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Abstract

The aim of this paper is to highlight the advantages of algorithmic methods

for economic research with quantitative orientation. We describe four typical

problems involved in econometric modeling, namely the choice of explanatory

variables, a functional form, a probability distribution and the inclusion of

interactions in a model. We detail how those problems can be solved by using

�CART� and �Random Forest� algorithms in a context of massive increasing

data availability. We base our analysis on two examples, the identi�cation of

growth drivers and the prediction of growth cycles. More generally, we also

discuss the application �elds of these methods that come from a machine-

learning framework by underlining their potential for economic applications.
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1 Introduction: some obstacles to econometric mod-

eling

Over the past few years and decades, economics has placed an increasing emphasis on
econometric applications. Thus, almost 70% of the articles published in the three
main economics journals in 2011 were empirical works (Hamermesh, 2013). This
orientation toward quantitative methods is driven by digitalization, enhancements
of econometric tools and computer capacities growth, which has deeply reoriented
economic research. The more common approach in econometric applications is the
consideration of a variable Y explained with J predictors Xj linked to Y by a speci�c
functional form determining the type of relationship. A simple example is the use of
a linear function such as Y = f (Xj) = α+

∑J
j=1 βjXj with α and βj as parameters

whose values describe the relationship. The statistical work of an economist is to
estimate α and βj on the basis of a limited number of realizations (the observations)
of the variables Y et Xj which could be considered as random variables1 2. This
type of approach is consistent with the seminal view of Haavelmo (1944) in which
economic phenomena must be studied in probabilistic framework.
The estimation of the parameters of an econometric model could serve three pur-
poses:

• identi�cation of an e�ect: does the variable Xj a�ect variable Y ?

• quanti�cation of an e�ect: what is the importance of a measured e�ect?

• prediction of the Y values on the basis of the estimated model: for some �xed
values of Xj which might be the probable values of Y ?

This probabilistic approach called �stochastic data modelling� by Breiman (2001b)is
the standard for the most part of econometrics works and manuals. It provides
interesting quantitative results by using a large collection of tools built on solid
mathematical foundations. Their e�ectiveness explains why this approach is present
in other �elds such as biology, medical research, engineering or political sciences.
However, from an economist point of view, the use of this approach could be hin-
dered by several obstacles linked to the complexity and the diversity of economic
phenomena. Among these di�culties, four seem to be prominent.

(i) Choice of explanatory variables
The �rst important question in a modeling attempt is the choice of variables to be
included in a model. Which are the best suited variables for explaining the variable
of interest? A natural solution is to refer to the economic theory that is in line with
the proposition of Frisch (1933). Indeed, this founder of econometrics considers that
one of the dimensions of this �eld is economic theory, in addition to mathematics
and statistics. Estimation, that is, a statistical task, relies primarily on quanti�able
relationships identi�ed on a theoretical basis. Nevertheless, this interesting strategy

1The probabilistic nature of the model is made visible by the addition of an error term (ε).

Thus, the relationship takes this following form: Y = f (Xj) = α+
∑J

j=1 βjXj + ε
2In most cases, the stochastic nature of Xj variables is called into question for reasons of

simpli�cation. The perspective is to consider Y conditional to �xed values of Xj .
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faces the diversity of theoretical proposals. From this perspective, a simple example
is the study of growth determinants, because recognized models underline the role
of many factors behind this dynamic. The standard models constructed by Ram-
sey (1928), Solow (1956) and Swan (1956) consider two factors, which are capital
and labor. Other authors identify several additional factors such as �learning by
doing� (Romer, 1986), education (Lucas, 1988), government spending (Barro, 1999),
research and development (Aghion and Howitt, 1992) and energy (Kümmel et al.,
2010), to name just a few. Furthermore, Sala-I-Martin (1997b) notes that many
other predictors were introduced in empirical papers. He founds some 60 variables
(growth drivers) with an associated coe�cient signi�cantly di�erent from 0 at least
once in a regression. It should be noted that since this publication, other variables
have been used and the number of predictors can be higher if we consider their
lagged values. The choice of variables contains a two-fold objective, which is the
identi�cation of the �good� speci�cation in order to avoid the omitted variables bias
and the reach of su�cient degrees of freedom to ensure feasibility and precision of
estimation. This obstacle could be signi�cant if data used are macroeconomic with
annual frequency and the number of possible predictors is large.

(ii) Choice of a functional form
The choice of a functional form refers to the selection of a function of predictor
variables able to approximate the observations of an output variable. This is a very
important step in econometric modeling because it determines the kind of relation-
ship to estimate; only parameters values will be estimated. For historical reasons,
simplicity and conformity to data, a large number of works address the economic pro-
cess in a linear framework. Indeed, a method such as Ordinary Least Squares (OLS)
has been available to economists for a long time; it is accessible for non-specialists
and it might be suitable for a certain number of phenomena with a linear pattern.
This is also explained by the fact that it is possible to transform a nonlinear model
in a linear model by transforming the variables used. This enables a consideration
of di�erent functional forms by conserving the linearity in the parameters but not
in the variables. From this perspective, we can cite the example of the standard
Cobb-Douglas function (Cobb and Douglas, 1928) or many power laws observed in
economy, �nance or other �elds (Mandelbrot, 1963; Gabaix, 2016), which can be
transformed with a logarithm function.
However, all economic relationships are not linear or linear after transformation,
which complicates the identi�cation of an adapted functional form. Indeed, nonlin-
earity takes on a wide diversity of forms because the relationships between economic
variables could include many speci�c features such as threshold, structural breaks,
deceleration or reinforcing. Nonlinearity seems to be at work in many economic top-
ics such as in the link between wage, education and experience (Mincer, 1974), in
Ricardian equivalence (OCDE, 2015) or in the link between oil prices and the value
of the dollar (Coudert and Mignon, 2016). In order to avoid potential speci�cation
errors, it is possible to make a closer inspection of data by using graphical repre-
sentations, to refer to previous studies on the same topic or to practice speci�cation
tests allowing provision of insights on the form of the relationship studied. In despite
the precautions, the risks of misspeci�cations are substantial and can produce some
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imprecisions in the estimations or even some spurious results if the functional form
used is signi�cantly unsuitable.

(iii) Choice of a probability distribution
Another important step in econometric modeling is the selection of a probability
distribution P (X, Y ) to model the joint distribution of variables.3 This choice can
be the basis of estimation because some approaches are usable only if a speci�c
probability distribution is de�ned before estimation. This is the case of all models
estimated by maximum likelihood. In addition, the choice of distribution can be
necessary to apply statistical tests or to compute con�dence and prediction inter-
vals. For instance, a student test on slopes from a linear regression is relevant under
the normality hypothesis.4 Therefore, this step is important because it conditions
the estimated parameters' values and the level of con�dence in these results. In
some cases, the choice could be not too di�cult due to the statistical issue. For a
logistic regression, it seems logical to consider a Bernouilli distribution when Y is
a binary variable, and a multinomial distribution when the number of categories is
higher than two. The form of the problem leads naturally to these choices.
It is also possible to remove the risks associated with the choice of unsuitable distri-
bution by studying the residuals of a model through speci�c statistical tests, which
can establish the adequacy of a particular distribution for a given con�dence level.
On the other hand, economic literature could guide the modeler since speci�c prob-
ability distributions have been identi�ed in particular contexts. For example, it
seems that �nancial data have singular characteristics such as heavy tails of returns
distribution (Cont, 2001). It means that the number of extreme events (large de-
viations around the mean) is higher than if returns were normally distributed. For
this reason, estimation of (G)ARCH models (Engle, 1982; Bollerslev, 1986) by quasi
maximum likelihood is possible by using a student distribution or a �General Error
Distribution� (GED), which have heavy tails.
However, the use of speci�c probability distribution could be viewed as a strong hy-
pothesis because all economic phenomena are not precisely speci�ed and the power
of statistical tests could be weak with samples with few observations (see for exam-
ple Jarque and Bera (1980) test). In addition, the diagnostics could be dependent
on the threshold chosen for a type 1 error or di�erent according the test used. Thus,
despite precautions, there can be uncertainty about the probability distribution or
it can be impossible to specify it.

(iv) Inclusion of interactions5

A particular type of nonlinearity occurs when the impact of a variable on the vari-
able to be modeled depends on the levels or the variations of other explanatory
variables. Numerous economic questions suppose this kind of con�guration. Will a

3The choice of a functional form already mentioned is a part of this step because the functional
form can be viewed as the conditional expectation function of Y given X.

4This is true with �nite samples but under additional hypothesis, β̂ converges asymptotically
towards the standard normal distribution.

5This problem could be included in the choice of a functional form. However, we devote a
speci�c paragraph to this topic due to its importance.
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�scal stimulus have the same e�ect depending on the structure of consumption and
propensity to save? Will the e�ect of a development aid policy have the same e�ect
according to the state of the main macroeconomic variables?
(Morgan and Sonquist, 1963) explain that these �interactions� are common in social
sciences and that certain economic variables are sums of interactions by construction.
For example, interest in industrialization of countries or regions returns to study an
interactive process between capital accumulation, labor productivity growth, �rms
and territory reorganizations, evolution of human capital, etc. Thus, to study the
impact of one of these factors without taking into account the other is probably an
unproductive approach. It is even possible to wonder if the majority of economic
variables interact and if separable e�ects do not fall within the exception. Indeed,
economic systems can be viewed as �complex systems� (Arthur, 1999) that suppose
that the elements in an economic system are heterogeneous, in interaction and linked
by nonlinear retroactions. Thus, it appears di�cult to describe economy with only
�mechanical�, unidirectional and independent relationships.
From a technical point of view, this situation of interaction makes it hard to simply
consider an additive function of predictors to approximate the variable of interest.
It becomes necessary to model more complex links with speci�c patterns such as
threshold and symbiotic relationship. In economic research, interactions are taken
into account in a variety of ways. One popular method consists of adding interaction
terms in regression models. If the e�ect of a variable X1 on Y depends on the level of
X2, one can create an additional variable X1 ×X2 whose associated coe�cient cap-
tures the interaction. The marginal e�ect ofX1 would be a function of the X2 values.
Nonlinear econometric models such as switching regression models can also integrate
this kind of dependence (see Teräsvirta et al. (2010)). In this way, the output vari-
able is approximated by di�erent regimes determined by the value of a transition
variable. For speci�c range of values of the transition variable, Y is described by
one regime and for other values by other regimes. Thus, the estimated coe�cients
are a function of the regime considered. These approaches are very useful but have
a cost in terms of degrees of freedom and in the capacity to interpret the results.
It is therefore di�cult to consider a large number of interactions with these methods.

�Big data�
Obstacles described in the previous lines are inherent to econometric modeling but
they can be reinforced by the evolution of the informational context of economic
research. Indeed, econometric works depend on the amount of available data and
the ability to process them, which have both been signi�cantly increased. On data
availability, Einav and Levin (2014a) summarize the situation: �data is now available
faster, has greater coverage and scope, and includes new types of observations and
measurements that previously were not available�. These authors also identify the
end of �rectangular data� (Einav and Levin, 2014b) that correspond to data where
the number of variables is less than the number of observations. This new order of
magnitude of the applied statistical problems is technically based on the increase in
the number of devices capable of digitizing, storing and transforming information
(personal computers, servers, smartphones, etc.). The main providers of these new
data are mainly governments and �rms that compile huge clients, vendors, house-
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holds or business �le bases (Einav and Levin, 2014b).
It should also be noted that national and international institutions are involved in
the creation of very large databases. For instance, the International Monetary Fund
(IMF) provides very detailed data on international trade with the �DOTS� database.
For a country like Canada, we can �nd all past information on its imports and ex-
ports. Data are available for some trading partners over a period of 65 years at a
monthly frequency. This is not really "big data" because variables can be observed a
few thousand times; however this is an order of magnitude unprecedented for certain
thematics.
This huge amount of these newly available data reinforces the obstacles described
above, transforming a problem of lack of data in a problem of plenty of data. Indeed,
they give the possibility of using new variables and asking new economic questions
for which there are no prior expertise. Uncertainty about the relevant variables,
the functional form, the underlying probability distribution and the interactions are
therefore ampli�ed.

�Blind spots� and algorithmic solutions
The four obstacles previously described could therefore pose signi�cant problems
in econometric modeling. In some cases, they are marginal issues or they can be
circumvented. However, if they are important or if they are combined, there may be
some �blind spots� for empirical analysis because standard econometric tools cannot
intrinsically model the considered phenomena. It is possible that some applications
cannot be achieved or that certain results cannot be obtained by construction. In
this paper, we argue that one possible access to these blind spots relies on the use of
decision trees 6 built with the �Classi�cation and Regression Tree� (CART) (Breiman
et al., 1984) and �Random Forest� (RF) (Breiman, 2001a) algorithms.
Before presenting these approaches, which come from a machine-learning framework,
we can �rst remove the problem of their legitimacy in economic research. Indeed, the
�rst formulation of a tree-based method7 was done by an economist, James Morgan
(Morgan and Sonquist, 1963), who proposed with his coauthor the �Automatic Inter-
action Detector� (AID). Furthermore, we can recall that econometrics, even if it is a
part of economics, is clearly linked to other �elds such as mathematics or computer
science. Historically, it has used many tools from other �elds. To give just one exam-
ple, we refer to the statistical concepts and methods created by Ronald A. Fisher for
biology or genetics applications, which have become standard for economists (max-
imum likelihood, etc.). Inversely, some econometric methods have been successfully
applied in other �elds such as cointegration in climatology (Schmith et al., 2012) or
GARCH modeling in hydrology (Wang, 2006). Therefore, it seems appropriate to
take an interest in nonstandard approaches if they o�er good performance and are
able to shed light on economic issues. Among them, decision trees have been highly
recognized to the point of being considered as a part of �Top 10 algorithms in data
mining� (Wu et al., 2008), and Random Forest, which is an extension of decision

6Decision trees are either regression trees or classi�cation trees. Other algorithms than CART
can be used to estimate these models.

7For a presentation of the history and the di�erent types of regression and classi�cation trees,
reader could refers to (Loh, 2014).
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trees, has been viewed as �one of the most accurate general-purpose learning tech-
niques available� (Biau, 2012). Logically, these methods have been applied in a wide
variety of �elds, such as particle physics (Collaboration, 2012), genetics (Goldstein
et al., 2010) or computer vision (Shotton et al., 2011).

Despite this multidisciplinary recognition, these methods have curiously only been
minimally presented in manuals and barely used in economic papers. (Einav and
Levin, 2014a) note, �The common techniques in this sort of data mining�classi�cation
and regression trees, lasso and methods to estimate sparsemodels, boosting, model
averaging, and cross-validation�have not seen much use in economics�. Some re-
search on the econpapers database shows, for instance, that only 14 papers using
CART were published in an economic peer-review journal over the period 1984-2016
8 9 while this account is based on a large de�nition of economics, including �nancial
purposes. A recent counter-example is the Varian's article (Varian, 2014) within
which the author tried to promote a set of tools from computer science (including
decision trees).
Most of the time, the use of these approaches is justi�ed by the achievement of good
performance in prediction (in or out sample). This interesting argument (see section
4) must not hide that they are also able to solve technical problems in econometric
modeling. It is on this point that we insist in this paper by showing that CART and
Random Forest algorithms could overcome the obstacles described in the introduc-
tion.
Before starting the presentation of these methods, it appears necessary to provide
some clari�cations. First, this work is not a criticism of standard econometric tools,
but instead, it aims to highlight the advantages of other complementary approaches.
Moreover, this work is not a technical10 and exhaustive presentation. We only take
the major features and we leave aside many adjoining and interesting contributions.
Thus, this analysis is solely focused on the base approaches, namely CART (Breiman
et al., 1984) and Random Forest (Breiman, 2001a). We don't consider numerous ex-
tensions and enhancements such as the �Boosting� approach (Freund and Schapire,
1996), the �Conditional Inference Forest� (Hothorn et al., 2006), the oblique trees
(Heath et al., 1993), the time series trees and forests (Sela and Simono�, 2011 ; Deng
et al, 2013), some concurrent algorithms such as ID3, C4-5 (Quinlan (1979) ;Quinlan
(1993)) or adaptations to speci�c topics such as quantile regression (Meinhausen,
2006), survival analysis (Ishwaran et al., 2008), ranking analysis (Clémençon et al.,
2013), clustering (Yan et al., 2013) or online data (Denil et al., 2013).
The rest of this paper is organized as follows. Section 2 presents an example of a
regression tree built with CART, while section 3 proposes an example of a Random
Forest classi�er dedicated to a prediction issue. Each of these sections includes a
description of how these two methods address the modeling barriers discussed in the
�rst section. Section 4 proposes a discussion on the application �elds in economics
of the methods and the last section concludes this work.

8�CART� keyword was used in econpapers (http://econpapers.repec.org/) for this research.
9This count includes decision trees built with CART but not RF's use.

10For more details on theoretical aspects of these two approaches, see for CART (Breiman et al.,
1984), Biau and Scornet (2016) for RF.
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2 Modeling with CART

Identi�cation of growth drivers
In order to underline the bene�ts of CART and Random Forest algorithms, we
take the example of the Sala-I-Martin (1997b) work on the identi�cation of growth
determinants.11 As previously stated in the introduction, this topic is an excellent il-
lustration of model uncertainty because many variables can be considered as growth
drivers. These variables are numerous and di�cult to prioritize.
The aim of this analysis is to explain the cross-country di�erences in terms of pro-
duction growth between 119 countries12 with 62 explanatory variables. Data are in
cross-section and the variable of interest is the average growth between 1960 and
1992.13 To address this issue, Sala-I-Martin (1997b) studies the complete distribu-
tion of each β̂j from many models based on di�erent combinations of variables. He
ranks the variables according to the sizes of the density functions intervals that do
not include zero. This topic was also investigated by Fernández et al. (2001), who
use �Bayesian model averaging� (BMA) methodology. This method also relies on the
estimation of many models but in a Bayesian framework, the variables' importance
is established on the base of the posterior probability of each model.

A solution to avoid the problem of model uncertainty is the construction of a regres-
sion tree with CART. The basic idea is to split the predictor's spaces into di�erent
subspaces and to approximate the response of the output variable by its empirical
mean in each subspace. On the question of growth determinants, CART produces
the tree plotted in �gure 1. The interpretation of this estimated model is as follows.
If a country has an openness index (�YRSOPEN�) of lower than 0.433, its growth
rate depends on the value of its life expectancy (�LIFE060�). If it is under 43.25
years, the growth rate is 0.318 and otherwise the growth rate is equal to 1.532. If a
country has an openness index higher than 0.433, predicted growth depends on the
fraction of Buddhists in the population.14 If it is superior to 8.5% the growth rate
is equal to 5.571 and it is 2.610 otherwise.

11We keep the same labels for the variables.
12Database contains more countries but there are missing values for the growth variable
13Data used are described in Table 3 in the appendix.
14The author has some reservations about the culturalist interpretation that can be made of

this result. Note that cultural and religious variables are used here only for comparison with
(Sala-I-Martin, 1997b) and (Fernández et al., 2001). These variables can also be interpreted in
a very di�erent way. The �BUDDHA� variable has a high value only for East Asian countries
(Japan, South Korea, Taiwan, etc.), which have developed speci�c development strategies in line
with the "�ying goose model" described by Akamatsu (1962). The importance of this variable can
be interpreted as the success of this strategy.
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Figure 1 � regression tree (example 1)

node 1

node 2 node 3

node 4* node 5* node 6* node 7*

YrsOpen< 0.433

LIFE060< 43.25 BUDDHA< 8.5

ĉ4∗ = 0.318 ĉ5∗ = 1.532 ĉ6∗ = 2.610 ĉ7∗ = 5.571

The ease of interpretation is typical for trees built with CART. It doesn't require
any statistical or mathematical skills and it is even familiar to economists who are
used to tree representations (Varian, 2014). Initial space is the root node (node 1)
and other spaces can be viewed as nodes (t) (or �leaves� or �regions�) and we can
de�ne a part of a tree as a �branch� (Tt). It is also possible to have an analytical
representation15 of a tree which corresponds to a sum of constants, where ŷ(x) is
the predicted (�tted) value, It∗ a dummy variable taking 1 if the terminal node t∗ is
considered, ĉt∗ is the predicted response in this node and Nt equal to the number of
cases in node t:

ŷ(x) =
∑
t∗

It∗ĉt∗ (1)

It∗ =

{
1, if x ∈ t∗
0, otherwise

and ĉt = ȳt =
1

Nt

∑
xn∈t yn

Estimation of regression tree with CART
Building a decision tree is a two-stage procedure in which the �rst is the succession of
binary partitioning producing a tree structure (see �gures 2 and 3). The initial space
of predictors is split by maximizing the decrease of errors relative to an explanatory
variable and a splitting point (s), which are considered the best splitting variable
and point. Formally, we have:

max
j,s
4R(s, t) = R(t)−R(tl)−R(tr) (2)

4R(s, t) is the decrease of errors at node t, tl and tr indexes child nodes. In a
regression case, the error of a node is de�ned as R(t) = 1

Nt

∑
xn∈t(yn− ĉt)

2. The two
child nodes are also partitioned with the same procedure and so on until there is a
very large tree (Tmax), which must be pruned.16 Indeed, the risks include arbitrarily
setting the size of the tree, constructing too simple tree or creating one that a�ords a
very accurate (or even perfect) adjustment but at the cost of over�tting. A satisfying
model must be complex enough to identify the structures in sample but it must have

15Mathematically, this is a �simple function�.
16It is possible to set a hyperparameter controlling the number of observations in the terminal

nodes before estimation in order to save computing resources.
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a scope beyond a speci�c dataset. To prevent this risk of over�tting, CART includes
a pruning procedure that penalizes (a posteriori) additional partitions.17 Precisely,
the idea is to minimize the cost-complexity criterion (Cα (T )), which is the sum of
errors in the terminal nodes and the number of splits carried. This criterion takes
the following form:

Cα (T ) = R (T ) + α|T̃ | (3)

R(T ) =
∑

t∈T̃ NtR(t) corresponds to errors of T ,T̃ is the set of terminal nodes of T ,

|T̃ | is the number of �nal leaves (nodes) and α is the cost of an additional split.18

Figure 2 � split 1

node 1

node 2 node 3

YRSOPEN≤ 0.433

ĉ2 = 0.971 ĉ3 = 3.141

Figure 3 � split 2

node 1

node 2 node 3

node 4 node 5

YRSOPEN< 0.433

LIFE060< 43.25
ĉ3 = 3.141

ĉ4∗ = 0.318 ĉ5∗ = 1.532

17There are other pruning methods not presented in this paper.
18The procedure to identify the value of α is a cross-validation. For more details, readers may

refer to Breiman et al. (1984) or Hastie et al. (2009).
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Overcoming modeling problems
On the basis of the previous comments, several remarks can be made. The �rst
is that the problem of the choice of the predictors (obstacle (i)) is solved by using
CART. Indeed, the algorithm considers at each split all explanatory variables as a
potential splitting variable. In the example, each partition was realized with the
variable that minimizes the sum of quadratic errors. This explains why only three
predictors are present in the �nal tree, while we initially considered 62 variables.
This automatic selection gives a �rst indication about the importance of each variable
and the hierarchy between them. However, the need to select just one of them at
each split could mask important predictors which are slightly less relevant than the
selected variable. To overcome these possible �masked e�ects�, Breiman et al. (1984)
de�ne a variable importance index including all variables, even those that were not
selected in a �nal tree. Variable importance for Xj has the following form:

Importance (Xj) =
∑
t∈T

4R
(
s̃jt , t

)
(4)

s̃jt corresponds to the value of the splitting point of �surrogate� (substitute) split
closest to the primary split. For each node t, algorithm searches the same partition
with others variables than the splitting variable and 4R(s̃jt , t) is the decrease of
errors of each j variable.
The ranking presented19 in Table 1 sheds light on the clear hierarchy between all
variables because we observe the exclusion of 46 of them. Of the 16 remaining
variables, the importance values are also clearly di�erentiated. For instance, one can
say that the �YRSOPEN� is the most important predictor or that life expectancy
(�LIFEE060�) is four times more important than urbanization (�URB60�). Moreover,
our application shows that CART is able to take into account the probable masked
e�ects because the third variable in terms of importance is not in the �nal tree, which
suggests that it had been masked in the splitting process by the selected variables.20

19Values are normalized in order to have a sum of importance equal to 100. For this example,
the sum is equal to 99 due to rounding.

20The details of the execution of the algorithm con�rm this point.
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Table 1 � Variables' importance (example 1)
CART (Sala-I-Martin, 1997b) (Fernández et al., 2001)

Variable Importance Rank Variable Rank Variable Rank

YRSOPEN 19 1 EQINV 1 GDPSH60 1
LIFEE060 12 2 YRSOPEN 1 CONFUC 2
DPOP6090 10 3 CONFUC 1 LIFEE060 3
CIVLIBB 9 4 RULELAW 1 EQINV 4
ABSLATIT 9 4 MUSLIM 1 SAFRICA 5
PRIGHTSB 9 4 PRIGHTSB 6 MUSLIM 6
BUDDHA 7 7 LAAM 6 RULELAW 7
CONFUC 5 8 SAFRICA 8 YRSOPEN 8
URB60 4 9 CIVLIBB 8 ECORG 9
P60 3 10 REVCOUP 10 PROT 10
SAFRICA 3 10 MINING 11 MINING 11
S60 3 10 BMP1 12 NONEQINV 12
H60 3 10 PRIEXP70 13 LAAM 13
PI6089 1 14 ECORG 14 P60 14
FRAC 1 14 WARDUM 15 BUDDHIST 15
HINDU 1 14 NONEQINV 16 BMP1 16

Note 1: The underlined variables are those selected in the �nal tree.

Note 2: The variables having importance equal to 0 are not reported.

In view of the di�erences in terms of ranking (see Table 1), one can ask the ques-
tion of how the results obtained with CART are not similar to those of Sala-I-Martin
(1997b) and Fernández et al. (2001). A possibility is that the functional form used in
these analyses is not adapted to the relationships considered (obstacle (ii)). Indeed,
in these works, authors assume without statistical justi�cation that the identi�cation
of the growth determinants can be carried in a linear framework. Fernández et al.
(2001) simply argue that �Following the analyses in Levine and Renelt (1992) and
Sala-I-Martin (1997b) tradition in the growth regression literature, we will consider
linear regression models�. Thus, the presence of nonlinear relationships is clearly a
blind spot for these approaches because they cannot, by construction, grasp them.
The problem is that a close look at the variables considered as the more important in
these previous studies for explaining the di�erences in terms of average growth do not
con�rm without doubt the presence of linear patterns (see Figure 4). For instance,
if we consider some of the most important variables according to Fernández et al.
(2001)21, the scatter plots do not display linear relationships. The joint distribution
of �GDPSH60� (GDP per capita in logarithm in 1960) which is view as an �obvious
variable� by Sala-I-Martin (1997b) and the growth is almost circular. The possibility
of identifying a linear pattern in this case is only based on few observations, that is
con�rmed by the value of the correlation coe�cient (r̂ = 0.24). Graphical inspection
of the couples �GROWTH�/�CONFUC� and �GROWTH�/�SAFRICA� completely
excludes a linear speci�cation while the relationship between �GROWTH� and the
variable �EQINV� seems to be slightly instable (approximately logarithmic). This
quick evaluation is con�rmed by the application of linearity tests which reject the
presence of linear patterns.22

21These variables are also important according to the Sala-I-Martin (1997b) ranking.
22The results are not reported.
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At least it is possible to recognize that there is uncertainty about the functional
form adopted in these works that weakens the identi�cation of key variables for ex-
plain average growth. Inversely, CART is not subject to this sort of problem because
it is a nonparametric method which allows taking into account a large scope of non-
linearities. This algorithm realizes without a priori automatic detection structures
by searching the most suitable functional form for a given dataset. Through multiple
combinations, the successive splits can model very complex nonlinear relationships.
In addition, it should be noted that CART can reach the conclusion that there is
no link between variables. Indeed, the splits must be more informative than costly
to be included in the �nal tree because the cost-complexity criterion must be mini-
mized. Therefore, it is possible that for a given analysis, any split can compensate
for the complexity of the model. This feature is very interesting because it gives
the possibility of avoiding the selection of spurious links between the variables. This
distinguishes CART from other nonparametric approaches, such as local regressions
(LOESS, Cleveland (1979); LOWESS, Cleveland and Devlin (1988), which neces-
sarily propose an estimated model.

Figure 4 � Scatter plots
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This very �exible approach that combines a nonparametric view and automatic vari-
able selection also has the advantage of simplicity in comparison with other methods
such as BMA, which relies on Monte-Carlo Markov Chain (MCMC) to select relevant
predictors.23 Furthermore, estimation with CART doesn't need to specify a partic-
ular probability distribution. Indeed, from a theoretical point of view, the variable
of interest Y and the predictors Xj are considered as random variables whose joint
distribution are unknown, while their distribution is precisely de�ned in standard
econometric approaches. Breiman (2001b) states that �The one assumption made
in the theory is that the data is drawn i.i.d. from an unknown multivariate dis-
tribution.� This fundamental di�erence means that some statistical tools are not
de�ned for the case of tree-based method. Thus, there is no likelihood function or
parameters to estimate. The ambition, common to algorithmic methods, is just to
build, on the base of a learning sample L(Y,X), a function of explanatory variables
able to correctly approximate Y without searching to identify the generating process
behind data.

On the other hand, the example of the growth drivers gives the opportunity to
stress that CART considers all variables as potential interaction variables because
each split is included in a sequence of successive partitioning. At each node, CART
evaluates the ability of all variables to be the splitting variables and it tests all pos-
sible interactions for building a tree. Finally, the e�ect of variables will depend, in
most of cases, on the values taken by other predictors, except if a terminal node is
directly linked with the root node.
In our �rst application, the observation that the in�uence of �YRSOPEN� depends
on the values of �LIFEE060� and �BUDDHA� is done by eliminating the less relevant
other potential interaction variables. This constitutes a clear advantage compared
to approach using interaction variables. Indeed, this latter strategy could lead to a
problem in terms of degrees of freedom because the quantity of interaction variables
hugely increases with the number of predictors24 (number of interaction variables
= J !(2!(J − 2)!))−1). Inversely, CART can produce a very precise model containing
many interactions without any technical di�culty. On this basis, we can argue that
this algorithm is able to completely solve the obstacle (iv) described in section 1.

3 From trees to forests

Classi�cation and possible trees instability
Numerous contributions have been made to improve decision trees, the main one
being Random Forest elaboration. This algorithm is close to the propositions of
Ho (1998), Amit and Geman (1997), Dietterich (2000), and was �nally de�ned by
Breiman (2001a). The formulation of RF addresses several concerns, namely the
enhancement of prediction accuracy and the solution of the problem of tree insta-
bility. Indeed, in some cases, trees built with CART (or other algorithms) can be

23Other variables selection methods are employed in economics such as �Bayesian Averaging
of Classical Estimates� (BACE) (Sala-i Martin et al., 2004) or �GEneral TO Speci�c� (GETS)
(Hendry and Krolzig, 2004). They also have the drawback of only supposing linear relationships.

24To consider all possible interactions, it should use 1891 interaction variables.
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a�ected by small modi�cations of learning sample, which weakens their ability to
predict and to be interpreted (Breiman, 1996).
To present RF and underline its qualities, we mobilize another example inspired by
the analysis conducted by Osborn et al. (2005) on growth cycles prediction. Re-
call that �classical� cycles correspond to the alternation of periods of expansion and
recession, while growth cycles involve the succession of accelerating and slowing pro-
duction. We pay attention to this topic for the French economy over the period 1978
to 2014 (for more details on data see Table 4 in the Appendix). This example di�ers
from the previous one because the variable �CYCLE� takes only two possible values
(this is a binary variable). We consider the following coding: If growth is higher
than growth observed in the previous month, �CYCLE� is equal to 1. Inversely, if
growth is lower than growth observed in the previous month, �CYCLE� is equal to 0.
For the identi�cation of cycles, we use the chronology established by the Economic
Cycle Research Institute25 (ECRI).

As for the �rst example, the obstacle (i) is obvious because Osborn et al. (2005)
identi�es about ten variables able to in�uence growth cycle and consider, in addi-
tion, some lagged values of explanatory variables. This type of con�guration can
constitute a blind spot for standard econometric tools due to the number of pre-
dictors. For instance, in such cases, it is di�cult to use a method such as logistic
regression because the ratio of events to the number of observations is insu�cient.26

Osborn et al. (2005) use a variable selection algorithm (�n-search algorithm�) for
choosing the best model among all combinations of variables but with a maximum
number of variables of 9. This constraint allows them to obtain interesting estima-
tions, but at the expense of a loss of information due to the exclusion of predictors.
A classi�cation tree27 built with CART is able to overcome this problem by con-
structing a model that predicts growth cycle by considering all predictors. The use
of this algorithm shows its important �exibility because it can work with continuous
or categorical as variables of interest. It should also be noted that explanatory vari-
ables can be of these two types. CART structure is the same as in the �rst example
except that each split is not carried according to the decrease of quadratic errors.
For classi�cation purposes, there are three �impurity� criteria i(t) that can be used at
each node t: error classi�cation rate (1−maxk (ptk)), Gini index (

∑K
k=1 ptk (1− ptk)),

cross entropy (−
∑K

k=1 ptk ln (ptk)). Each node t is split by maximizing the decrease
of impurity:

max
j,s
4i(s, t) = i(t)− pli(tl)− pri(tr) (5)

ptk corresponds to the share of observations belonging to the class k in the node t
while pl and pr are the share of cases falling in child nodes l and r. The predicted
response in each terminal node depends on the most represented class. For example,
for a two class problem, if a terminal node contains ten observations and that seven

25https://www.businesscycle.com/
26Logistic regression is a very accurate classi�er but Peduzzi et al. (1996) have shown that this

method needs a learning sample containing at least 10 Events per Variable (EPV). EPV corresponds
to the case where the variable of interest is equal to 1 (in binary classi�cation). In the example
used, EPV is equal to 97, making it possible to use 10 explanatory variables at most.

27This is a classi�cation tree because the output variable is binary.
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of them belong class 1, the model will predict class 1 with a probability of 70%.
Model built with CART28 is summarized in Figure 5. As in the �rst example, the
interpretation of the tree is simple. For instance, if at a given month, �EZCLI12� is
higher than 99.9 and �LIR3� is inferior to 11.71, one can predict that growth would
be lower than in the previous month ( ˆCYCLE = 0).

Figure 5 � Classi�cation tree (example 2)

node 1

node 2 node 3

node 4* node 5* node 6 node 7*

node 12* node 13

node 26* node 27*

EZCLI12≥ 99.9

LIR3< 11.71 LIR12≥ 8.905

SBF250-3≥ 23.83

USCLI12< 99.46

ĉ4∗ = 0 ĉ5∗ = 1 ĉ7∗ = 1

ĉ12∗ = 0

ĉ26∗ = 0 ĉ27∗ = 1

Aggregating trees as a solution
As noted before, a possible drawback of this kind of model is its potential instability
because a perturbation of the learning sample could a�ect the tree structure. In these
cases, prediction and interpretation are therefore questioned, but it should be noted
that all trees are not sensible to dataset modi�cations. The instability problem can
be solved and more accurate predictions can be obtained by using Random Forest.
The central idea of this CART improvement is to use a collection of trees from B
bootstrap samples created on the base of the original learning sample. Note that
each bootstrap sample is created with only a fraction of the cases contained in the
learning set and one can speak of �Out Of Bag�(OBB) observations to designate
the data not used to generate each sample. The predicted values of each tree are
aggregated to obtain the �nal prediction of the forest (�bagging�, Breiman (1996)).
A key point is that the trees are not correlated because each of them is estimated
by randomly selecting only a portion of predictors.29 It is possible to demonstrate
that this way involves a signi�cant reduction of the variance of the estimation.

28For this example, we use the Gini index as impurity criterion.
29As suggested by the presentation of the algorithm, RF doesn't need a pruning procedure

contrary to CART. For classi�cation purpose, the default value of m is �xed at b√pc while it is
equal to bp3c or regression task. In practice, it is possible that another value of in the proximity

of b√pc or bp3c gives better results. In our application, the default value is b
√
17c = 4 but we set

m = 3 for this reason. This choice is consistent with the �rst suggestion of Breiman who proposed
to use the following formula: m = blog2 (p+ 1)c.
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The aggregation is di�erent according to the type of tree used. In the case of the
regression problem, the predicted values are the average responses of all trees and
they correspond to the majority of votes (mode) for classi�cation task.30 In this case,
the total number of votes over the number of trees is interpreted as the probability
of the event studied. For instance, for a given observation, if three quarters of trees
predict the value 0 and P (0) = 0.75 (see Figure 7 to see this distinction between
prediction and probability). RF estimation is summarized in Figure 6.

Figure 6 � RF Algorithm

Learning

sample

L (X,Y )

Sample b

Tree b constructed

with m < J randomly

selected variables Prediction

Tree b

Prediction
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Regression

ŷRF =

∑B
b=1 ŷb

B

Classi�cation

ŷRF = mode {ŷ1, ..., ŷB}

T1

T2

TB

ŷ1

ŷ2

ŷB

The use of a large number of trees removes the possibility of having a simple rep-
resentation of an estimated model (it is just possible to plot the trees one by one).
However this loss is compensated by accuracy gains and stability of the model. In-
deed, beyond a certain number of trees used, errors committed by a forest reach an
asymptotic limit that avoids the risk of over�tting. Adding new trees in the forest
does not improve the quality of the estimation Breiman (2001a).

30It should be noted that con�dence intervals can be computed by using �In�nitesimal Jackknife�
(Wager et al., 2014).

17



Figure 7 � Out-of-sample predictions

Note 3: This �gure shows the predictions of the RF model on out-of-sample data. The learning

sample includes monthly observations over the period December 1978 - December 2002 (n = 289)

and the data for prediction are available between January 2003 and December 2014 (n = 144).

Blue areas represent di�erent cycles. Above 0.5, these periods within growth rates are higher than

rates observed in the previous month (CYCLE = 0) and under this threshold there are growth

rates lower than rates observed in the previous month (CYCLE = 1).

RF algorithm shares with its predecessor CART many advantages such as its non-
parametric nature. Any assumption is needed in order to produce a function of
explanatory variables able to �t the values of the interest variable. A very large
scope of functional forms can be considered without specifying any particular prob-
ability distribution that avoids obstacles (ii) and (iii). In the case of regression, a
gain in precision is obtained in comparison with CART because the latter proposes
vertical partitions and constant �tted values in each terminal node. Inversely, RF
is based on an aggregation of trees which produces smoothed and individualized
predicted values. There is a similar situation in classi�cation because some strong
constraints that are common to standard methods are relaxed. Indeed, the forms of
link function of probit and logistic models force the predicted values in contrast to
RF. For instance, a logistic regression will tend to favor values near to 0 or 1, which
could be desirable but could also produce an underestimation or overestimation re-
garding values taken by explanatory variables. Moreover, it should be stressed that
while probit and logistic models have nonlinear link functions, they produce linear
separations for classifying statistical individuals. On the contrary, CART and RF
a�ord nonlinear separations which allow them to achieve more accurate classi�cation.
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Number, selection and importance of variables
RF as CART has the ability to consider a very large number of predictors, even
going so far as to have J > N while having very e�cient predictions. For example,
Breiman (2002) presents a case with a learning sample containing 81 observations,
a number of levels of the output variable of 3 and the number of explanatory vari-
ables equal to 4,682. This con�guration, which is impossible to study with standard
econometrics tools, is modeled with RF, which obtains an error rate of only 1.2%.
Beyond this example, comparisons on datasets with very large dimensions (between
701 and 685,569 predictors) showed that RF is on average more accurate that other
algorithms. Its relative performance even improves as the number of dimensions
increases (Caruana et al., 2008).
The consideration of many variables is di�erent (relative to CART) when RF is used.
For each tree and at each node, the algorithm selects the most relevant splitting vari-
able and splitting point in order to maximize the decrease of errors (or impurity)
of the child nodes. As said previously, the aggregation of the predicted values by
tree provides the predicted value by the forest. With CART, non-selected variables
do not in�uence the predicted response, while RF uses almost all variables to pro-
duce predictions. Indeed, RF considers all trees that are constructed with di�erent
variables such that the probability that each variable would be selected at least one
time in one tree is high. Thus, one can say that an RF model gives prediction on
the basis of all explanatory variables.31

To improve understanding of the predictors' hierarchy, RF produces a ranking by
importance but di�erently to CART. In fact, there are two important measures.
The �rst is the Mean Decrease Accuracy (MDA) (Breiman, 2001a) that is obtained
for a j variable by computing the di�erence between the error rate on OOB sample
(eOBB) and the error rate based on this OBB sample but with j values permuted
with the j values of another OBB sample (eOBBj′).

MDA(Xj) =
1

B

B∑
1

(eOBB − eOBBj′) (6)

The logic behind this calculus is that if variable is not important, the permutation
of its values should not a�ect strongly the quality of the estimation.32 The second
measure is the Mean Decrease Impurity (MDI) (Breiman, 2002) which, for a given
variable Xj, is the average value of the decrease in errors (or in impurity) on all
nodes of all trees where Xj is used (jt∗ is the index of variable used for splitting at
node t.). Impurity is de�ned as Gini index for classi�cation problems and by sum
of squared errors for regression.

31A variable not used corresponds to a variable not selected at any node of any tree.
32MDA could be normalized by dividing by the standard deviation of di�erences.
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MDI(Xj)classi�cation =
1

B

B∑
1

∑
t∈Tb

I(jt∗ = j)

(
Nt

N
4i(s, t)

)
(7)

or

MDI(Xj)regression =
1

B

B∑
1

∑
t∈Tb

I(jt∗ = j)

(
Nt

N
4R(s, t)

)
(8)

In the example of growth determinants, computing variables' importance gives the
following ranking:

Table 2 � Variables' importance (example 2)

Variables MDA MDA Rank MDI MDI Rank Average rank

LIR12 17.893 1 10.320 1 1

OPTG3 16.234 3 9.924 2 2.5

OECDCLI3 17.091 2 9.155 4 3

LIR3 15.851 4 7.411 6 5

SIR12 15.828 5 8.387 5 5

EZCLI12 15.497 7 9.193 3 5

SIR3 15.548 6 7.018 7 6.5

USCLI3 14.538 8 6.454 9 8.5

OECDECLI3 14.243 9 6.496 8 8.5

SBF250-12 13.733 10 5.076 13 11.5

EZCLI3 13.526 11 5.897 12 11.5

USCLI12 13.393 12 5.963 11 11.5

OPTG12 13.327 13 6.108 10 11.5

RM1-12 7.625 14 2.693 14 14

EXR 5.193 15 2.377 15 15

SBF250-3 5.038 16 2.032 16 16

RM1-3 -0.272 17 0.517 17 17

These results mainly inform that the four variables situated in the last positions
have a very low importance in contrast to other predictors. We remark that there is
a gradual decline of variables' importance until the last four which are far from the
others. One of these variables (�RM1-3�) even has a negative value, demonstrating
that its inclusion in the model reduces the accuracy of the adjustment. On the
other hand, given that RF components are decision trees, this method can take into
account interactions between explanatory variables. These interactions are even
considered at a very �ne level because the search of relevant interactions is done
with multiple samples and with a limited number of predictors at each step. Thus,
for each tree in the forest, the risk of a masked interaction is reduced due to the low
probability of having two near variables in competition in the same tree. However,
it is not possible to interpret these interactions as in simple tree because they are
numerous and not specially attached to one tree.
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4 Application �elds for economic topics

On the basis of our previous analysis, it is possible to argue that CART and Random
Forest algorithms are able to overcome the four obstacles described in the introduc-
tion one by one or if they are present jointly. These methods are therefore very
useful in order to explore many economic and �nancial topics. In the next section,
we discuss the application �elds of these approaches by identifying the type of issues
most suited for their use.

4.1 Generality and �exibility

Access to blind spots and complex relationships
The ability of tree-based models gives them a feature of generality. Indeed, they
are able to cover a large scope of functional forms (even involving highly nonlinear
patterns) while neglecting the de�nition of a speci�c probability distribution. They
can also take into account a large number of continuous or categorical predictors and
interactions. As presented before, these characteristics provide solutions for econo-
metric modeling but also suppose a more profound methodological approach. As
outlined in section 1, economy can be viewed as one or several �complex system(s)�
in the technical sense of the term Arthur (1999). This implies that many agents are
in relation and react regarding the behavior of other agents, and that the economic
variables change by retroactions and nonlinear relationships. All economy and some
parts of it can be considered as a complex system (markets, industries, �rms...).
Arthur (1999) argues that because these objects are di�cult to analyze, �conven-
tional economic theory� simpli�es the issues in order to make possible an analytical
approach. It seems that many works using econometric tools proceed in the same
way by assuming particular analytical forms in order to make applicable estimation
and models available. It appears that decision trees built with CART, and especially
Random Forest, can deviate from these technical constraints and thus better account
for the "complexity" of economic phenomena in contrast to more conventional meth-
ods. A good example is the ability to include a very large number of interactions
with strong nonlinearities that happen to be the counterpart of the many complex
relationships between economic variables. RF is also able to take into account com-
plexities in the non-theoretical sense of the term. Goldstein et al. (2010) underline
that the methods from a machine-learning framework (including CART and RF) are
very e�cient for this kind of problem: �This means these algorithms may be more
suited for identifying variants where the causal mechanism is unknown and complex�.

Data mining
As stated in section 1 and shown in the two examples, there is often uncertainty
on several structural characteristics of economic issues. This could come from di-
versity, incompatibility or even non-existence of theoretical frameworks. It also can
be justi�ed by the contradictory results of previous studies or a strong di�culty to
specify the economic question. The increasing data availability (�big data�) is also
susceptible to reinforcing this problem.
A response in this context could be an exploratory analysis (�data mining�) with
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CART or RF in order to identify the main characteristics contained in data. On
this issue, these algorithms are mostly presented as data mining methods in spite
of the fact that they are able to do other kind of task. In order to stress this abil-
ity, we can recall that these methods can identify the most relevant predictors for
regression and classi�cation problems and to hierarchize them. Identi�cation of the
key variables, which is a very important question in economic research, can even
be at the core of a statistical analysis with tree-based models instead of prediction
(Goldstein et al., 2010; Verikas et al., 2011).
Tree-based models also give the possibility of grasping interactions and the presence
of relatively homogeneous subgroups of statistical individuals. This latter capac-
ity is very interesting for economists because data in cross-section and panel forms
are very common in economics. This exploratory capacity is therefore particularly
suitable for survey data (on employment, �rms, etc.) that uses a large number of
individuals and statistical variables. In the �rst example on the growth drivers,
the regression tree identi�es four subgroups depending on the values of the splitting
variables.

Prediction
CART and RF are naturally oriented toward predictions and are very e�cient in
this kind of task. Their procedures of estimation and model validation are always
based on the ability to predict by using new values not contained in the learning
sample. For instance, building a tree with CART involves a step of cross-validation
or the use of a test set for choosing the α value, which penalizes additional splits
and identi�es the �nal tree. The quality of a model, the variables' importance and
the proximity matrix in RF framework are evaluated with OBB cases.
On a practical level, these methods are often used for prediction tasks for which very
accurate performances are obtained (see examples in Breiman (2001b) or Caruana
et al. (2008)). Generally, forests are superior to trees and are positioned very favor-
ably compared to other approaches. To stress this ability, it should be noted that
Fernández-Delgado et al. (2014) have evaluated the predictions of 179 classi�cation
approaches from 17 algorithm families on 121 datasets and that three of the �ve
best models are RF models. These very convincing performances are added to other
interesting characteristics evocated in this paper and are adapted to many economic
issues. Examples are the estimation of default probabilities of banks, states, house-
hold or the prediction of key variables from a policy point of view such as in�ation,
unemployment or balance of trade.

4.2 Interpretation of tree-based models

The accuracy of in and out-sample predictions of an econometric model is an im-
portant quality. However, as said in section 1, economists are also interested in
identifying and quantifying the e�ects of various explanatory variables on output
variables. For this reason, they mostly resort to parametric models able to provide
the sign and the magnitude of a given e�ect (by giving a marginal e�ect). For in-
stance, in a log-log model, the slopes associated with predictors can be interpreted
as elasticities and the coe�cients obtained after a logistic regression can be viewed
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as odd ratios. These statistical results give the possibility for formulating economic
interpretation and policy recommendations.
A possible criticism of the use of tree-based model in economics is related to their
supposed limit in terms of interpretation. Indeed, these algorithms that come from
the machine-learning �eld can be view as �black box� (Breiman, 2001b) because
they propose pertinent predictions but they may appear di�cult to interpret. Their
complexity can be linked with the large number of used variables, the large number
of interactions (and trees for RF) or the absence of parameters and simple analytical
form could reduce the attractiveness for economic works. For example, it may seem
di�cult to understand a forest based on hundreds of trees and characterized by even
more interactions.

Firstly, it should be noted that a systematic use of tree-based models does not
seem recommendable. The question of the level of prior information on variables
and their relationships is fundamental. In the case where the problem is complex
and has an unknown form, it seems very interesting to rely on CART or RF in order
to perform an automatic structure identi�cation instead of quantifying an uncertain
relationship. Inversely, if the statistical issue is well de�ned, it seems more e�cient
to use a parametric method. The adjustment to the data would be more accurate
and the results would be interpreted in statistical and economic terms. These two
approaches can be complementary because it is possible to use a parametric ap-
proach after a preliminary analysis with CART or RF.
Secondly, forests and trees are not perfectly hermetic black boxes which just produce
predicted values without giving information on the data structure. The algorithms
evoked in this work are both able to carry a variable selection to build a model and
to rank all variables considered. Even if they di�er in the methodology, these rank-
ings provide information on the capacity of the variables to reduce the prediction
errors. It is quite natural to see the existence of causal e�ects behind these rank-
ings. For this reason, Archer and Kimes (2008) conclude that �the RF methodology
is attractive for use in classi�cation problems when the goals of the study are to
produce an accurate classi�er and to provide insight regarding the discriminative
ability of individual predictor variables.� Furthermore, it is possible to add the sign
of the e�ect to importance measures by inspecting the execution of algorithms. For
single trees, the detail of their structure is summarized in the associated graphical
representations which clearly present the relationships and interactions identi�ed by
CART. Thus, �single decision trees are highly interpretable� Hastie et al. (2009)).
For example, in the case of the tree estimated in section 2, it is obvious that the
relationship between average growth and openness index (�YRSOPEN�) is positive.
Regarding Random Forest, the situation is di�erent because it is not possible to
summarize the model in a single tree. It is only possible for a given variable to be
studied on the basis of all trees how it determines the variable of interest.

However, a more convenient approach for studying the impact of explanatory vari-
ables on output variable consists in relying on the �partial dependence function�
(PDF) de�ned by Friedman (2001). This kind of object is particularly useful for
tree-based models but it can be used for many other type of model. For this reason,
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Hastie et al. (2009) stress that �partial dependence functions can be used to inter-
pret the results of any `black box' learning method.� The general idea is to evaluate
the mean predicted response of a model for each given value of one of several vari-
ables(s) XS.

33 Formally, by considering a subset XS of matrix X which contains
predictors S ⊂ 1, 2, . . . , J and a complement set C. Partial dependence function can
be estimated by using:

f̂S(XS) =
1

N

N∑
1

f̂(XS, XCn) (9)

An important point is that the slope of f̂S(XS) may are not necessarily re�ect
marginal e�ects because it describes how the predicted response changes relative to
XS after taking into account the impact of the other variables. The slope of f̂(XS)
corresponds to marginal e�ects only when one variable in XS is considered and that
any interaction is present that is rare with tree-based models.
For instance, we plot four partial dependence functions from the applications of
this work in Figure 8. The �rst plot on the left displays the partial dependence
of �GROWTH� over life expectancy (�LIFE060�). It shows that for any values of
�LIFE060�, the predicted response is positive and that beyond a given threshold
(43.25), the predicted value of growth is higher. This very simple conclusion re�ects
the simple structure of the underlying model, which has a limited size with only
three explanatory variables and two interactions selected.
When a dependence function is estimated with a large tree or with a RF model, it is
probable that very speci�c relationships will be obtained. If we take the same exam-
ple but use an RF model (at the top right of the Figure 8), we observe that a growing
and nonlinear relationship indicates that the increase or decrease of life expectancy
has an e�ect concentrated in a speci�c interval (when �LIFE060� ∈ (40, 55)). The
two other plots in Figure 6 represent two PDF from the second example. It is impor-
tant to note that in a classi�cation case, the mean response is computed by using
the centered logit. These comments stress that the �black box� expression often
associated with statistical models from the machine-learning framework does not
seem adapted for tree-based models. Indeed, these approaches are able to identify
relevant predictors, hierarchize them and to describe how the variable of interest
evolves with values taken by explanatory variables.

33It is also possible to re�ne the analysis of partial dependence by decomposing the average
response by studying the �Individual Conditional Expectation� (ICE) as proposed by Goldstein
et al. (2014). It also gives the possibility to use median for aggregate individual responses.
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Figure 8 � Partial Dependance Functions

5 Conclusion

The purpose of this work is to underline the bene�ts of the use of CART and RF
algorithms for studying economic issues. After describing four typical problems oc-
curring in econometric modeling, we have presented the two algorithms and shown
how they can solve these obstacles through using two examples. The �rst is devoted
to the identi�cation of growth determinants and the second concerns the prediction
of growth cycles. More generally, we have described the most suitable tasks for
these approaches. It seems that CART and RF are particularly e�cient for grasping
complex patterns in data with a large number of variables, nonlinear relationships
and interactions. They also appear adapted to data mining thanks to their ability
to automatically detect structure and to make accurate predictions on the basis of a
learning sample. Our analysis also stresses that these methods are able to produce
models that can be interpreted, which is crucial from an economist's point of view.
On this basis, it seems possible to argue that these tools are very useful for statisti-
cal works in economics in complement with other standard approaches. This claim
naturally leads to considering the use in economic research of the numerous exten-
sions of these ground algorithms and of other methods from the machine-learning
framework, such as neural networks and Support Vector Machines (SVM).
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Appendices

Table 3 � Data used in example 1

Variable Name Variable de�nition Countries

GROWTH Average Growth 1960-1990 Algeria, Angola, Benin, Botswana,
GDPSH60 log(GDP per capita 1960) Burkina Faso, Burundi, Cameroon,
LIFEE060 Life Expectancy in 1960 Cape verde, Cent'l Afr. Rep., Chad,
P60 Primary School Enrollment Rate in 1960 Comoros, Congo, Egypt, Ethiopia,
SAFRICA Dummy Variable for Sub-Sahara African Countries Gabon, Gambia, Ghana, Guinea-Bissau,
LAAM Dummy Variable for Latin American Countries Cote d'Ivoire, Kenya, Lesotho, Liberia,
BMP1 Black Market Premium Madagascar, Malawi, Mali, Mauritania,
BMS6087 Standard Deviation Black Market Premium Mauritius, Morocco, Mozambique, Niger,
GDC6089 Growth of Domestic Credit 1960-1990 Nigeria, Rwanda, Senegal, Seychelles,
STDC6089 Standard Deviation Domestic Credit Sierra Leone, Somalia,South africa,
PI6089 Average In�ation Rate Sudan, Swaziland, Tanzania, Togo,
STPI6089 Standard Deviation In�ation 1960-1990 Tunisia, Uganda, Zaire, Zambia
SCOUT Outward Orientation Zimbabwe, Barbados, Canada, Costa Rica,
AREA Total Area of the Country Dominican Rep., El Salvador, Guatemala,
FREEOP Free Trade Openess Haiti, Honduras, Jamaica, Mexico,
FREETAR Tari� Restrictions Nicaragua, Panama, Trinidad and Tobago,
DPOP6090 Average Growth Rate of Population 1960-1990 United States, Argentina, Bolivia, Brazil,
PYR60 Average Years of Primary School Chile, Colombia, Ecuador, Guyana,
SYR60 Average Years of Secondary School Paraguay, Peru, Suriname, Uruguay,
HYR60 Average Years of Higher School Venezuela, Afghanistan, Bangladesh,
HUMAN60 Average Years of Schooling Myanmar, Hong Kong, India, Indonesia,
S60 Secondary School Enrollment Rate in 1960 Iran, Iraq, Israel, Japan, Jordan
H60 Higher School Enrollment Rate in 1960 Korea, Malaysia, Nepal, Pakistan,
YRSOPEN Number of Years Open Economy Philippines, Singapore, Sri Lanka
GGCFD3 Public Investment Share Syria, Taiwan, Thailand, Austria,
GVXDXE52 Public Consumption Share Belgium, Cyprus, Denmark, Finland,
GEEREC1 Government Education Spending Share France, Germany (West), Greece, Iceland,
GDE1 Defense Spending Share Ireland, Italy, Luxembourg, Malta,
ASSASSP2 Political Assassinations Netherlands, Norway, Portugal, Spain,
REVCOUP Revolution and Coups Sweden, Switzerland, Turkey,
PINSTAB2 Political instability United Kingdom, Yugoslavia, Australia,
WARDUM War dummy Fiji, New Zealand, Papua New Guinea
PRIGHTSB Political Rights
CIVLIBB Civil Liberties
ABSLATIT Absolute Lattitude
FRAC Ethnolinguistic Fractionalization
DEMOC65 Index of Democraty 1965
PRIEXP70 Primary Export in 1970
RULELAW Rule of Law
URB60 Urbanization Rate
RERD Exchange Rate Distortions
EQINV Equipment Investment
NONEQINV Non-equipment Investment
HUMANYL Average Years of Schooling*log(GDP60)
TOT1 Terms of Trade Growth
WORK60L Ratio Workers to Population
LLY1 Liquid Liabilities to GDP
BRIT British Colony
FRENCH French Colony
SPAIN Spanish Colony
BUDDHA Fraction of Buddhist
CATH Fraction of Catholic
CONFUC Fraction of Confucius
HINDU Fraction of Hindus
JEW Fraction of Jewish
MUSLIM Fraction of Hindus
PROT Fraction of Protestant
LFORCE60 Size Labor Force
MINING Fraction of GDP in Mining
ECORG Degree of Capitalism
OTHFRAC Fraction Population Speaking Foreign Language
ENGFRAC Fraction Population Speaking English

Note 4: More details on data sources are in Sala-I-Martin (1996).
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Table 4 � Data used in example 2
Variable De�nition Source

CYCLE Growth cycle ECRI
If growth rate is higher than previous growth rate, CYCLE=1
otherwhise CYCLE=0

OPTG3 Output gap lagged 3 months Datastream
This serie is built by using HP �lter on industrial production index code: FROCIPRDG

OPTG12 Output gap lagged 12 months Datastream
This serie is built by using HP �lter on industrial production index code: FROCIPRDG

RM1-3 M1 Money Supply OECD
ln di�erence on 3 months
Original serie is divided by CPI

RM1-12 M1 Money Supply OECD
ln di�erence on 12 months
Original serie is divided by CPI

SBF250-3 Stock market prices (SBF 250) Datastream
ln di�erence on 3 months code: FRSHRPRCF
Original serie based on monthly mean

SBF250-12 Stock market prices (SBF 250) Datastream
ln di�erence on 12 months code: FRSHRPRCF
Original serie based on monthly mean

SIR3 Short interest rate Datastream
ln di�erence on 3 months code: FRINTER3
Original serie based on monthly mean

SIR12 Short interest rate Datastream
ln di�erence on 12 months code: FRINTER4
Original serie based on monthly mean

LIR3 Long interest rate Datastream
ln di�erence on 3 months code: FRGBOND
Original serie based on monthly mean

LIR12 Long interest rate Datastream
ln di�erence on 12 months code: FRGBOND
Original serie based on monthly mean

EXR Exchange rate USD to EURO Datastream
ln di�erence on 1 month code: FRXRUSD
Original serie based on monthly mean

EZCLI3 Euro-Zone aggregate composite leading indicator lagged 3 months OECD

EZCLI12 Euro-Zone aggregate composite leading indicator lagged 12 months OECD

OECDCLI3 OCDE aggregate composite leading indicator lagged 3 months OECD

OECDCLI12 OCDE aggregate composite leading indicator lagged 12 months OECD

USCLI3 US composite leading indicator lagged 3 months OECD

USCLI12 US composite leading indicator, lagged 12 months OECD
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