

It increases during NBER recessions, except for the 1991 recession, and the peak dispersion is

observed in the middle of the 2007-09 recession. Compared to JLN our measures present higher

peaks during recessions but the two are fairly correlated.

Figure (22) shows disaggregated forecasts dispersion for 1-month horizon as well as the

first principal component of the STD and IQR measures of seven series. For instance, we

see on the (1,1) Figure that the average dispersion (across series) and principal component

of the dispersions look very similar. The (1,2) Figure shows the STD and IQR for industrial

production against the JLN macroeconomic uncertainty measure and the SP500. λSTD and

λIQR represent the principal component loadings of the industrial production’s dispersion. We

see that the aggregate dispersion loads more on the dispersions of the CPI, SP500 and EXUSCA

than on the dispersions of real activity variables. On the one hand, the forecast dispersion

associated with employment growth is much higher until 1984 but stays low for the rest of

the sample, even during the Great Recession. On the other hand, the dispersion in both CPI

forecasts are quite larger since 2000.

Table (19) reports the proportion of variance of several uncertainty measures explained by

our two aggregate dispersion measures and the time series-specific forecast dispersions. For

instance, the aggregate STD dispersion explains 58% of variation in JLN macro uncertainty

at 1-month horizon while SP500 realized volatility explains 22%. We also consider the VIX as

well as the economic policy uncertainty (Policy) of (Baker, Bloom & Davis 2015). VIX is very

correlated with SP500 realized volatility hence the R2s are similar. In the case of Policy, the

highest R2 is 0.13.

Finally, we consider verifying whether the uncertainty measured by our out-of-sample fore-
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cast dispersion has a significant impact on the business cycle. We consider the 8 variables VAR

from (Bloom 2009) and (Jurado et al. 2015) with the same recursive ordering but replacing their

series of uncertainty by our aggregate STD dispersion. Figure (23) plots the impulse responses

to the 100 basis points shock on forecast dispersion equation. This increase in the forecast

dispersion generates a significant and persistent fall in employment and industrial production

as well as in consumer prices. The federal funds rate decreases that can be interpreted as the

systematic response of the central bank. Worked hours decline in the short term. These results

are in line with the findings of (Bloom 2009) and (Jurado et al. 2015).

Overall, our out-of-sample forecast dispersion measures are good predictors of the macroe-

conomic and financial uncertainty measures used in the literature. Our results suggest that

an unanticipated shock to forecast dispersion can generate business cycle movements among

several real activity variables.

Table 19: Forecasts dispersions and measures of uncertainty
h = 1 h = 3 h = 12

Macro SP500 VIX Policy Macro SP500 VIX Policy Macro SP500 VIX Policy
All series STD 0,58 0,22 0,29 0,09 0,60 0,28 0,28 0,13 0,54 0,27 0,27 0,13

IQR 0,58 0,22 0,29 0,09 0,59 0,23 0,23 0,10 0,55 0,20 0,24 0,09
INDPRO STD 0,41 0,10 0,21 0,06 0,47 0,11 0,27 0,12 0,52 0,09 0,25 0,11

IQR 0,29 0,06 0,14 0,04 0,38 0,07 0,25 0,11 0,39 0,05 0,21 0,13
PAYEMS STD 0,17 0,00 0,10 0,01 0,31 0,04 0,25 0,05 0,37 0,07 0,24 0,06

IQR 0,16 0,00 0,08 0,01 0,26 0,02 0,18 0,05 0,30 0,04 0,24 0,06
CPI STD 0,34 0,14 0,09 0,03 0,36 0,17 0,12 0,07 0,34 0,14 0,12 0,06

IQR 0,21 0,10 0,04 0,00 0,30 0,15 0,08 0,04 0,35 0,16 0,11 0,05
CoreCPI STD 0,28 0,15 0,10 0,04 0,29 0,18 0,11 0,08 0,25 0,16 0,12 0,07

IQR 0,19 0,11 0,05 0,01 0,26 0,16 0,07 0,04 0,27 0,17 0,11 0,06
SP500 STD 0,50 0,15 0,30 0,10 0,51 0,21 0,30 0,13 0,43 0,22 0,29 0,15

IQR 0,44 0,11 0,30 0,10 0,42 0,14 0,25 0,11 0,36 0,13 0,25 0,10
EXUSUK STD 0,20 0,09 0,14 0,03 0,31 0,17 0,22 0,06 0,27 0,14 0,17 0,06

IQR 0,20 0,14 0,18 0,04 0,26 0,11 0,15 0,02 0,22 0,08 0,12 0,02
EXUSCA STD 0,25 0,20 0,19 0,08 0,19 0,19 0,17 0,12 0,23 0,29 0,25 0,12

IQR 0,24 0,22 0,20 0,09 0,17 0,16 0,11 0,07 0,13 0,14 0,10 0,04

Note: This table shows the proportion of the variance (R2) of uncertainty measures (columns) explained by the forecasts dispersion

average measures STD and IQR for horizons 1, 3 and 12 months ahead. The uncertainty measures are: Macro uncertainty from

(Jurado et al. 2015), implied volatility of SP500 index options VIX, SP500 realized volatility (measured as a standard deviation

of daily returns for each month) and economic Policy uncertainty from (Baker et al. 2015).
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Figure 21: Average forecasts dispersion and macroeconomic uncertainty

The figure shows the forecasts dispersion averaged across all 7 series for forecasting horizons of 1, 3 and 12 months. Two

dispersion measures are taken: standard error (STD) and interquartile range (IQR). JLN represent the macro uncertainty from

(Jurado et al. 2015) and SP500 represent the realized volatility of SP500. All series are standardized.
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Figure 22: 1-month ahead forecasts dispersion across series

The figure shows the forecasts dispersion for each series and for 1-month forecasting horizon. The (1,1) panel compares the

average dispersion measures against the first principal component from standardized individual dispersion series. The rest of the

panels plot the two dispersion measures for each series as well as the macro uncertainty from (Jurado et al. 2015). All series are

standardized.
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Figure 23: Impulse responses to the shock on forecasts dispersion

4 8 12 16 20 24 28 32 36

−10

−8

−6

−4

−2

0

2

4

6

8

SP500

4 8 12 16 20 24 28 32 36

0

0.2

0.4

0.6

0.8

1
Forecasts dispersion: STD

4 8 12 16 20 24 28 32 36

−300

−250

−200

−150

−100

−50

0

50
FEDFUNDS

4 8 12 16 20 24 28 32 36

−1

−0.5

0

0.5

WAGES

4 8 12 16 20 24 28 32 36

−3

−2.5

−2

−1.5

−1

−0.5

0

CPI

4 8 12 16 20 24 28 32 36

−1.5

−1

−0.5

0

0.5

1
HOURS

4 8 12 16 20 24 28 32 36

−2.5

−2

−1.5

−1

−0.5

0

PAYEMS

4 8 12 16 20 24 28 32 36

−5

−4

−3

−2

−1

0

1

2

INDPRO

This figure plots the impulse responses to the orthogonalized shock on forecast dispersion equation in the VAR-8 model as in

(Jurado et al. 2015). The lag order is set to 2 according to BIC. The gray represent 90% bootstrap confidence bands.
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7 Conclusion

This paper compares the performance of five classes of forecasting models on four types of time

series in an extensive out-of-sample exercise. The classes of models considered are standard

univariate models (Autoregressive Direct, Autoregressive Iterative, ADL and ARMA(1,1)),

factor-augmented regressions (e.g., Diffusion Indices), dynamic factor models (e.g., FAVAR,

FAVARMA), other data-rich models (e.g., Complete Subset Regression) and standard forecast

combinations (simple average, trimmed average, etc.). The types of data considered include

real series (Industrial Production and Employment), nominal series (Consumer Price Index),

the stock market index (SP500) and exchange rates (US-UK and US-Canada).

First, we find that data-rich models and forecast combination approaches perform well in

predicting real series. The two dominating techniques to forecast Industrial Production growth

and Employment growth are the IP-AVRG and the CSR. The worst performing are the RW

models, which simply suggests that real series are highly predictable.

Second, we find that the ARMA(1,1) model predicts inflation growth incredibly well and

outperform data-rich models. This good performance of the ARMA(1,1) model is likely at-

tributable to the fact that inflation growth is exogenous with respect to the conditioning infor-

mation set available to us. As a result, data-rich models are over-parameterized and therefore

have poor generalization performance for this series.

Third, the best forecasts of the SP500 returns at short horizons are obtained by taking the

average of all the other forecasts. Interestingly, the RW underperforms some data-rich models,

which suggest that stock returns are predictable to some extent. Moreover, several data-rich

models produce a significantly higher proportion of correctly signed forecasts for the SP500

returns than RW models.

Fourth, data-rich models are mostly of no use when it comes to predicting exchange rates

pointwise. Univariate models deliver the best point forecasts at very short horizons while the

RW models dominate at moderate and long horizons. However, the ARMA(1,1) and several

data-rich models produce a significantly higher proportion of correctly signed exchange rates

forecasts than RW models.

As the hyperparameters of our models (number of lags, number of regressors or factors, etc.)

are recalibrated for each series, horizon and out-of-sample period, we are able to document that

the optimal structure of our forecasting equations changes much over time. Finally, we find that

the dispersion of out-of-sample point forecasts is a very good predictor of some macroeconomic

and financial uncertainty measures used in the literature.
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