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Abstract

The contribution of this paper is twofold. In a first step, we propose the
so called Periodic Multivariate Autoregressive Stochastic Volatility (PV AR-
SV ) model, that allows the Granger causality in volatility in order to capture
periodicity in stochastic conditional variance. After a thorough discussion,
we provide some probabilistic properties of this class of models. We thus
propose two methods for the estimation problem, one based on the peri-
odic Kalman filter and the other on the particle filter and smoother with
Expectation-Maximization (EM) algorithm. In a second step, we propose
an empirical application by modeling oil price and three exchange rates time
series. It turns out that our modeling gives very accurate results and has a
well volatility forecasting performance.

Keywords: Multivariate periodic stochastic volatility; periodic stationarity;
periodic Kalman filter; particle filtering; exchange rates; Saharan Blend oil.

1. Introduction

Instantaneous volatility and volatility clustering modeling play an impor-
tant role in the analysis of financial time series. Since the introduction of the
Autoregressive Conditional Heteroskedasticity (ARCH) model in the semi-
nal paper of Engle (1982), a significant part of the literature was devoted to
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these issues. However and despite its success, this modeling exhibits some
drawbacks. A satisfactory alternative to ARCH-type models was introduced
by Taylor (1982). The namely stochastic volatility (SV ) model allows the
variance of the returns to be an unobserved random process. This is not
the case in ARCH and their generalized GARCH models, where volatility
is a function of previous observations and/or past volatility. Moreover, the
SV model allows the log of the volatility to evolve. This ensures that the
variance of the process always remains positive without the need for further
constraints, as is the case in the ARCH/GARCH models.

Apart from the volatility clustering phenomenon, there are other impor-
tant stylized facts associated with financial returns series. One can cite excess
kurtosis, asymmetry and heavy-tailed errors, persistence (long memory prop-
erty), etc. In practice, it turns out that a large part of the literature was
based on univariate models. However, some stylized facts cannot be captured
by a univariate description. This is, for example, the case of the covariation
effect, i.e. the study of the relationships between the volatilities and co-
volatilities of several markets. On one hand, much of the financial decision
making (such as portfolio optimization, asset allocation, risk management,
and asset pricing) clearly needs to take correlations into account. On the
other hand, it is now well documented that financial volatilities of different
assets and markets move together over time. Large changes in one asset are
matched by large movements in another.

This fact plays a critical role in the construction of the appropriate mod-
eling of financial time series. The multivariate models for modeling time-
varying volatility are particularly interesting. Indeed, they can lead to greater
statistical efficiency. As a result, working with multivariate modeling frame-
work leads to more relevant empirical models than with separate univariate
models. Some multivariate stochastic volatility models have even recently
become a major concern in the investigation of the correlation structure of
multivariate economic series in general, and of multivariate financial time
series in particular. Various extensions of the basic Multivariate SV (MSV )
models have been proposed in the literature. One can cite for example Har-
vey et al. (1994), Dańıelsson (1998), Jungbacker and Koopman (2006), Smith
and Pitts (2006), Chan et al. (2006), Asai and McAleer (2009a, b), etc. Asai
et al. (2006) propose a detailed review of the literature. Note that these
models have attracted a lot of attention in modern finance theory and en-
joyed voluminous empirical applications. Yu and Meyer (2006) thoroughly
discuss a wide range of dominant MSV models, available in the literature,
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on specification, estimation, and evaluation of MSV models. It is worth not-
ing that all of the proposed models deal with constant volatility parameters.
There seems to be no formulation that can adequately explain multivariate
time series whose structure changes over time. This is, in particular, the case
for time series with a volatility displaying a periodic correlation pattern. For
instance, it is usually observed in financial time series for which correlations
between daily returns and volatility display some day-of-the-week effects (see
e.g. Franses and Paap (2000), Bentarzi and Hamdi (2008) and Hamdi and
Souam (2017)). Hence, it is interesting to assume that the log-volatilities in
each day (more generally, season) might be described by a different model.
More specifically, we can assume that the parameters change periodically
over time.

The contribution of our paper is twofold. We, firstly, propose a model,
called Periodic Multivariate Autoregressive Stochastic Volatility (PV AR-
SV ) model, that allows the Granger causality in volatility in order to capture
periodicity in stochastic conditional variance. We, secondly, provide an em-
pirical application which shows that our modeling gives very accurate results
and has a well volatility forecasting performance.

The remainder of the paper is organized as follows. Section 2 thoroughly
describes the PV AR-SV models. In Section 3, we provide some proba-
bilistic properties of this class of models. In Section 4, we propose two
straightforward methods for the estimation problem, for which the imple-
mentation is based on periodic Kalman filter and on the particle filter and
smoother with expectation-maximization (EM) algorithm. Finally, in Sec-
tion 5 we apply our model to a set of three exchange rates and oil price
time series, namely U.S. dollar/Algerian dinar (USD/DZD), Euro/Algerian
dinar (EUR/DZD), Euro/U.S. dollar (EUR/USD) and the daily Saharan
Blend oil prices.

2. Multivariate Periodic Autoregressive Stochastic Volatility

The univariate periodic autoregressive stochastic volatility model (PAR-
SV ) was introduced by Aknouche et al. (2007) and thoroughly studied
by Boussaha and Hamdi (2015). It provides a successful alternative to
the class of periodic generalized autoregressive conditionally heteroscedas-
tic (PGARCH) models (Bollerslev and Ghysels, 1996). Indeed, it takes into
account the time-varying and persistent volatility as well as the periodicity
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feature in the autocorrelation structure exhibited by many nonlinear time
series.

A stochastic process {εt; t ∈ Z} has a PAR-SV representation of period
S, if it is a solution of the following stochastic difference equation{

εt = ηt exp
{

1
2
xt

}
,

xt = αt + βtxt−1 +Qtet,
t ∈ Z, (1)

where the parameters αt, βt and Qt are periodic in t with period S (i.e.,
αt+τS = αt, βt+τS = βt and Qt+τS = Qt, for all t, τ ∈ Z). The two inde-
pendent sequences (ηt) and (et) are independent and identically distributed
(i.i.d.) random variables with zero mean and unit variance.

In the current paper, we propose a multivariate periodic autoregressive
stochastic volatility (PV AR-SV ) model. Let εt = (εt,1, ..., εt,m)

′ be the m×1
vector of stock returns at time t and Xt = (Xt,1, ..., Xt,m)

′ be the correspond-
ing vector of log-variances. The PV AR-SV model can be defined as follows{

εt = V
1/2
t ηt,

Xt = αt + ΦtXt−1 + et,
t ∈ Z, (2)

where Vt = diag (expXt,1, ..., expXt,m) = diag (expXt), Φt =
(
ϕ
(t)
i,j

)
i,j=1,...,m

is a lower triangular matrix, i.e., ϕ
(t)
i,j = 0 if i < j, and αt = (αt,1, αt,2, .., αt,m)

′ .

The two vectors ηt = (ηt,1, ..., ηt,m)
′ and et = (et,1, ..., et,m)

′ represent zero-
mean i.i.d. random processes with

E (ηtη
′
t) = Σ(t)

η , E (ete
′
t) = Σ(t)

e and E (ηte
′
t) = 0m,

where Σ
(t)
η and Σ

(t)
e are m×m nonnegative definite matrices. The parameters

αt, Φt, and the matrices Σ
(t)
η , Σ

(t)
e are periodic in t, with period S.

To emphasize the periodicity, let t = s + τS, for τ ∈ Z and 1 ≤ s ≤ S.
Then, model (2) can be written in the following form{

εs+τS = diag
(
exp

{
1
2
Xs+τS

})
ηs+τS,

Xs+τS = αs + ΦsXs+τS−1 + es+τS,
τ ∈ Z, 1 ≤ s ≤ S. (3)

3. Periodic stationarity and computation of moments

Let us now investigate some of the basic properties of the PV AR-SV
model (2). For the development of statistical estimation and testing theory,
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we need to provide conditions for periodic strict stationarity and periodic
ergodicity (in the sense given, for example, by Aknouche and Bibi (2009))
of a multivariate PAR-SV process. It is clear from the multiplicative form
of the second equation in model (2) that the process {Xt; t ∈ Z} is strictly
periodically stationary and periodically ergodic if and only if the spectral
radius of the matrix

∏S
v=1 Φv is less than one.

In order to go further, let us introduce some notation. Let A⊗r = A ⊗
A⊗ . . .⊗A be the r-th Kronecker power of any matrix A, where r ∈ {0, 1, ...}
(by convention A⊗0 = I and A⊗1 = A). Denote by ρ (A) the spectral radius
of any square matrix A.

It may be noted that if ρ
(∏S

v=1 Φv

)
< 1, then {Xt; t ∈ Z} is a periodic

stationary process with the unconditional periodic mean, for τ ∈ Z and
s ∈ {1, 2, ..., S},

µ
(s)
X := E (Xs+τS) =

(
Im −

S−1∏
v=0

Φs−v

)−1 S−1∑
v=0

(
v−1∏
i=0

Φs−i

)
αs−v,

and the unconditional periodic second order moment

vec
(
Σ

(s)
X

)
:= E

(
X⊗2

s+τS

)
=

Im2 −

(
S−1∏
v=0

Φs−v

)⊗2
−1

S−1∑
v=0

(
v−1∏
i=0

Φs−i

)⊗2

vec
(
Σ(s−v)

e

)
,

where vec (A) denotes an n1n2-vector, obtained from an (n1 × n2)-matrix A
by stacking its columns in the natural order.

If ρ
(∏S

v=1 Φv

)
< 1, the process Xt is given as a first order periodic V AR

causal model which can be represented as

Xs+τS = µ
(s)
X +

∑
l≥0

(
l−1∏
i=0

Φs−i

)
es+τS−l.

Since εt is the product of two strictly periodically stationary processes,
it must also be strictly periodically stationary. Thus the conditions needed
to ensure the periodic stationarity of εt (in the strict and weak senses), are
just the ones needed to ensure periodic stationarity of the process Xt. This
is summarized in the following theorem.
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Theorem 1. Model (2) admits a unique nonanticipative (future-independent)
strictly periodically stationary solution given, for τ ∈ Z and s ∈ {1, 2, ..., S},
by

εs+τS = diag

(
exp

{
1

2

(
µ
(s)
X +

∑
l≥0

(
l−1∏
i=0

Φs−i

)
es+τS−l

)})
ηs+τS, (4)

where the series in (4) converges almost surely, if and only if

ρ

(
S∏

v=1

Φv

)
< 1. (5)

In the sequel, we explicitly characterize the variance, skewness and kur-
tosis of the PV AR-SV model (2) . Indeed, it turns out that these moments
are very useful to describe data. This is why they are widely used by most
researchers.

Suppose that (5) holds and the two vectors ηt and et are multivariate
normal. In a first step, we provide very general results. In a second step,
we do consider normality in order to get more explicit formula for these
moments. We thus have:

E
(
ε⊗r
t

)
= E

((
V

1/2
t ηt

)⊗r
)

= E

[
diag

{(
exp

1

2
Xt

)⊗r
}

× η⊗r
t

]

= diag

{
E

[(
exp

1

2
Xt

)⊗r
]}

E
[
η⊗r
t

]
= diag

{
E
[
Y

(r)
t

]}
E
[
η⊗r
t

]
,

where Y
(r)
t =

(
exp 1

2
Xt

)⊗r
=
(
Y

(r)
t,1 , Y

(r)
t,2 , ..., Y

(r)
t,mr

)
, with

Y
(r)
t,i = exp

(
1

2

r−1∑
n=0

Xt,ki,n

)
, for i = 1, ...,mr,

with
i− ki,0 = (ki,1 − 1)m+ · · ·+ (ki,r−1 − 1)mr−1,
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and

ki,0 =

{
m if i ≡ 0 ( mod m) ,
i ≡ 0 ( mod m) otherwise.

From this last equation, it turns out that

E
(
Y

(r)
t,i

)
= E

(
exp

{
T ′
i,rXt

})
= MXt (Ti,r) , i = 1, ...,mr

where MXt (T ) = E (exp {T ′Xt}) denotes the moment generating function
of Xt, Ti,r = 1

2

∑r−1
n=0 wki,n , and wj is the m × 1 canonical vector wj =(

01×(j−1), 1,01×m−j

)′
. Thus,

E
(
ε⊗r
t

)
= diag {(MXt (T1,r) , ...,MXt (Tmr,r))}E

[
η⊗r
t

]
= diag

{(
T ′
1,rµ

(t)
X +

1

2
T ′
1,rΣ

(t)
X T1,r, ..., T

′
mr,rµ

(t)
X +

1

2
T ′
mr,rΣ

(t)
X Tmr,r

)}
× E

[
η⊗r
t

]
.

Given the matrix expressions of the third and fourth (r = 3 and 4) mo-
ments of the PV AR-SV process {εt; t ∈ Z}, we can derive the exact matrix
expression formulae of the skewness and kurtosis measures. These expres-
sions are only functions of the parameters of the model. Let us note that
non-linearities are typically analyzed through these pairwise measures in fi-
nance. They are defined as follows:

sk(t)
ε := E

([(
Σ

(t)
ε,0

)−1/2

εt

]⊗3
)′

E

([(
Σ

(t)
ε,0

)−1/2

εt

]⊗3
)
,

and

κ(t)
ε := vec (Im2)′ E

([(
Σ

(t)
ε,0

)−1/2

εt

]⊗4
)
,

where
(
Σ

(t)
ε,0

)1/2
is any symmetric square root of the variance-covariance ma-

trix of εt (see e.g. Kollo, 2008).
In the PV AR-SV case, we have

E

([(
Σ

(t)
ε,0

)−1/2

εt

]⊗3
)

=

((
Σ

(t)
ε,0

)−1/2
)⊗3

× diag

{(
T ′
1,3µ

(t)
X +

1

2
T ′
1,3Σ

(t)
X T1,3, ..., T

′
m3,3µ

(t)
X +

1

2
T ′
m3,3Σ

(t)
X Tm3,3

)}
E
[
η⊗3
t

]
= 0m3×1,
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since E
[
η⊗3
t

]
= 0m3×1, and

E

([(
Σ

(t)
ε,0

)−1/2

εt

]⊗4
)

=

[(
Σ

(t)
ε,0

)−1/2
]⊗4

× diag

{(
T ′
1,4µ

(t)
X +

1

2
T ′
1,4Σ

(t)
X T1,4, ..., T

′
m4,4µ

(t)
X +

1

2
T ′
m4,4Σ

(t)
X Tm4,4

)}
E
[
η⊗4
t

]
.

Note that under the normality hypothesis, the closed form of E
[
η⊗r
t

]
can be

obtained from the result provided by Kollo and von Rosen (2006, Corollary
2.2.7.4). Indeed, odd moments of ηt are equal to zero and even moments are
given by the following equalities:

E
(
η⊗2
t

)
= vec

(
Σ(t)

η

)
,

E
(
η⊗4
t

)
= (Im4 + Im ⊗Km,m ⊗ Im + Im ⊗Km2,m)

[
vec
(
Σ(t)

η

)]⊗2
,

and

E
(
η⊗r
t

)
=

r∑
i=2

(
Im ⊗Kmi−2,m ⊗ Imr−i

) [
vec
(
Σ(t)

η

)
⊗ E

(
η⊗r−2
t

)]
, for r = 2, 4, 6, ...

where Kp,q is the pq × pq commutation matrix. The following proposition
summarizes the exact general formula of the different moments and gives the
variance, the skewness and the kurtosis of the PV AR-SV model.

Proposition 2. For a periodic stationary solution {εt; t ∈ Z} of the PV AR-
SV model defined by (2), for any positive integer r and under the normality
hypothesis of the two vectors ηt and et,we have

µ
(s)
εr := E

(
ε⊗r
s+τS

)
= diag

{(
T ′
1,rµ

(s)
X +

1

2
T ′
1,rΣ

(s)
X T1,r, ..., T

′
mr,rµ

(s)
X +

1

2
T ′
mr,rΣ

(s)
X Tmr,r

)}
× E

[
η⊗r
s+τS

]
.

Furthermore, the variance, skewness and the kurtosis of the distribution of
εs+τS are given by:

vec
(
Σ

(s)
ε,0

)
:= E

(
ε⊗2
s+τS

)
= diag

{(
T ′
1,2µ

(s)
X +

1

2
T ′
1,2Σ

(s)
X T1,2, ..., T

′
m2,2µ

(s)
X +

1

2
T ′
m2,2Σ

(s)
X Tm2,2

)}
× vec

(
Σ(s)

η

)
,

sk(s)
ε = 0,
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and

κ(s)
ε := vec (Im2)′

[(
Σ

(s)
ε,0

)−1/2
]⊗4

× diag

{(
T ′
1,4µ

(s)
X +

1

2
T ′
1,4Σ

(s)
X T1,4, ..., T

′
m4,4µ

(s)
X +

1

2
T ′
m4,4Σ

(s)
X Tm4,4

)}
× (Im4 + Im ⊗Km,m ⊗ Im + Im ⊗Km2,m)

[
vec
(
Σ(s)

η

)]⊗2
.

4. The autocorrelation functions of the PV AR-SV model

In this section, we investigate the dependence structure in a periodic
stationary solution {εt; t ∈ Z} of (2). We, more particularly, examine its
autocovariance function, most frequently used by statisticians, time series
analysts and practitioners.

Let us first recall that the periodic autocovariance function of a centered
m-variate periodically stationary process {εt; t ∈ Z} is defined by

Σ
(s)
ε,h := cov (εs+τS, εs+τS−h) = E

(
εtε

′
t−h

)
, h = 0, 1, 2, ...

It is more convenient, in practice, to work with the vector autocovariance
function defined by

vec
(
Σ

(s)
ε,h

)
:= E (εt ⊗ εt−h) .

The following proposition completely characterizes this vector autocovari-
ance function.

Proposition 3. Let {εt; t ∈ Z} be a periodic stationary solution of (2). Then
{εt; t ∈ Z} is a periodic weak white noise process with variance given, for
s = 1, ..., S, by

vec
(
Σ

(s)
ε,0

)
= diag

{(
T ′
1,2µ

(s)
X +

1

2
T ′
1,2Σ

(s)
X T1,2, ..., T

′
m2,2µ

(s)
X +

1

2
T ′
m2,2Σ

(s)
X Tm2,2

)}
× vec

(
Σ(s)

η

)
.
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Proof. For h > 0, we have

E [εt ⊗ εt−h] = E
[(

diag

(
exp

{
Xt

2

})
ηt

)
⊗
(
diag

(
exp

{
Xt−h

2

})
ηt−h

)]
= E

[
diag

{(
exp

{
Xt

2

})
⊗
(
exp

{
Xt−h

2

})}
(ηt ⊗ ηt−h)

]
= diag

(
E
[
exp

{
Xt

2

}
⊗ exp

{
Xt−h

2

}])
× E (ηt ⊗ ηt−h)

= diag
(
E
[
Y

(1)
t ⊗ Y

(1)
t−h

])
× E (ηt)⊗ E (ηt−h)

= diag
(
E
[
exp

{
Xt,1+Xt−h,1

2
, ...,

Xt,1+Xt−h,m

2
, ...,

Xt,m+Xt−h,1

2
,

...,
Xt,m+Xt−h,m

2

}])
× E (ηt)⊗ E (ηt−h)

= 0m2×1,

since (ηt) is a centered sequence and Xt,i and Xt−h,j are two Gaussian ran-

dom variables for all i, j = 1, ...,m, then E
[
exp

{
Xt,i+Xt−h,j

2

}]
< ∞, ∀i, j =

1, ...,m. This defines the multivariate periodic AR-SV framework, in which
there is no linear dependence structure in {εt; t ∈ Z}. Therefore, even
though {εt; t ∈ Z} is a periodic white noise process, it is still possible that
non-linear forms of dependence between the successive terms of {εt; t ∈ Z}
exist. The nature of the dependence structure in the periodic V AR-SV pro-
cess defined in (2) can be obtained by studying the covariance structure of
the observations raised to the power r ∈ N∗. We have from (2)

E
[
ε⊗2r
t ⊗ ε⊗2r

t−h

]
= E

[(
diag

(
exp

{
Xt

2

})
ηt
)⊗2r ⊗

(
diag

(
exp

{
Xt−h

2

})
ηt−h

)⊗2r
]

= diag

(
E
[(
exp

{
Xt

2

})⊗2r ⊗
(
exp

{
Xt−h

2

})⊗2r
])

× E
(
η⊗2r
t

)
⊗ E

(
η⊗2r
t−h

)
= diag

(
E
[
Y

(2r)
t ⊗ Y

(2r)
t−h

])
E
(
η⊗2r
t ⊗ η⊗2r

t−h

)
̸= 0m4r×1,

since the first elements of the two vectors Y
(2r)
t ⊗ Y

(2r)
t−h and η⊗2r

t ⊗ η⊗2r
t−h are

given by(
Y

(2r)
t ⊗ Y

(2r)
t−h

)
1
= exp {r (Xt,1 +Xt−h,1)} and

(
η⊗2r
t ⊗ η⊗2r

t−h

)
1
= η2rt,1η

2r
t−h,1,
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from which we can easily see that the first element of vector E
[
ε⊗2r
t ⊗ ε⊗2r

t−h

]
(
E
[
ε⊗2r
t ⊗ ε⊗2r

t−h

])
1
=
(
E
[
Y

(2r)
t ⊗ Y

(2r)
t−h

])
1

(
E
[
η⊗2r
t ⊗ η⊗2r

t−h

])
1

= E (exp {r (Xt,1 +Xt−h,1)})E
(
η2rt,1
)
E
(
η2rt−h,1

)
= E (exp {r (Xt,1 +Xt−h,1)})

(
(2r)!

2rr!

)2 (
σ(t)
η1
σ(t−h)
η1

)2r
> 0,

where σ
(t)
η1 is the standard deviation of the first component of the random

vector ηt.

5. Estimation methodology

In this section, we propose two methodologies in order to estimate our
model. The first one is the quasi-maximum likelihood method based on
periodic Kalman filter. The second one uses the maximum likelihood and is
based on the EM algorithm with particle filters and smoothers. We, more
particularly, thoroughly describe the second one which turns out to be more
useful in practice.

5.1. Quasi-maximum likelihood method based on periodic Kalman filter

In order to estimate the parameters of the multivariate non-periodic
AR-SV model, Harvey et al. (1994) proposed a quasi-maximum likelihood
(QML) method. It is based on the state-space representation after set-
ting the observed variable as a logarithm of the vector εt ⊙ εt, where the
operator ⊙ is the Hadamard (or element-by-element) product. In our pe-
riodic case, model (3) can be linearized by taking the same transformation
ln (εs+τS ⊙ εs+τS) where we get the following state-space representation{

Zs+τS= Xs+τS+ds+us+τS,
Xs+τS = αs + ΦsXs+τS−1 + es+τS,

τ ∈ Z, 1 ≤ s ≤ S, (6)

where Zs+τS = (Zs+τS,1, Zs+τS,2, ..., Zs+τS,m)
′ , Zs+τS = ln (εs+τS ⊙ εs+τS) ,

ds = E [ln (ηs+τS ⊙ ηs+τS)] and

us+τS = ln (ηs+τS ⊙ ηs+τS)− E [ln (ηs+τS ⊙ ηs+τS)] .

Let us remark that even though the random process ηs+τS is Gaussian, the
measurement equation errors, us+τS, in (6) are nonnormal. The mean vector
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ds of ln (ηs+τS ⊙ ηs+τS) and the (i, j)-th element of the covariance matrix Σ
(s)
u

of us+τS can be given (see Harvey et al, 1994) respectively for s = 1, ..., S,
by

ds =
(
−1.2749 + log

(
Σ(s)

η (1, 1)
)
, . . . ,−1.2749 + log

(
Σ(s)

η (m,m)
))′

,

and

Σ(s)
u (i, j) =


∞∑

n=1

(n−1)!

n(
∏n

k=1( 1
2+k−1))

(
Σ(s)

η (i,j)√
Σ

(s)
η (i,i)

√
Σ

(s)
η (j,j)

)2n

, for i ̸= j, i, j = 1, ...,m,

π2

2 , otherwise.

This last representation of the model makes the estimation problem more
evident via QML method as suggested by Harvey et al. (1994) for the
multivariate non periodic case and Boussaha and Hamdi (2015) for the uni-
variate periodic case. However, the transformation of the model causes loss
of information in the multivariate case. More specifically, an estimation
could be made about the absolute values of the unknown parameters in Σ

(s)
η ,

s = 1, ..., S, namely the Σ
(s)
η (i, j)’s, and the covariances between different

ηt,i’s, but their signs could not be estimated. This is due to the loss of infor-
mation when the observations are squared. To solve this issue, Harvey et al.
(1994) suggested to use the signs of the untransformed observations to ob-
tain the sign of the covariance coefficients. They have proposed to estimate
the sign of Σ

(s)
η (i, j) as positive if more than one-half of the pairs εt,iεt,j are

positive.
To discuss theQMLmethod based on periodic Kalman filter, let Ẑs+τS|s+τS−1

be the best linear (one step ahead) predictor of Zs+τS based on Z1, Z2, ...,

Zs+τS−1, and let ûs+τS = Zs+τS − Ẑs+τS|s+τS−1 be the sample innovation at
time s+ τS, with mean square error Ωs+τS = E

(
ûs+τSû

′
s+τS

)
.

The innovation at time s+ τS is defined as

ûs+τS = Zs+τS − X̂s+τS|s+τS−1 − ds,

where X̂s+τS|s+τS−1 is the best linear predictor of Xs+τS based on Z1, Z2, ...,
Zs+τS−1, with mean square error

Ps+τS|s+τS−1 = E
[(

Xs+τS − X̂s+τS|s+τS−1

)(
Xs+τS − X̂s+τS|s+τS−1

)′]
.

For a given realization ε = (ε1, ε2, ..., εn) generated from model (2),
the quasi-likelihood of the parameter vector θ = (θ′1, ..., θ

′
S)

′, where θs =
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(
αs, (vech (Φs))

′ ,
(
vech

(
Σ

(s)
e

))′
,
(
vech

(
Σ

(s)
η

))′)′

, can be written in the

innovation form as follows

L(θ;Z) = (2π)−
nm
2

S∏
s=1

τ1−1∏
τ=0

(detΩs+τS)
− 1

2 exp

{
−1

2
û′
s+τSΩ

−1
s+τSûs+τS

}
, (7)

in which we need to evaluate Ωs+τS and ûs+τS, for s = 1, ..., S and τ =
0, ..., τ1 − 1, where, for simplicity purposes, n can be taken as n = τ1S. Note
that the sample innovation and its mean square error involved in (7) can
be recursively computed using either the Kalman filter (Kalman, 1960) or
the periodic Chandrasekhar-type recursions (Aknouche and Hamdi, 2007).
Clearly, from the state-space representation (6), the periodic Kalman filter,
as it is well known, is given by the following recursions:

ûs+τS = Zs+τS − X̂s+τS|s+τS−1 − ds,

Ωs+τS = Ps+τS|s+τS−1 + Σ
(s)
u ,

Ks+τS = Φs+1Ps+τS|s+τS−1Ω
−1
s+τS,

X̂s+τS+1|s+τS = αs+1 + Φs+1X̂s+τS|s+τS−1 +Ks+τSûs+τS,

Ps+τS+1|s+τS = Σ
(s+1)
e

+Φs+1

(
Ps+τS|s+τS−1 − Ps+τS|s+τS−1Ω

−1
s+τSPs+τS|s+τS−1

)
Φ′

s+1,

with start-up values

X̂1|0 =

(
Im −

S−1∏
v=0

Φ1−v

)−1 S−1∑
v=0

(
v−1∏
i=0

Φ1−i

)
α1−v,

and

vec
(
P1|0
)
=

Im2 −

(
S−1∏
v=0

Φ1−v

)⊗2
−1

×
S−1∑
v=0

(
v−1∏
i=0

Φ1−i

)⊗2 [(
α1−v − µ

(1−v)
X + Φ1−vµ

(S−v)
X

)⊗2

+ vecΣ(1−v)
e

]
.

In practice, it is very difficult to obtain explicit formula of the QML
estimator, θ̂, which maximizes (7), with respect to θ. One thus needs to
use numerical methods. It is also important to note that, under appropriate

13



conditions, this QML estimator, θ̂, has been shown to be consistent and
asymptotically normally distributed (Ljung and Caines, 1979, p. 36). De-
spite these desirable asymptotic properties, the approximations provided by
the periodic Kalman filter become less effective in our case where the normal-
ity hypothesis is abandoned. Indeed, the QML estimator is not necessarily
the best estimator for finite samples. For the periodic linear state-space mod-
els and when the sample size is small, Guerbyenne and Hamdi (2015) have
provided numerous examples which indicate the poor finite sample proper-
ties of θ̂. To improve the finite sample performance of the QML estimator,
they suggested to use some procedures based on a bootstrap method to fit
a periodic time series model expressed in state-space form. Therefore, as
put forward, in the univariate SV model (see e.g. Kim and Stoffer, 2008 for
the non periodic case and Boussaha and Hamdi, 2015 for the periodic case),
alternative methods to the traditional Kalman filter, such as the sequential
Monte Carlo ones, should be considered.

5.2. Maximum Likelihood based on the EM algorithm with particle filters
and smoothers

We now describe another estimation approach which combines the parti-
cle filters and smoothers with expectation-maximization (EM) algorithm.

The particle filters are sequential Monte Carlo methods which can be
applied to the general state-space models. These filters can be consid-
ered as a powerful alternative to the Kalman filter for the optimal esti-
mation problems in a non-linear/non-Gaussian state-space framework (see
e.g. Doucet and Johansen, 2011). Let Y = (X ′

0, X
′
1, ..., X

′
n, ε

′
1, ε

′
2, ..., ε

′
n)

′

and X = (X ′
0, X

′
1, ..., X

′
n)

′ denote the vector containing, respectively, the
complete data and the log-volatilities data. For a given realization ε =
(ε1, ε2, ..., εn) of model (2), the complete log-likelihood function of the pa-
rameter vector θ can be expressed as follows:

−2L(θ;Y ) = C +
n∑

t=1

log
(
det
(
Σ(t)

e

))
+

n∑
t=1

log
(
det
(
Σ(t)

η

))
+

n∑
t=1

m∑
i=1

Xt,i

+
n∑

t=1

(Xt − αt − ΦtXt−1)
′ (
Σ(t)

e

)−1
(Xt − αt − ΦtXt−1)

+
n∑

t=1

ε′tdiag

(
exp

{
−1

2
Xt

})(
Σ(t)

η

)−1
diag

(
exp

{
−1

2
Xt

})
εt,
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where C is a constant independent of θ. It is well known that, as in a variety of
cases where the data is considered to be incomplete, the estimation problem
can be easily done via the simple recursive EM algorithm introduced by
Dempster et al. (1977). Recall that this algorithm works in an iterative way.
In each iteration, there are two steps called E-step and M -step. To start the
(i+ 1)-th iteration, we have the parameter estimation from the last iteration

(or initial value) θ̂(i), and we define the following Q-function in the E-step

Q(θ, θ̂(i)) = E
[
−2L(θ;Y )|Y, θ̂(i)

]
= C +

n∑
t=1

log
(
det
(
Σ(t)

e

))
+

n∑
t=1

log
(
det
(
Σ(t)

η

))
+

n∑
t=1

m∑
i=1

X
(n)
t,i

+
n∑

t=1

tr
((

Σ(t)
e

)−1
At

)
+

n∑
t=1

tr
((

Σ(t)
η

)−1
Bt

)
.

where

At = X
(n)
t,t −X

(n)
t α′

t −X
(n)
t,t−1Φ

′
t − αt

(
X

(n)
t

)′

+ αtα
′
t + αt

(
X

(n)
t−1

)′

Φ′
t

− ΦtX
(n)
t−1,t + ΦtX

(n)
t−1α

′
t + ΦtX

(n)
t−1,t−1Φ

′
t,

Bt = E
[
diag

(
exp

{
−1

2
Xt

})
εtε

′
tdiag

(
exp

{
−1

2
Xt

})∣∣∣∣Y, θ̂(i)] ,
X

(n)
t = E

(
Xt|Y, θ̂(i)

)
,

and
X

(n)
t−h,t−k = E

(
X

(n)
t−hX

′
t−k

∣∣∣Y, θ̂(i)) , for h, k = 1, 0

Before going to the M -step, we need to evaluate the quantities X
(n)
t ,

X
(n)
t−h,t−k, At and Bt. As put forward, in the univariate AR-SV model (see

Kim and Stoffer, 2008 and Boussaha and Hamdi, 2016), these quantities
can be sequentially approximated in time by using the particle filtering and
smoothing algorithms. The following is the algorithm for the filtering step,
from which we will obtain M samples from the probability density function
p (Xt|Ft), where Ft denotes the σ-algebra based on the information available
up to time t.
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Algorithm 1 Particle filter algorithm

1: Initialization: sample from p0(X0) to obtain f
(j)
0 with initial weights

w
(j)
0 = 1/M , (for j = 1, ...,M), where M is the number of the particles.

2: Iterate, for s = 1, ..., S, and τ = 0, ..., τ1 − 1.

a. For j = 1, ...,M

i. Simulate e
(j)
s+τS ∼ N (0,Σ

(s)
e ).

ii. Compute p
(j)
s+τS = αs + Φsf

(j)
s+τS−1 + e

(j)
s+τS.

iii. Evaluate importance weights: compute

w
(j)
s+τS = w

(j)
s+τS−1p

(
εs+τS

∣∣∣p(j)s+τS

)
∝ w

(j)
s+τS−1

× exp

{
−

(
diag

{
exp

(
− 1

2p
(j)
s+τS

)}
εs+τS

)′
(Σ(s)

η )
−1

(
diag

{
exp

(
− 1

2p
(j)
s+τS

)}
εs+τS

)
2

}

×
(
det
(
Σ(s)

η

))−1/2

det

(
diag

(
exp

(
−1

2
p
(j)
s+τS

)))
.

b. For j = 1, ...,M, normalize weights: compute

w̃
(j)
s+τS = w

(j)
s+τS

/
M∑
j=1

w
(j)
s+τS .

c. Compute the measure of degeneracy neff = 1
/∑M

j=1 w̃
(j)2
s+τS .

If neff ≤ nT (typically nT = M/2) resample{(
p
(j)
s+τS, w̃

(j)
s+τS

)
, j = 1, ...,M

}
to obtain M equally-weighted

particles
{(

f
(j)
s+τS, 1/M

)
, j = 1, ...,M

}
.

3: Finally, the sequence of M particles
{
f
(j)
s+τS; j = 1, ...,M

}
is a random

sample from p (Xs+τS|Fs+τS) , for s = 1, ..., S and τ = 0, ..., τ1 − 1.
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Algorithm 2 Particle smoothing algorithm

1: For j = 1, ...,M, choose s
(j)
n = f

(i)
n , with probability w̃

(i)
n . Let us fix

W
(j)
n = 1/M.

2: For j = 1, ...,M.

a. For s = S, ..., 1 and τ = τ1 − 1, ..., 0, calculate for i = 1, ...,M

W
(i)
s+τS−1|τS+s = w̃

(i)
s+τS−1

× exp

{
−

(
s
(j)
s+τS−αs−Φsf

(i)
s+τS−1

)′(
Σ

(s)
e

)−1(
s
(j)
s+τS−αs−Φsf

(i)
s+τS−1

)
2

}

×
(
det
(
Σ
(s)
e

))−1/2
.

b. For i = 1, ...,M, normalize the smoothed weights via

W̃
(i)
s+τS−1|s+τS = W

(i)
s+τS−1|s+τS

/
M∑
j=1

W
(i)
s+τS−1|s+τS .

c. Draw s
(j)
s+τS−1from f

(i)
s+τS−1, with probability proportional to{

W̃
(i)
s+τS−1|s+τS, i = 1, ...,M

}
.

3: Finally, compute s = 1, ..., S and τ = 0, ..., τ1 − 1,

X̂
(n)
s+τS =

∑M
j=1 s

(j)
s+τS

M
,

P̂
(n)
s+τS =

∑M
j=1

(
s
(j)
s+τS − X̂

(n)
s+τS

)(
s
(j)
s+τS − X̂

(n)
s+τS

)′
M − 1

,

P̂
(n)
s+τS,s+τS−1 =

∑M
j=1

(
s
(j)
s+τS − X̂

(n)
s+τS

)(
s
(j)
s+τS−1 − X̂

(n)
s+τS−1

)′
M

,

and

B̂s+τS =

∑M
j=1 diag

(
exp

{
− s

(j)
s+τS

2

})
εs+τSε

′
s+τSdiag

(
exp

{
− s

(j)
s+τS

2

})
M

.
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After replacing X
(n)
t , P

(n)
t , P

(n)
t,t−1, At and Bt with their approximations,

we thus go to the M -step, where the estimated parameter is obtained as
follows

θ̂(i+1) = argmax
θ

Q
(
θ, θ̂(i)

)
.

The first derivatives of the Q-function with respect to θ are as follows

∂Q(θ, θ̂(i))

∂αs

=
(
Σ(s)

e

)−1
τ1−1∑
τ=0

(
2αs − 2X

(n)
s+τS + 2ΦsX

(n)
s+τS−1

)
, (8)

∂Q(θ, θ̂(i))

∂ (vech (Φs))
= vech

(
∂Q(θ, θ̂(i))

∂Φs

)
, (9)

∂Q(θ, θ̂(i))

∂
(
vech

(
Σ

(s)
e

)) = D′
m × vec

(
∂Q(θ, θ̂(i))

∂Σ
(s)
e

)
, (10)

∂Q(θ, θ̂(i))

∂
(
vech

(
Σ

(s)
η

)) = D′
m × vec

(
∂Q(θ, θ̂(i))

∂Σ
(s)
η

)
, (11)

where

∂Q(θ, θ̂(i))

∂Φs

= 2
(
Σ(s)

e

)−1

×
τ1−1∑
τ=0

[
αs

(
X

(n)
s+τS−1

)′

−
(
X

(n)
s+τS

(
X

(n)
s+τS−1

)′

+ P
(n)
s+τS,s+τS−1

)
+Φs

(
X

(n)
s+τS−1

(
X

(n)
s+τS−1

)′

+ P
(n)
s+τS−1

)]
,

∂Q(θ, θ̂(i))

∂Σ
(s)
e

=
(
Σ(s)

e

)−1
τ1−1∑
τ=0

[
Im − As+τS

(
Σ(s)

e

)−1
]
,

∂Q(θ, θ̂(i))

∂Σ
(s)
η

=
(
Σ(s)

η

)−1
τ1−1∑
τ=0

[
Im −Bs+τS

(
Σ(s)

η

)−1
]
,

and where Dm denotes the
(
m2 × 1

2
m (m+ 1)

)
duplication matrix such that

vec (A) = Dm × vech (A), for any (m×m)-matrix A (see e.g. Lütkepohl,
1996, Section 9.5). Here vech is the half column staking operator.

18



The estimates of the parameters θ(i+1) can then be obtained by equating
(8), (9), (10) and (11) to zero. Hence, at the (i+ 1)-th iteration, the param-

eter estimates of αs, vech (Φs), vech
(
Σ

(s)
e

)
and vech

(
Σ

(s)
η

)
, for s = 1, ..., S,

are summarized below

vech
(
Σ̂

(s)
η

)
= 1

τ1

∑τ1−1
τ=0 vech

(
B̂s+τS

)
,

vech
(
Φ̂s

)
=

[
Lm

{(
1
τ1

(∑τ1−1
τ=0 X

(n)
s+τS−1

)(∑τ1−1
τ=0 X

(n)
s+τS−1

)′
−
∑τ1−1

τ=0

(
X

(n)
s+τS−1

(
X

(n)
s+τS−1

)′

+ P
(n)
s+τS−1

))
⊗ Im

}
L′
m

]−1

×vech

(
1
τ1

(∑τ1−1
τ=0 X

(n)
s+τS

)(∑τ1−1
τ=0 X

(n)
s+τS−1

)′
−
∑τ1−1

τ=0

(
X

(n)
s+τS

(
X

(n)
s+τS−1

)′

+ P
(n)
s+τS,s+τS−1

))
,

α̂s =
1
τ1

∑τ1−1
τ=0 X

(n)
s+τS − 1

τ1
Φ̂s

∑τ1−1
τ=0 X

(n)
s+τS−1,

vech
(
Σ̂

(s)
e

)
= 1

τ1

∑τ1−1
τ=0 vech

(
Âs+τS

)
,

where Lm denotes the
(
1
2
m (m+ 1)×m2

)
elimination matrix such that

vech (A) = Lm × vec (A) ,

for any (m×m)-matrix A (see e.g. Lütkepohl, 1996, Section 9.6).

6. Application

This final section provides an empirical application. More precisely, we
first describe our data and provide some preliminary analysis in order to
justify the use of periodic and multivariate models. We thus apply the theo-
retical analysis developed in Section 2 to provide a multivariate modeling of
oil spot price and three exchange rates time series.

6.1. Data and preliminary analysis

We model four time series: the daily Saharan Blend oil (SB) spot price
time series (provided by the Algerian Ministry of Energy) and three daily
time series of exchange rates: Euro/U.S. dollar (EUR/USD) provided by
Thomson Reuters, Euro/Algerian dinar (EUR/DZD) and U.S. dollar/ Al-
gerian dinar (USD/DZD) provided by the Bank of Algeria. We first removed
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all the days in which the SB market was closed. The period of analysis is
3 January 2005 to 31 December 2015. The final sample consists of 2836
observations for each series.

In this empirical study, the model is structured as follows. For notational
purposes, we collect the original Saharan Blend oil price and three exchange
rates at time t in the vector

Yt =


Yt,1

Yt,2

Yt,3

Yt,4

 =


SBt

EUR/USDt

EUR/DZDt

USD/DZDt

 ,

and their corresponding log-return series in the vector Zt = (Zt,1, Zt,2, Zt,3,
Zt,4)

′, where Zt,i = log (Yt,i)− log (Yt−1,i) , for i = 1, 2, ..., 4.
The original series Yt,i and the log-return series Zt,i are respectively shown

in Figures 1 and 2. It turns out that all the original series Yt,i are nonsta-
tionary while the log-return series appear to be stationary. Moreover, the
volatility clustering phenomenon is clearly evident in each of them. Not sur-
prisingly, the volatility was higher during the crisis in 2008 and after 2015.
The volatilities in the log-returns series are subject to some breaks: high
volatility between April 2008 and July 2009 and after 2015 and low volatility
between December 2006 and March 2008 and between August 2012 and De-
cember 2014. Additionally, in the whole study period the SB log-return is
the most volatile, followed by the EUR/USD and EUR/DZD log-returns.
The USD/DZD log-return is the most stable one.

Some descriptive statistics are provided for the four log-return series in
Tables 1-4. These statistics are very similar across these series. Their stan-
dard deviations are much greater than the means in absolute value, indicat-
ing that the means are not significantly different from zero. Moreover, their
excess kurtosis is significantly positive. Therefore, these series have heavy
tails relative to the normal distribution, which is also typical in these finan-
cial data. The Jarque-Bera test rejects the normality of the four log-return
distributions.
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Figure 1: The original series.
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Figure 2: The log-return series.
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Table 1. Descriptive statistics of SB log-returns for each day of the week as well as
the entire study period

Monday Tuesday Wednesday Thursday Friday All days
# of obs. 567 570 572 569 557 2835
Mean −0.0014 0.0000 0.0005 0.0011 −0.0004 −2.29× 10−5

Median 0.0000 0.0000 0.0011 0.0020 −0.0003 9.32× 10−5

Maximum 0.1367 0.0633 0.0850 0.1067 0.0825 0.1367
Minimum −0.0777 −0.1119 −0.0812 −0.0909 −0.1244 −0.1244
Std. Dev. 0.0212 0.0199 0.0182 0.0211 0.0193 0.0110
Skewness 0.7466 −0.4172 −0.0594 0.0078 −0.3224 0.0276
Kurtosis 8.5317 5.4482 5.0156 5.9985 7.9584 6.7408
Jarque-Bera 775.5827 158.8808 97.1668 213.1664 580.2407 1653.3850

Table 2. Descriptive statistics of EUR/USD log-returns for each day of the week as well as
the entire study period

Monday Tuesday Wednesday Thursday Friday All days
# of obs. 567 570 572 569 557 2835
Mean −0.0005 −0.0003 0.0000 0.0002 0.0001 −7.56× 10−5

Median −0.0001 −0.0001 0.0000 0.0001 0.0002 0.0000
Maximum 0.0236 0.0264 0.0272 0.0381 0.0301 0.0381
Minimum −0.0332 −0.0213 −0.0206 −0.0254 −0.0212 −0.0332
Std. Dev. 0.0072 0.0058 0.0063 0.0065 0.0067 0.0065
Skewness −0.2244 0.2663 0.1105 0.2828 0.1631 0.0833
Kurtosis 4.3099 5.6897 4.5673 5.9422 4.5940 5.0206
Jarque-Bera 45.2972 178.5543 59.7092 212.8093 61.4376 485.5663

Table 3. Descriptive statistics of EUR/DZD log-returns for each day of the week as well as
the entire study period

Monday Tuesday Wednesday Thursday Friday All days
# of obs. 567 570 572 569 557 2835
Mean −0.0002 −0.0002 0.0003 0.0003 0.0001 6.32× 10−5

Median −0.0001 0.0001 0.0002 0.0004 0.0000 0.0001
Maximum 0.0209 0.0170 0.0313 0.0497 0.0226 0.0497
Minimum −0.0233 −0.0230 −0.0158 −0.0195 −0.0220 −0.0233
Std. Dev. 0.0049 0.0041 0.0044 0.0049 0.0048 0.0046
Skewness −0.0819 −0.4649 0.8022 2.2173 0.1346 0.6007
Kurtosis 6.2042 6.6266 8.9065 25.1483 6.8762 11.6985
Jarque-Bera 243.1895 332.8976 892.8278 12096.3000 350.3907 9108.4040
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Table 4. Descriptive statistics of USD/DZD log-returns for each day of the week as well as
the entire study period

Monday Tuesday Wednesday Thursday Friday All days
# of obs. 567 570 572 569 557 2835
Mean 0.0003 0.0000 0.0000 0.0001 0.0003 0.0001
Median 0.0001 0.0000 −0.0001 −0.0001 0.0001 −1.89× 10−5

Maximum 0.0282 0.0094 0.0138 0.0181 0.0335 0.0335
Minimum −0.0092 −0.0113 −0.0070 −0.0100 −0.0132 −0.0132
Std. Dev. 0.0030 0.0023 0.0024 0.0028 0.0033 0.0028
Skewness 1.8854 0.0974 1.0514 1.0981 2.8623 1.8005
Kurtosis 17.9821 6.3905 8.5105 9.5237 27.1108 18.9315
Jarque-Bera 5638.8570 273.9248 829.1143 1123.3530 14252.2300 31513.4400

Table 5 provides the sample correlation matrix for the entire study period.
Correlation coefficients vary from −0.5591 to 0.6720. The strongest negative
correlation is for the pair (EUR/USD, USD/DZD) and the strongest pos-
itive correlation is for the pair (EUR/USD, EUR/DZD). The SB is the
least correlated with all the exchange rates. This suggests that estimating a
joint model may yield interesting information on the relationships between
our data series. This is why we do use, in the sequel, a multivariate modelling
of the collected data.

Table 5. Correlation matrix of log returns
log-returns SB EUR/USD EUR/DZD USD/DZD
SB 1 0.0491 0.0926 −0.1260
EUR/USD 1 0.6720 −0.5591
EUR/DZD 1 −0.4003
USD/DZD 1

Tables 1-4 also report the descriptive statistics of the four log-returns
for each day of the week. The findings indicate that for the USD/DZD
(resp. EUR/DZD, EUR/USD, SB), the lowest (−0.0132) (resp. −0.0233,
−0.0332, −0.1244) and the highest (0.0335) (resp. 0.0497, 0.0381, 0.1367)
returns are observed in Friday (resp. Friday and Thursday, Monday and
Thursday, Friday and Monday). For the analyzed period, descriptive statis-
tics per day register the lowest standard deviation of 0.0023 (resp. 0.0041,
0.0058, 0.0182) in Tuesday (resp. Tuesday, Tuesday, Wednesday) for the
USD/DZD log-returns series (resp. EUR/DZD, EUR/USD, SB), while
the highest standard deviation of 0.0033 (resp. 0.0049, 0.0072, 0.0212) is
observed for Friday (resp. Monday and Thursday, Monday, Monday). The
skewness for all the days of the week and for all log-return series is positive,
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while it is negative for Monday and Tuesday in EUR/DZD, for Monday
in EUR/USD and for Tuesday, Wednesday and Friday in SB log-returns.
Furthermore, one of the features which prominently stands out most from
Tables 1-4 is that the kurtosis for each day-of-the-week is much larger than
3. This reflects the fact that the tails of the distributions of all the analyzed
log-returns per day are fatter than the tails of the normal distribution.

Table 6. Periodic autocorrelations of log-return series
log-returns Monday Tuesday Wednesday Thursday Friday
SB 0.0565 −0.0383 0.0252 0.0596 0.0241
EUR/USD 0.0272 −0.1629 0.0182 −0.0006 −0.0339
EUR/DZD 0.0424 −0.0158 0.0231 0.2094 0.0877
USD/DZD 0.1617 −0.0617 −0.0685 0.1639 0.1728

These descriptive statistics of the four log-returns for each day of the
week are not surprising since it is usually observed in financial time series
where correlations between daily returns and volatility display some day-of-
the-week effects (see e.g. Franses and Paap, 2000; Hamdi and Souam, 2017).
Such a property may be useful as sometimes one may expect economic agents
to have different behavior in different days of the week. Indeed, from daily
first-order autocorrelations for our return series (see Table 6), it is evident
that returns on Mondays are positively correlated with those on the preceding
Fridays, while returns on Tuesdays are negatively correlated with those on
Mondays. This is why we do consider the periodicity as an important issue
in our modelling of these time series.

6.2. Empirical results

In the following, we propose a periodic model that allows for the de-
scription of the day-of-the-week or intraweek effect in the daily exchange
rate and oil price series. Such a formulation with period S = 5 seems to
be well adapted to explain the presence (or not) of intraweek seasonality as
have done Franses and Paap (2000) for modelling day-of-the-week seasonality
in the S&P 500 index through a univariate periodic AR-GARCH process.
We will consider the 5-periodic PV AR-SV model, where the parameters are
allowed to vary with the day of the week (s = 1, 2, 3, 4 and 5)

s =


1 if the day corresponding is a Monday,
2 if the day corresponding is a Tuesday,
...
5 if the day corresponding is a Friday.
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From Table 6, it is clear that the series Zt, t = 1, ..., 2835, exhibits a period-
icity in the conditional mean. In order to capture such a periodicity, which is
not possible by the use of a pure PV AR-SV model, we have applied a multi-
variate periodic autoregressive (PV AR) filter to Zt and we have considered
the residuals as the underlying series for our PV AR-SV modeling. Table 7
shows the results of the application of the filter.

The plot of the real series Zt,i, i = 1, ..., 4, the adjusted and the residuals
ones computed from the PV AR (2) fitted model are given by Figure 3. As a
second step, we use these residuals to estimate the volatility.

The estimated parameters of the 5-periodic PV AR-SV model are pre-
sented in Table 8. We observe that all the log-return series examined ex-
hibit highly persistent volatilities. The persistent coefficient ranges from∏S

s=1 ϕ
(s)
i,i = 0.7960 for USD/DZD to 0.7543 for SB. This allows us to con-

clude that the PV AR-SV estimated model is periodically stationary as the

quantity characterizing the estimated processes, namely ρ
(∏S

s=1 Φs

)
defined

in (5) , is smaller than unity (ρ
(∏S

s=1 Φs

)
= 0.7960). On the other hand,

when we analyze the estimated model period by period, we notice that only
the models corresponding to Wednesday and Thursday are nonstationary.
Indeed, we have ρ (Φs) equal, respectively, to 0.9971, 0.9571, 1.5110, 1.1020
and 0.9340 for s = 1, 2, 3, 4 and 5.

These results are consistent with the fact that exchange rates and oil
price volatilities are often clustered. In all cases, the transmission coefficients
(ϕ

(s)
i,j ) are quite weak and therefore there is a volatility interaction in daily

data. For instance, from the estimated model, information in oil market
is quickly transmitted and incorporated into the EUR/USD, EUR/DZD
and USD/DZD exchange rates. This could suggest that volatility in the oil
market have significant impacts on the FX market, especially on Algerian
dinar.

Another interesting phenomenon appears in our empirical analysis. It

deals with the fact that the seasonal return shock correlation
Σ

(s)
η (i,j)√

Σ
(s)
η (i,i)

√
Σ

(s)
η (j,j)

(s = 1, ..., 5 and i, j = 1, ..., 4) is significantly negative between USD/DZD
and the other series, while it is significantly positive in all the other cases (be-
tween EUR/USD and SB and betweenEUR/DZD and SB andEUR/USD).

Figure 5 shows the estimated volatilities computed from 5-periodic PV AR-
SV model of SB, EUR/USD, EUR/DZD and USD/DZD. We can ob-
serve that the estimated volatilities reflect quite well the variation of the
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residuals. Furthermore, from Table 9 it turns out that the empirical cov-
erages of the PV AR-SV -based prediction intervals are closer to the nomi-
nal coverages. These results show that the PV AR-SV model, fitted to the
residuals computed from PV AR modeling of our daily log-return time series,
seems well accurate and has a well volatility forecasting performance.
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Figure 3: Real and estimated series from PV AR5(2) model.
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Figure 4: The residual series computed from PV AR5(2) model.
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Table 9. Empirical coverages of the (1− α)100% one-step-ahead prediction intervals
(1− α)100%

50% 60% 70% 80% 90% 95% 99%
Saharan Blend oil prices 53.81 62.50 71.61 79.80 87.96 92.69 96.96
Euro/U.S. dollar 53.25 62.96 72.60 81.04 89.65 93.33 97.78
Euro/Algerian dinar 52.37 61.62 70.37 79.41 87.71 92.02 96.36
U.S. dollar/Algerian dinar 53.50 62.61 71.68 79.31 87.25 91.56 95.97
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