
Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration
Systems

Document de Travail
Working Paper
2019-15

Florent Dubois
Elena Ivona Dumitrescu

Gilles de Truchis

EconomiX - UMR7235
Université Paris Nanterre

Bâtiment G - Maurice Allais, 200, Avenue de la République
92001 Nanterre cedex

Email : secretariat@economix.fr



Local Whittle Analysis of Stationary Unbalanced Fractional
Cointegration Systems

Gilles de Truchis1,∗, Florent Dubois1, Elena-Ivona Dumitrescu1

Preliminary draft
July 2019

Abstract

In this paper we propose a local Whittle estimator of stationary bivariate unbalanced fractional cointegration
systems. Unbalanced cointegration refers to the situation where the observables have different integration orders,
but their filtered versions have equal integration orders and are cointegrated in the usual sense. Based on the fre-
quency domain representation of the unbalanced version of Phillips’ triangular system, we develop a semiparametric
approach to jointly estimate the unbalance parameter, the long run coefficient, and the integration orders of the re-
gressand and cointegrating errors. The paper establishes the consistency and asymptotic normality of this estimator.
We find a peculiar rate of convergence for the unbalance estimator (possibly faster than

√
n) and a singular joint

limiting distribution of the unbalance and long-run coefficients. Its good finite-sample properties are emphasized
through Monte Carlo experiments. We illustrate the relevance of the developed estimator for financial data in an
empirical application on the information flowing between the crude oil spot and CME-NYMEX markets.

Keywords: Unbalanced cointegration, Long memory, Stationarity, Local Whittle likelihood
JEL: C22, G10

1. Introduction

This paper addresses the estimation of a general class of models known as unbalanced cointegra-

tion systems, that encompasses the well known Phillips’ triangular cointegration system. In his seminal

paper of 1981, Granger establishes that two time series yt and xt share a common stochastic trend if

(i) yt and xt are both integrated of order δ2, hereafter I(δ2) and (ii) there exists a non-null scalar β so

that et = yt − βxt ∼ I(δ1) and δ2 − δ1 > 0. Engle and Granger (1987) have primarily investigated an

estimation procedure in the particular case where observables are unit root processes, i.e. I(1), and a

linear combination of them has short memory, i.e. I(0). However, the cointegration theory introduced by

Granger (1981) does not constrain integration orders to be integers and is currently known as fractional

cointegration. Numerous inference procedures for triangular representations of fractionally cointegrated
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systems have been developed to date. In a pioneer paper, Robinson (1994) discusses the estimation of the

long run coefficient β. Further developments by Robinson and Marinucci (2003), Robinson and Hualde

(2003), Nielsen (2005) and Christensen and Nielsen (2006), among others, account for the unknown

nature of integration orders δ2 and δ1 in estimating β. To increase the efficiency of the estimators, a more

recent strand of the literature focuses on joint estimation methods of all parameters describing the system

(see e.g. Nielsen 2007, Hualde and Robinson 2007, Robinson 2008a, Hualde and Robinson 2010, Shimotsu

2012). At the same time, a parallel strand of the literature has been gauging a fundamental requirement of

cointegration theory, i.e. the equality of integration orders of the observables yt and xt (see, e.g. Robinson

and Yajima 2002, Nielsen and Shimotsu 2007, Hualde 2013, for some theoretical contributions on this

topic).

Hualde (2006) discusses the consequences of relaxing this hypothesis. On the one hand, the author

argues that even if pretests cannot statistically reject the equality of integration orders of the observables,

their true (unobserved) values could, in certain circumstances, not be strictly equal but very close to each

other. This could be qualified as a “near-fractional cointegration” situation where the differences in in-

tegration orders of the processes tend to disappear as the sample size increases. In this case, standard

estimation methods remain asymptotically valid. On the other hand, if the difference between integration

orders does not vanish asymptotically, the relation between the observables cannot be immediately cap-

tured by a cointegration structure although the variables are intrinsically linked. Let the two observables

of such an unbalanced triangular system, yt and xt, be integrated of orders δ2 and δ2 + ξ respectively. One

can say that unbalanced cointegration occurs between yt and xt and equivalently cointegration theory, in

the usual sense, applies between yt and (1− L)ξ xt = xt(ξ), if there exists a linear combination of the two

variables which has less memory. Such a hidden long-run equilibrium relationship is empirically relevant

for the same reasons as conventional fractional cointegration. Depending on the power of equality of

integration orders tests, it is likely that in some cases one still estimates a spurious cointegration. In this

context it is important to account for the unbalance as otherwise the least-square-type estimates of β are

not consistent. They converge to 0 or diverge to infinity depending on the sign of ξ (see e.g. Robinson

and Marinucci 2001).

The main question arising in this framework is how to estimate the unbalance parameter ξ. In his

seminal paper, Hualde (2006) proposes a multistep time domain estimator. Nevertheless, a high enough

rate of convergence for the first step estimation (integration order parameters) is a requirement for the

consistency of β, but it is difficult to achieve in practice for weak cointegration (δ2 − δ1 < 1/2). An

alternative method has been proposed by Hualde (2014) and consists in a joint nonlinear least squares

estimation of the long run and unbalance parameters. The main advantage of this method is that it does

not require the estimation of the integration orders, so that the estimators are more efficient. Overall, these

two papers assume that the cointegration system is nonstationary, which leads to non-standard limiting
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distribution results. In particular, the asymptotic distribution obtained in Hualde (2014) is a functional of

a modified type II fractional Brownian motion. Hualde (2014) also conjectures that his approach cannot

cover the case where both observables are asymptotically stationary because his estimator should not

retain consistency in this case. However, investigating stationary cointegration is fundamental from a

theoretical point of view because spurious regression can occur even when yt and xt are stationary, as

long as their integration orders sum up to a value greater than 1/2 (see Tsay and Chung 2000). Besides,

stationary triangular systems are empirically relevant and attractive mainly for financial data, as trading

volume (Lobato and Velasco 2000), return volatility (Andersen and Bollerslev 1997) and electricity spot

prices (Haldrup and Nielsen 2006) have integration orders in the stationary region (0, 1/2). The only

estimator available for stationary unbalanced triangular systems has been recently proposed by de Truchis

and Dumitrescu (2019). Based on a non-linear extension of the narrow-band weighted least-squares

estimator of Nielsen (2005), their approach is designed to jointly estimate the long run and unbalance

parameters, β and ξ. Besides, it can also be seen as a stationary frequency-domain alternative to Hualde

(2014).2 Although the joint asymptotic distribution obtained by de Truchis and Dumitrescu (2019) is

standard Gaussian and allows for simple inference relatively to that of Hualde (2014), it still depends on

unknown integration orders, δ1 and δ2.

This paper proposes a joint semiparametric estimator of all parameters in bivariate stationary unbal-

anced fractional cointegration systems, i.e. long memory, long-run and unbalance parameters, which is

expected to be more efficient than existing ones. We show that our local Whittle-type estimator is consis-

tent and its limit distribution is Gaussian with block diagonal covariance matrix. Interestingly, the joint

asymptotic distribution of β̂ and ξ̂ is singular, as a consequence of the linearization (in frequency-domain)

of a non-linear problem that occurs in the presence of unbalance, as discussed by Hualde (2014) in time

domain. Similarly to de Truchis and Dumitrescu (2019) we find that the cointegration strength affects not

only the convergence rate of the long run estimator β̂ but also that of the unbalance estimator. Indeed, ξ̂

can be faster than
√

n-consistent although the maximum rate of semi-parametric long memory estimators

is
√

m. But our joint estimator is more efficient than the one proposed by de Truchis and Dumitrescu

(2019) and any possible extension to stationary observables of the multi-step approach developed by

Hualde (2006) in non-stationary cases. Besides, as all parameters are jointly estimated in our framework,

inference is straightforward. The paper can hence be seen as an extension of Nielsen (2007) to unbalanced

systems and also as an improvement to the approach of de Truchis and Dumitrescu (2019) that focuses

only on the estimation of β and ξ.

We investigate the finite sample properties of our estimator by means of Monte Carlo experiments for

a wide range of specifications. The bias, variance and root mean squared error criteria indicate that our

2An alternative parametric approach in time domain for unbalanced fractional cointegrated VAR models is currently investigated
by Johansen and Nielsen (2019) as an extension of Johansen and Nielsen (2012).
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estimator performs very well in small samples. At the same time, we show that if one wrongly applies

Nielsen (2007)’s (balanced) cointegration estimator when integration orders are actually different, he/she

could draw a misleading conclusion like the absence of cointegration.

In an empirical illustration, we analyze the information flowing between the CME-NYMEX futures

and the crude oil spot markets. In the spirit of Rossi and Santucci de Magistris (2013), we rely on the

no-arbitrage condition to formulate the usual relationship between prices in terms of their underlying

volatilities. The latter seem to exhibit stationary long memory with different integration orders, hence

fitting perfectly our theoretical framework. The empirical results confirm the presence of unbalanced

stationary fractional cointegration between spot and futures volatilities. Most importantly, when the

futures maturity increases, the cointegration strength clearly decreases, suggesting that the information

flowing mechanism between the spot market and the futures markets associated to long maturities is less

efficient.

The rest of the paper is organized as follows. In Section 2 we introduce our bivariate stationary

model for unbalanced cointegration, while in Section 3 we develop the joint local Whittle estimator. The

consistency and the asymptotic normality of the proposed estimator are discussed in Section 4. Section

5 presents the results of the Monte Carlo studies. An empirical application is proposed in Section 6 and

then, finally, we conclude. All proofs are gathered in Appendix A and B.

2. A stationary model of unbalanced cointegration

Let yt and xt be two unbalanced observable variables with unknown real integration orders, δ2 and

δ2 + ξn respectively. They are weakly unbalanced when δ2 and δ2 + ξn do not diverge at infinity (i.e.

ξn → 0 as n → ∞) and strongly unbalanced when ξn = |ξ| > 0 as n → ∞ (see Hualde 2006). As our

estimation procedure applies to both cases, without loss of generality, we simplify notation by using ξ

to denote ξn. Each of these stochastic processes has stationary long memory, i.e. δ = {δ2, δ2 + ξ} with

δ ∈ (0, 1/2), if its spectral density f (λ) satisfies f (λ) ∼ gλ−2δ as λ → 0+, where 0 < g < ∞ and “∼”

means that the ratio of the left and right sides converges to 1 in the limit. When δ = 0 the process has

short memory, while it is said to have intermediate memory when δ ∈ (−1/2, 0). Besides, by applying

the appropriate fractional difference filter (1− L)δ = ∑∞
k=0 ak(δ)Lk with ak(δ) := Γ(k− δ)(Γ(−δ)k!)−1 to

the initial series one retrieves I(0) series, e.g. yt(δ2) ∼ I(0) and xt(δ2 + ξ) ∼ I(0).

Now we define an unbalanced bivariate form of the triangular system introduced in Phillips (1991)

yt = βxt(ξ) + u1t(−δ1),

xt = u2t(−δ2 − ξ), t = 1, 2, ..., n. (1)
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Although standard cointegration theory does not apply to yt and xt, it does to yt and xt(ξ) when δ1 < δ2

and β , 0. Thereby, the system in (1) is a cointegration system in the sense that both series have a dominant

common component with memory δ2 that can be suitably recovered by filtering xt ∼ I(δ2 + ξ) to obtain

xt(ξ) ∼ I(δ2). This system is very general as it encompasses various representations already analyzed

in the literature, as discussed in the introduction. In particular, when β , 0 and ξ = 0 cointegration can

arise in the usual sense (see e.g. Robinson and Marinucci 2003), while for ξ , 0 and δ2 > 1/2 unbalanced

cointegration of non-stationary variables arises (see Hualde 2014).

In this paper we focus on the case where ξ , 0 and δ2 + |ξ| < 1/2, which corresponds to unbalanced

cointegration of stationary variables, and which remains unexplored in the literature as far as we are

aware of, although this case is expected to arise very often in particular with financial series (e.g. volatility,

liquidity, trading volume, etc.). More formally, we work under the following mild assumptions.

Assumption 1. yt, xt and yt − βxt(ξ) are covariance stationary processes integrated of orders δ2, δ2 + ξ and δ1

respectively with β , 0, and satisfying

0 ≤ δ1 < δ2 < δ2 + |ξ| < 1/2,

where |ξ| < k, with k an arbitrary real number that is small compared to δ2.

Under Assumption 1, anti-persistent processes are left out because they clearly have limited economic

relevance. Notice that δ2 > δ1 as otherwise β cannot be identified and β , 0 to ensure the identification of

ξ. It follows that zt = (yt − βxt(ξ), xt)′ possesses a spectral density, fz(λj), where λj denotes the Fourier

frequencies, λj = 2π j/n, with j = 1, . . . , m and m = o(n) is the bandwidth parameter (see also de Truchis

and Dumitrescu 2019).

Assumption 2. ut = (u1t, u2t)
′ has spectral density fu(λj) satisfying fu(λj) ∼ G(1 + O(λ2)) in the neighbor-

hood of the origin, where G is a real, symmetric, finite and positive definite matrix.

Under Assumption 2, ut can be a vector ARMA process or any other bivariate short memory process with

a Wold representation, ut = C(L)εt, where εt are further defined as martingale difference innovations and

C(L) is an absolutely-summable causal matrix filter satisfying G = C(1)C(1)′(2π)−1. Besides, denoting

ũ = (βu2t + u1t(δ2 − δ1) u2t)
′ and fũ(λ) its spectral density, one observes that

fũ(λ) =
(
(β 1)′G22(β 1)

)
(1 + O(λδ2−δ1)) ∼ G̃, λ→ 0+

and that G̃ has reduced rank as long as δ2 − δ1 > 0 whether or not ξ , 0 (see Hualde 2006).

Under these Assumptions, we can avoid a parametric treatment of fz(λ) by relying on a local power

law representation. Indeed, as interest lies in the long-run dynamics of the system, we specify the spectral
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density only locally around the zero frequency

fz(λ) ∼
(

Λ(λ; ϑ)
)−1

G
(

Λ(λ; ϑ)∗
)−1

, Λ(λ; ϑ) = diag
(

λδ1 , λδ2+ξ
)

, as λ→ 0+ (2)

where ϑ = (δ1, δ2 + ξ)′ and the superscript “∗” denotes the conjugate transpose. As Nielsen (2007) and

de Truchis and Dumitrescu (2019), we assume that G is diagonal so that u1t and u2t are incoherent in

the vicinity of the origin.3 In contrast to Hualde (2014), no assumption is made with respect to the

correlation of u1t and u2t away from the origin. Equation (2) further allows us to derive (in the next

section) a semiparametric estimator robust to misspecification of the short-run dynamics.

3. Local Whittle estimation

In this section we introduce a joint local Whittle estimator of θ = (δ1, δ2, β, ξ)′. Let Iz be the peri-

odogram matrix of zt defined as Iz(λj; β, ξ) = wz(λj; β, ξ)wz(λj; β, ξ)∗ with j = 1, . . . , n and wz(λj; β, ξ) =

(2πn)−1/2 ∑n
t=1 zteitλj the Fourier transform of zt. Using only Fourier frequencies in the neighborhood of

the origin,

Iz(λj; β, ξ) =

(wy(λj)− βλ
ξ
j wx(λj)

wx(λj)

)(wy(λj)− βλ
ξ
j wx(λj)

wx(λj)

)∗
, (3)

with j = 1, . . . , m, for a fixed bandwidth m = o(n). Note that the presence of λ
ξ
j corrects for the fact that

the long memory parameters of yt and xt are unbalanced.

Then, the discrete local Whittle approximation to the likelihood is given by

Qm(θ, G) = m−1
m

∑
j=1

[
log det

((
Λ(λj; ϑ)

)−1 G
(
Λ(λj; ϑ)∗

)−1
)

+ tr
(

G−1Λ(λj; ϑ)Iz(λj; β, ξ)Λ(λj; ϑ)∗
)]

, (4)

where G ∈ ΘG, the set of real positive definite 2× 2 matrices. The objective function Qm is minimized

over ΘG by

Ĝ(θ) = Re

(
m−1

m

∑
j=1

Λ(λj; ϑ)Iz(λj; β, ξ)Λ(λj; ϑ)∗
)

. (5)

3The phase parameter modeled as ϕ = (δ2 − δ1)π/2 in Robinson (2008a) and Shimotsu (2012) is null in our framework (see
also Shimotsu 2007). The presence of non-null off-diagonal elements in G should imply non-negligible imaginary part of the cross-
spectrum element f ab

z (λ) such that f ab
z (λ) ∼ Gabλ−δa−δb ei(π−λ)(δa−δb)/2 as λ→ 0+, for a, b = 1, 2 and where Gab denotes the (a, b)th

element of G.
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Substituting (5) in (4) leads to the following concentrated likelihood function

Rm(θ) = log det Ĝ(θ)− 2(δ1 + δ2 + ξ)

m

m

∑
j=1

log λj. (6)

The local Whittle estimator of θ satisfies θ̂ = arg min
θ∈Θ

Rm(θ), for m ∈ [1, n/2] and where the parameter

space Θ is a compact subset of R4 with Θ = Θδ ×Θβ ×Θξ and δ = (δ1, δ2)
′.

4. Limit theory

To prove the consistency of this local Whittle estimator, we introduce several assumptions fairly similar

to those of Shimotsu (2007) and Nielsen (2007). In the following, θ0 and G0 will denote the true parameter

values of θ and G. Furthermore, let fab(λ) and G0
ab denote the (a, b)th element of fz(λ) and G0 respectively.

Define also ϑ0 = (δ01, δ02 + ξ0)
′ and ϑ0a the ath element of ϑ0.

Assumption 3. As λ→ 0+ the elements of the spectral density fz(λ) satisfy

fab(λ) = G0
abλ−ϑ0a−ϑ0b + o(λ−ϑ0a−ϑ0b), a, b = {1, 2},

where matrix G0 is finite, real, symmetric and G0
ab = G0

ba = 0.

The first part of Assumption 3 restates (2) and makes precise the conditions on the matrix G0 while its

second part implies a zero-coherence condition that applies only in the vicinity of the origin. As argued in

Nielsen (2007), G0
ab = G0

ba = 0 is a less restrictive assumption than the traditional orthogonality condition

encountered in the least squares theory. In particular, it allows for the presence of correlation in the errors

as we move away from the origin, i.e. they can share a common short- and/or medium-term dynamics.

The present estimator might be modified to account for this endogeneity issue in the spirit of Robinson

(2008a) and Shimotsu (2012), but this definitely implies a nontrivial extension of our limit theory.

Assumption 4. The sequence zt = (yt − βxt(ξ), xt) is a linear process defined as

zt − E(zt) = A(L)εt =
∞

∑
j=0

Ajεt−j,
∞

∑
j=0
||Aj||2 < ∞,

with ||.|| the Euclidean norm, so that Aj is a causal square summable matrix filter. Moreover, εt satisfies, almost

surely, E(εt|Ft−1) = 0 and E(εtε
′
t|Ft−1) = I2, with Ft a σ-field generated by {εs, s ≤ t} and there exists a random

variable ε such that E(ε2) < ∞ and for all η > 0 and some constant K > 0, Pr(||εt||2 > η) ≤ KPr(ε2 > η).

Assumption 5. In a neighborhood of the origin, A(λ) = ∑∞
j=0 Ajeijλ is differentiable and

∂

∂λ
Aa�(λ) = O(λ−1||Aa�(λ)||) as λ→ 0+
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where Aa�(λ) is the a-th row of A(λ).

Assumptions 4 and 5 follow Nielsen (2007). The former imposes uniformly square integrable martingale-

difference innovations with constant conditional variance, while the latter implies ∂Aa�(λ)/∂λ = O(λ−ϑa−1)

by the Cauchy inequality

||Aa�(λ)|| ≤ (Aa�(λ)A∗a�(λ))
1/2 = (2π faa(λ))

1/2.

Thereby, under Assumptions 4 and 5 we have fz(λ) = (2π)−1 A(λ)A(λ)∗.

Assumption 6. As n→ ∞, the bandwidth parameter satisfies

1
m

+
m
n
→ 0.

The bandwidth requirement defined in Assumption 6 ensures that m tends to ∞ as n → ∞ but at a slow

rate so as to remain in a neighborhood of the origin. Under these assumptions we state the consistency

theorem.

Theorem 1. Let Assumptions 1-6 hold. Define ν0 = δ02 − δ01. Then, for θ0 ∈ Θ, as n→ ∞,

(
δ̂1

δ̂2

)
p−→
(

δ01

δ02

)
λ−ν0

m (β̂− β0)
p−→ 0

λ−ν0
m log(λm)(ξ̂ − ξ0)

p−→ 0.

For the proof see Appendix A. Theorem 1 shows that the local Whittle estimator, θ̂ = arg min
θ∈Θ

Rm(θ), is

consistent. In particular, the convergence rates of β̂ and ξ̂ are driven by the cointegration strength. We

hence recover the usual semiparametric rate of convergence of the long-run estimator in a cointegration

framework (see Nielsen 2005; 2007, Robinson and Marinucci 2003, Robinson 2008a, Shimotsu 2012). At

the same time, the convergence rate of the unbalance estimator is higher.

Now, we introduce some further assumptions in view of proving the asymptotic normality of the

estimator. Again, they are similar to those of Shimotsu (2007), Nielsen (2007) and Robinson (2008a).

Assumption 7. Assumption 3 holds and also satisfies

| f ab
z (λ)− G0

abλ−ϑ0a−ϑ0b | = O(λα−ϑ0a−ϑ0b), a, b = {1, 2},

as λ→ 0+ and for some α ∈ (0, 2].

Assumption 8. Assumption 4 holds and we further impose that the matrices µ3 = E(εt ⊗ εtε
′
t|Ft−1) and µ4 =

E(εtεt ⊗ εtε
′
t|Ft−1) are non-stochastic, finite and do not depend on t, with Ft a σ-field generated by {εs, s ≤ t}.
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Assumption 9. Assumption 5 holds.

Assumption 10. As n→ ∞, the bandwidth parameter m = o(n) and α ∈ (0, 2] jointly satisfy

1
m

+
m1+2α(log m)2

n2α
→ 0.

Under Assumption 10 the bandwidth parameter, m, is theoretically bounded by n4/5 but in practice a too

small bandwidth increases the variance of the estimator while a too large m generally increases the bias.

Theorem 2. Under Assumptions 1, 2 and 7-10, as n→ ∞,

√
m diag (I2)

δ̂1 − δ01

δ̂02 − δ2

 d−→N2(0, E−1),

√
mλ−ν0

m

 1

log λm

′β̂− β0

ξ̂ − ξ0

 d−→

 1

β−1
0

N1(0, F−1).

The proof of Theorem 2 is given in Appendix B. Notice that the asymptotic distribution is block-diagonal.

The limiting covariance block of (δ̂1, δ̂2)
′ is the same as the one found by Lobato (1999). However, the joint

limit distribution of β̂ and ξ̂ is singular and in particular that of ξ̂ depends on β0. Indeed, our frequency-

domain semi-parametric estimator implies the linearization of a non-linear optimization problem with

respect to β and ξ which is behind the observed singularity. This result has already been emphasized

in a time domain non-linear least squares framework by Hualde (2014) and in frequency domain by

de Truchis and Dumitrescu (2019). The independence between the estimates of δ and (β, ξ)′ is a direct

consequence of the local orthogonality in Assumption 7. This assumption is necessary for deriving the

limit distribution in Theorem (2), but one might envisage a non-trivial extension by explicitly accounting

for the phase parameter and adjusting the expansion rate of the bandwidth parameter in Assumption 10

in the spirit of Robinson (2008a) and Shimotsu (2012). We conjecture that the limit distribution will still

be Gaussian and singular with a non-block diagonal covariance matrix.

Unsurprisingly, since the limit theory of β̂ does not depend on ξ0, we recover the standard convergence

rate
√

mλ−ν0
m (see e.g. Nielsen 2007, Robinson 2008a, Shimotsu 2012). In fact, its convergence rate is

always higher than the standard semi-parametric
√

m rate and is very close to
√

n when the cointegration

strength approaches 1/2. In contrast, the convergence rate of the unbalance estimator is always larger than

that of the long run estimator and ξ̂ can be superconsistent when the cointegrating gap ν0 is close to 1/2.

This is non-standard result for memory parameters in stationary semi-parametric frameworks where the

maximum achievable rate is
√

m and even for parametric frameworks in time and frequency domains

(where the maximum rate is
√

n). A similar result is obtained by Hualde (2014) in a parametric non-

stationary time domain framework and de Truchis and Dumitrescu (2019) in frequency domain. Our
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asymptotic variance is however smaller than the one obtained by de Truchis and Dumitrescu (2019) as all

parameters are jointly estimated. Indeed, the ratio of the two, 1− (1− 2ν0)/(1− ν0)
2, is always inferior

to unity for ν0 ∈ (0, 1/2).

5. Monte Carlo experiments

This section discusses the finite sample performance of the proposed estimator by means of Monte

Carlo simulations. We generate the stationary fractionally cointegrated system in (1) by using the circulant

embedding method extended to multivariate fractional Gaussian noise by Helgason et al. (2011).4 The

vector ut is generated from a bivariate normal distribution N2(µ, Σ) where the diagonal elements of Σ are

set to 1 and its off-diagonal element is ρ = {0, 0.4}. We fix the long-run coefficient β = 0.8 and present

results for δ2 = 0.35 and an unbalance coefficient ξ = 0.1. We investigated three stationary cointegration

cases by setting δ1 = {0, 0.2, 0.3}.5

We generate I = 10000 replications of this system with sample sizes n = {256, 512, 1042, 16384}, where

the latter should be seen as an approximation of the asymptotic behaviour of the estimator and bandwidth

parameter m = {bn0.5c, bn0.75c}. For each simulation, we report the bias, the variance and the Root Mean

Squared Error (RMSE). To deal with outliers, we follow Shimotsu (2012) and add a penalty term to the

objective function, Π(β, β̃) = min(0, β− β̃ + C)4 + max(0, β− β̃− C)4. Imposing β ∈ [β̃± C], this penalty

is equivalent to a constrained optimization on β and preserves the asymptotic results obtained in Theorem

2 if β̃ is a consistent estimator of β. We set C = 3 in all experiments.6 The initial values δ̃x and δ̃y are

obtained from the local Whittle estimator of Robinson (1995) applied to xt and yt respectively. Therefore,

the initial value ξ̃ is based on the difference between δ̃y and δ̃x (see Hualde 2006, p. 777). Finally, the

initial value β̃LSE results from the regression of yt on xt(ξ̃) and is a consistent estimator of β. The Narrow-

Band Least Squares (NBLS) estimate has also been considered for the initialization of β, but it does not

significantly modify the results.

Table 1 displays the bias, variance and RMSE results for ρ = 0. The estimates of δ2, δ1 and ξ are always

quite precise, with bias lower than 0.09. In contrast, the local Whittle estimate for β is sensitive to the

cointegration strength δ2 − δ1. As indicated by the econometric theory, the larger the cointegrating gap

the better. The finite sample bias and variance of β decrease significantly with the larger sample size.

The RMSE is decreasing in the bandwidth m for all parameters, indicating that in absence of short-run

dynamics one should use frequencies further away from the origin to reduce both bias and variance.

4See Davidson and Hashimzade (2009) for a discussion on the benefits and limitations of existing techniques devoted to simu-
lating type I fractional processes.

5We also investigated the case where δ2 = 0.45, ξ = −0.1 and δ1 = {0, 0.2, 0.3} and we found similar results. They are available
upon request.

6All simulation results are robust to the choice of C.
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Table 2 presents the results for ρ = 0.4. The violation of the orthogonality condition introduces a bias

in the estimation of β and increases its variance when m = bn0.5c. The bias is larger when δ2 − δ1 is small

and it worsens with a larger bandwidth because our data generating process introduces endogeneity at

all frequencies. The long-run coherence between the observables and the innovations appears hence to

hurt the proposed local Whittle estimator. These results suggest that our estimator is inconsistent in this

setup. We do not investigate this issue further and leave it for future research.

Since a typical case of stationary fractional cointegration involves financial variables, in Table 3 we

discuss the behavior of our estimator when the normality hypothesis does not hold. For this, we gen-

erate the innovations ut as increments of a Rosenblatt process. The estimates exhibit similar patterns to

those in Table 1, with a reduction in bias and variance as the cointegration strength increases. However

all parameters exhibit larger bias and variance than under Gaussian innovations. This appears to be a

consequence of the lower convergence rate of the Whittle-type estimator in presence of increments of a

Rosenblatt process as shown by Bardet and Tudor (2014).

Table 2: Simulation results with ρ = 0.4 and n = 16384 for δ2 = 0.35 and ξ = 0.1

m = bn0.5c m = bn0.75c
δ1 θ Bias Variance RMSE Bias Variance RMSE

0 δ2 0.028 0.003 0.064 0.056 <0.001 0.058
δ1 0.031 0.007 0.087 0.022 <0.001 0.026
β 0.012 0.744 0.863 -0.303 0.001 0.305
ξ -0.038 0.001 0.044 -0.065 <0.001 0.066

0.2 δ2 0.038 0.013 0.120 0.076 0.001 0.080
δ1 0.006 0.005 0.069 0.002 <0.001 0.013
β 0.106 1.421 1.197 -0.409 0.005 0.415
ξ -0.044 0.010 0.107 -0.078 <0.001 0.080

0.3 δ2 -0.005 0.092 0.304 0.018 0.021 0.147
δ1 -0.002 0.003 0.056 -0.001 <0.001 0.013
β 0.186 1.638 1.293 -0.421 0.018 0.441
ξ 0.005 0.090 0.300 -0.017 0.020 0.144

Note: The results are based on I = 10000 replications.

Finally, we investigate a situation where unbalanced stationary cointegration is present but a simple

balanced cointegration estimator is used, i.e. Nielsen (2007)’s estimator (labeled BFC). 7 Table 4 presents

the small and large-sample bias of our estimator (labeled UFC) as well as that associated with BFC. Note

that one expects BFC to be inconsistent with respect to β as it assumes equality of integration orders. In

particular, in view of Robinson and Marinucci (2001) and de Truchis and Dumitrescu (2019), the bias

7We have also envisaged a comparison of our estimator with a stationary version of Hualde (2006, p. 784)’s 3-step estimation
approach for unbalanced cointegration. However, his estimator is inconsistent in such a case and to correct for that one would need
to first estimate

√
n-consistently the integration order of xt, δ2 + ξ, and then jointly estimate δ1 and ξ (see Hualde 2006, eq. 40). This

multi-step estimator is expected to be less efficient than ours and we do not investigate it further.

12



Table 3: Simulation results with ρ = 0 for δ2 = 0.35 and ξ = 0.1 under Rosenblatt distribution

m = bn0.75c 1024 4096 16384
δ1 θ Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

0 δ2 -0.102 0.222 0.482 -0.100 0.069 0.281 -0.073 0.006 0.106
δ1 0.020 0.003 0.060 0.021 0.001 0.039 0.016 <0.001 0.026
β 0.071 0.626 0.794 -0.046 0.127 0.360 -0.029 0.036 0.191
ξ 0.029 0.214 0.464 0.029 0.064 0.254 0.003 0.004 0.065

0.2 δ2 -0.131 0.248 0.515 -0.135 0.109 0.356 -0.101 0.038 0.22
δ1 -0.012 0.005 0.068 -0.008 0.002 0.042 -0.01 0.001 0.028
β 0.238 1.136 1.092 0.029 0.423 0.651 -0.017 0.099 0.316
ξ 0.056 0.238 0.491 0.062 0.104 0.328 0.031 0.036 0.192

0.3 δ2 -0.149 0.369 0.626 -0.173 0.128 0.397 -0.161 0.071 0.311
δ1 -0.048 0.005 0.087 -0.041 0.002 0.062 -0.039 0.001 0.048
β 0.300 1.517 1.268 0.168 0.839 0.931 0.018 0.238 0.488
ξ 0.076 0.359 0.604 0.103 0.122 0.364 0.091 0.069 0.278

Note: The results are based on I = 10000 replications.

on β̂BFC should be negative if ξ > 0 and positive otherwise. Our simulation results show that β̂BFC is

biased and this bias does not vanish for large sample sizes while its sign is compatible with the positive

unbalance parameter of 0.1. At the same time, δ̂2,BFC also exhibits an asymptotic bias that corresponds

to the (unestimated) unbalance parameter regardless of the cointegration strength, δ2 − δ1. Nielsen’s

balanced fractional cointegration method is hence estimating δ2 + ξ, the integration order of xt, instead

of that of yt, and this pollutes the estimation of δ1 too when δ2 − δ1 is large. All in all, since the BFC

estimation method is not designed to detect hidden long-run relations, it would wrongly conclude to the

absence of cointegration. This result reinforces the usefulness of our unbalanced stationary cointegration

estimator in empirical applications.

6. Empirical illustration

In this section, we exploit the fact that a linear relationship exists between the spot and futures volatil-

ities of crude oil markets in absence of arbitrage, which has implications in terms of information flow

between spot and futures markets. The rational for this spot-futures volatility relationship is provided by

Rossi and Santucci de Magistris (2013) who show that the no-arbitrage condition implies an analogous

condition on the underlying volatility series of spot and futures asset prices. This original approach is con-

venient because it can be extended to commodity markets under simple assumptions that are discussed

in the following.

Assumption 11. Weak arbitrage-free hypothesis: arbitrage opportunities can exist but they are infrequent and

short-lived.
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Table 4: Bias comparison with ρ = 0 for δ2 = 0.35 and ξ = 0.1

m = bn0.75c 1024 4096 16384

δ1 θ UFC BFC UFC BFC UFC BFC
0 δ2 0.008 0.095 0.005 0.095 0.002 0.092

δ1 -0.001 0.023 0.005 0.042 0.005 0.061
β -0.049 -0.338 -0.031 -0.373 -0.016 -0.405
ξ -0.011 -0.005 -0.002

0.2 δ2 -0.012 0.097 <0.001 0.099 <0.001 0.099
δ1 -0.006 <0.001 -0.002 0.004 -0.001 0.007
β -0.051 -0.444 -0.024 -0.453 -0.011 -0.469
ξ 0.009 <0.001 <0.001

0.3 δ2 -0.073 0.097 -0.032 0.099 -0.004 0.100
δ1 -0.008 -0.005 -0.003 -0.001 -0.001 0.001
β -0.039 -0.643 -0.033 -0.624 -0.013 -0.620
ξ 0.070 0.031 0.004

Note: The results are based on I = 10000 replications.

Accordingly, the spot and futures log-prices should be cointegrated and do not drift too far apart.

Under this hypothesis, Rossi and Santucci de Magistris (2013) show that the no-arbitrage condition is

directly related to the volatility of the price of a futures contract that expires at time t + k (σt,F) and the

spot price (σt,S) by

σt,F = σt,S + bt + ut, bt = (log 2)−1/2(rτmax − rτmin), t− 1 < τ ≤ t (7)

with rτ(.) the risk-free interest rate of the highest and lowest price in a given day and where the volatility

of the risk-free asset over a day is assumed to be small such that bt → 0. The additional term ut stands

for market frictions and is expected to have zero mean and finite variance. As the persistence of volatility

is very well documented in the literature (see e.g. Andersen and Bollerslev 1997, Hurvich et al. 2005,

Frederiksen et al. 2012), (7) comes down to a fractional cointegration equation. The presence of long term

relationship between spot and futures volatilities appears then as a way to validate (or not) Assumption

11.

The particularity of physical commodity markets consists in the presence of the net convenience yield.

As the convenience yield is stochastic and unobserved, there is a vast literature trying to model it and

relate it to the no-arbitrage condition. Liu and Tang (2010) show that the non-arbitrage condition holds

only if the convenience yield is non-negative. Besides, it is widely assumed in the literature that the

convenience yield is homoscedastic. And even when this hypothesis is relaxed, in the particular case of the

crude oil market, Liu and Tang (2011) show that the degree of heteroscedasticity of the net convenience

yield, i.e. the fraction of the stochastic part in the asymptotic variance, is small (around 9%). These results

14



justify the following hypothesis from an empirical point of view.

Assumption 12. The convenience yield is non-negative and its volatility over a day is small.

Under Assumptions 11 and 12, Equation (7) holds for the crude oil markets up to a constant term.

Furthermore, it is consistent with the informational theory of Cox (1976) and Ross (1989). Indeed, Ross

(1989) shows that in absence of arbitrage opportunity, volatility reflects the information flow. Cox (1976)

argues that the transaction costs on the futures market are lower than those of the spot market. Hence,

the futures volatility should be the leading factor and the long term no arbitrage equation we estimate

becomes σt,S = βσt,F(ξ) + ut.8 In particular, we expect our fractional cointegration model to bring light on

the fact that the futures crude oil markets convey information about the future spot market to the current

spot market.

Figure 1: Daily range volatility proxy of the crude oil market prices from January 4, 2010 to November 1, 2018.
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We use Light-Sweet crude oil spot and futures prices traded in NYMEX obtained through Thomson

Reuters Eikon. Our data set runs from January 4, 2010 to November 1, 2018 for a total of n = 2177

observations. Besides, to investigate whether the maturity of the futures contracts impacts the spot-

futures relationship we consider four different maturities. The contract F1 specifies the earliest delivery

date. It expires on the third business day prior to the 25th calendar day of the month preceding the

delivery month. If the 25th calendar day of the month is a non-business day, trading ceases on the third

8On stock markets, this hypothesis is supported by the results of Rossi and Santucci de Magistris (2013).
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business day prior to the business day preceding the 25th calendar day. The contracts F2 − F4 represent

the successive delivery months following the contract F1. Figure 1 displays the daily range volatility

proxy for the spot and the four futures markets. It appears that the series exhibit long term swings and

similarities in their dynamics. In the following we hence thoroughly investigate the presence of stationary

(unbalanced) cointegration in this framework.

Since our estimator is semi-parametric, we follow the informal approach by Robinson (2008b) to select

the “optimal” bandwidth over a grid of m values. A visual inspection of the sensitivity of parameter

estimates to the choice of bandwidth reveals that the optimal bandwidth value lays between [n0.65, n0.75].

Table 5: Unbalanced stationary fractional cointegration analysis

m = bn0.65c m = bn0.75c
F1 F2 F3 F4 F1 F2 F3 F4

UFC
δ̂2 0.493 0.494 0.483 0.483 0.417 0.416 0.413 0.408

(0.041) (0.041) (0.041) (0.041) (0.028) (0.028) (0.028) (0.028)
δ̂1 0.089 0.154 0.200 0.238 0.096 0.144 0.175 0.196

(0.041) (0.041) (0.041) (0.041) (0.028) (0.028) (0.028) (0.028)
ξ̂ -0.029 -0.027 -0.024 -0.025 -0.031 -0.031 -0.029 -0.029

(0.006) (0.011) (0.018) (0.018) (0.014) (0.022) (0.029) (0.029)
β̂ 0.854 0.851 0.869 0.845 0.837 0.821 0.819 0.808

(0.013) (0.026) (0.042) (0.056) (0.022) (0.034) (0.045) (0.056)

BFC
δ̂2,BFC 0.463 0.465 0.459 0.457 0.385 0.384 0.383 0.378

(0.041) (0.041) (0.041) (0.041) (0.028) (0.028) (0.028) (0.028)
δ̂1,BFC 0.109 0.160 0.201 0.236 0.109 0.148 0.176 0.196

(0.041) (0.041) (0.041) (0.041) (0.028) (0.028) (0.028) (0.028)
β̂BFC 1.003 1.000 1.014 1.010 1.000 1.000 0.999 1.002

(0.023) (0.037) (0.057) (0.057) (0.034) (0.050) (0.064) (0.064)

RY02 3.860 7.910 77.75 -2.880 15.59 22.80 -1461 -12.46

Note : UFC (BFC) stands for unbalanced (balanced) fractional cointegration estimators defined in Section 3
(proposed by Nielsen 2007). Asymptotic standard deviations are displayed in parentheses. RY02 stands for the
homogeneity test of integration orders by Robinson and Yajima (2002). The initial values of β̂ are obtained by
OLS. Those of δ̂2 and δ̂1 are obtained by the local Whittle estimator of Robinson (1995), while ξ̂ is initialized to
the difference between the estimated integration orders of σt,F and σt,S.

The estimation results of the no arbitrage equation for the different maturities are reported in Table

5 for the bounds of the optimal bandwidth interval.9 We first discuss the results of our unbalanced

cointegration framework (panel UFC). Notice that all volatility series are strongly persistent but remain in

the stationary region of the parameter space, i.e. δ̂2 < 1/2 and δ̂2 + ξ̂ < 1/2. At the same time, the orders

of integration of the residuals indicate less persistence albeit they are statistically different from 0. For

9Similar results have been found for intermediate values of m and are available upon request.
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all these reasons and given that β̂ is always statistically significant, one can conclude that the fractional

cointegration hypothesis holds for all maturities and both bandwidths, which goes along Assumption

11. However, as the values of β̂ are statistically different and less than 1, the presence of arbitrage

opportunities in the long run cannot be neglected. More interestingly, the significance of the unbalance

estimator ξ̂ points out that unbalanced cointegration occurs in most cases for the first two maturities. The

negative sign of ξ̂ indicates that the volatility of the spot market exhibits more persistence than that of

the futures while the cointegration strength diminishes with the maturity suggesting that the information

flowing mechanism becomes less and less efficient. One reason behind this could be the lower level of

liquidity of the futures markets at long horizons (see e.g. Darolles et al. 2017). Recall that in Theorem

2 the convergence rates of β̂ and ξ̂ depend on the cointegration strength. It follows that the reported

asymptotic standard deviations for these parameters inflate with the maturity, which affects mainly the

significance of ξ̂ despite roughly constant estimates around −0.025 and −0.030. The last row of the table

reports the test-statistics for the homogeneity of integration orders hypothesis proposed by Robinson and

Yajima (2002). A statistics larger than a standard Normal critical value is seen as evidence against the

null hypothesis irrespective of whether or not there is cointegration. The results confirm the presence of

unbalanced integration orders in all cases. Besides, the (unreported) unit rank estimates by Robinson and

Yajima (2002) indicate that the spot-futures system is characterized by unbalanced stationary fractional

cointegration which goes along the lines of our estimations.

We also investigate the implications of a balanced fractional cointegration (BFC) approach à la Nielsen

(2007) on the estimation of this long run relationship (see panel BFC in Table 5). The δ1,BFC estimates are

similar to ours while δ2,BFC estimates are systematically smaller than the UFC ones, which is consistent

with our negative estimates of ξ. What is particularly striking in this framework is that β̂BFC is always

very close to one although the persistence of the deviations to the long-run equilibrium is increasing

with the maturity. Neglecting even small differences in integration orders (ξ̂ are small in this illustration)

appears hence to have a large effect on the estimate of the long run parameter and induce spurious

market efficiency. To prevent against such (wrong) conclusions, we recommend the use of an unbalanced

cointegration framework to analyse long run comovements in the spirit of a general to specific approach.

Conclusion

Cointegration estimators for unbalanced triangular systems are particularly useful from an empirical

point of view as one can easily find itself in a spurious cointegration framework if integration orders

equality tests are not powerful enough. Hualde (2006; 2014) covers the non-stationary region, and the

only counterpart for stationary observables (de Truchis and Dumitrescu 2019) focuses on the estimation

of β and ξ while neglecting the estimation of the long memory parameters.
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In this paper we develop the first joint estimator of all the parameters in bivariate unbalanced sta-

tionary triangular fractional cointegration systems. It relies on the local behavior of the spectral den-

sity of the system in the vicinity of the origin, thereby allowing for a semi-parametric treatment of the

high frequencies. It estimates jointly all the parameters of interest and notably the unbalance parameter,

hence achieving greater efficiency than existing competitors. Our local Whittle estimator is consistent and

asymptotically normally distributed with block-diagonal covariance matrix under a local orthogonality

condition between the regressors and the errors. In particular, the joint limit distribution of the long run

coefficient and the unbalance parameter is singular and these parameters exhibit faster rates of conver-

gence than the regular semi-parametric
√

m rate. By means of Monte Carlo simulations we show the

good finite sample properties of the proposed estimator.

In a short application, we use the no-arbitrage hypothesis on the spot and CME-NYMEX futures

markets to derive an analogous relation between the spot and futures volatilities. Our results reveal

that the apparent unbalance of the integration orders between the spot and futures volatility series is

misleading. The estimation of the unbalance parameter allows one to recover a balanced stationary

cointegration relationship. The results conclude in favor of an information flowing mechanism between

the two markets albeit it is not a fully efficient one. Interestingly, the cointegration strength is higher for

short maturities than for long maturities, probably reflecting a reduction in the level of liquidity with the

horizon.
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Appendix A : Proof of Theorem 1

Proof. Let θ be the vector of admissible parameter values, θ0 the vector of true parameter values and

S(θ) = Rm(θ) − Rm(θ0). Then, define the neighborhoods Θn
δ (d) = {δ :‖ δ − δ0 ‖< d}, Θn

ξ (e) = {ξ :

|ξ − ξ0| < e}, Θn
β(b) = {β : |β − β0| < b} and their complements Θc

δ = Θδ\Θn
δ , Θc

ξ = Θξ\Θn
ξ and

Θc
β = Θβ\Θn

β such that Θn(ε) = Θn
δ (ε) × Θn

ξ (ε
−1λν0

m log(λm)−1) × Θn
β(ε
−1λν0

m ), Θc(ε) = Θ\Θn(ε) and

where ‖ · ‖ denotes the Euclidean norm. Without loss of generality with respect to Assumption 1 we set

max
(

min
i
‖ δi − δ0i ‖, |ξ − ξ0|

)
≥ d, δ ∈ Θc

δ, ξ ∈ Θc
ξ , (8)

so that 1/2 > d ≥ e > 0. Since θ0 ∈ Θn(ε), it follows that

Pr
(
θ̂ ∈ Θc(ε)

)
= Pr

(
inf

θ̂∈Θc(ε)
Rm(θ) ≤ inf

θ̂∈Θn(ε)
Rm(θ)

)
≤ Pr

(
inf

θ̂∈Θc(ε)
S(θ) ≤ 0

)
.

Accordingly, to prove Theorem 1 it suffices to show that, as n → 0, S(θ) is positive and bounded away

from 0 uniformly on Θc(ε) so that

Pr

(
inf

θ̂∈Θc(ε)
S(θ) ≤ 0

)
→ 0. (9)

For this, introduce ψ1 = δ1 − δ01 and ψ2 = (δ2 + ξ)− (δ02 + ξ0) and develop S(θ) as

S(θ) = log det Ĝ(θ)− 2(δ1 + δ2 + ξ)m−1
m

∑
j=1

log λj − log det Ĝ(θ0) + 2(δ01 + δ02 + ξ0)m−1
m

∑
j=1

log λj

= log det Ĝ(θ)− log det Ĝ(θ0)−m−1
m

∑
j=1

2 log λj

2

∑
i=1

ψi.

Using that m−1 ∑m
j=1 log λj = log λm + m−1 ∑m

j=1 log j− log m and by rearranging S(θ), we obtain S(θ) =

S1(θ) + S2(θ) + S3(θ), where

S1(θ) = log det Ĝ(θ)− log det G0 − 2 log λm

2

∑
i=1

ψi +
2

∑
i=1

log(2ψi + 1)

S2(θ) = log det G0 − log det Ĝ(θ0)

S3(θ) = 2
2

∑
i=1

ψi

(
log m−m−1

m

∑
j=1

log j

)
−

2

∑
i=1

log(2ψi + 1).

The way we split S(θ) has the advantage that S2(θ) and S3(θ) do not depend on β or ξ so that we can

treat them by drawing on the works of Robinson (1995). To prove the boundedness of S(θ) we also make
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use of the decomposition

Pr

(
inf

θ̂∈Θc(ε)
S(θ) ≤ 0

)
≤ Pr

(
inf

{θ̂∈Θc(ε)}∩{β̂∈Θβ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
(10)

+ Pr

(
inf

{θ̂∈Θc(ε)}∩{ξ̂∈Θξ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
(11)

+ Pr

(
inf

{θ̂∈Θc(ε)}∩{δ̂∈Θδ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
(12)

+ Pr

(
inf

{θ̂∈Θc(ε)}∩{ξ̂∈Θξ ∪ β̂∈Θβ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
(13)

+ Pr

(
inf

{θ̂∈Θc(ε)}∩{δ̂∈Θδ ∪ β̂∈Θβ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
(14)

+ Pr

(
inf

{θ̂∈Θc(ε)}∩{δ̂∈Θδ ∪ ξ̂∈Θξ}

(
S1(θ) + S2(θ) + S3(θ)

)
≤ 0

)
. (15)

We first treat S2(θ) as it does not depend on θ̂ and no uniform bound is needed. Since | log(1 + x)| ≤

2|x| (see Robinson 1995, p. 1635), it follows that for ε ≤ 1

Pr (|S2(θ)| ≤ ε) = Pr
(
| log det Ĝ(θ0)− log det G0| ≤ ε

)
≤ Pr

(∣∣∣∣∣det Ĝ(θ0)− det G0

det G0

∣∣∣∣∣ ≤ ε/2

)
. (16)

Accordingly, proving that det Ĝ(θ0)− det G0
p−→ 0 suffices to show that S2(θ) is op(1). To simplify nota-

tion, let I0
jab = I0

ab(λj; β0, ξ0) and G0
ab be the (a, b)-th element of G0 and recall that ϑ0 = (δ01, δ02 + ξ0)

′.

Evaluating (3) and (5) at the true value, we obtain

I0
j =

(
Ijyy − 2β0λ

ξ0
j Ijxy + β2

0λ
2ξ0
j Ijxx Ijxy − β0λ

ξ0
j Ijxx

Ijxy − β0λ
ξ0
j Ijxx Ijxx

)
,

from which we implicitly take the real part. Then, under Assumptions 3-6

Ĝab(θ0)− G0
ab =

G0
ab

m

m

∑
j=1

(
I0
jab

G0
abλ
−ϑ0a−ϑ0b
j

− 1

)

can be shown to be op(1) by the analysis of Robinson (1995, p. 1635). It follows that S2(θ) is also op(1).

20



Now we turn to the analysis of S3(θ) which can be rearranged as

S3(θ) = −2
2

∑
i=1

ψi

(
m−1

m

∑
j=1

log j− (log m− 1)

)
+ 2

2

∑
i=1

ψi −
2

∑
i=1

log(2ψi + 1). (17)

From Lemma 2 of Robinson (1995) we have that the first term of (17) is m−1 ∑m
j=1 log j− (log m− 1) =

O(m−1 log m) so that the analysis of S3(θ) comes down to studying a non-null lower bound of the last

two terms in (17) which are of the form f (x) = x − log(1 + x) for ψ1 and (x + y) − log(x + y + 1) for

ψ2. Because infx f (x) ≥ x2/6 and infx,y f (x, y) ≥ (x2 + y2)/6 for 0 < |x| < 1, 0 < |y| < 1, and from

the condition stated in Equation (8), we can apply the analysis of Nielsen (2007, p. 437) uniformly over

{δ̂ ∈ Θc
δ} ∪ {ξ̂ ∈ Θc

ξ}. From Lütkepohl (1996, sec. 8.5.2, p. 111) and by the triangular inequality,

√
2 max(|δ1 − δ01|, |δ2 − δ02|) +

√
2 max(|0|, |ξ − ξ0|) ≥

∥∥∥∥δ1 − δ01

δ2 − δ02

∥∥∥∥+ ∥∥∥∥ 0
ξ − ξ0

∥∥∥∥ ≥‖ Ψ ‖≥ d + e,

with Ψ = (ψ1, ψ2)
′. Thereby, the infimum of 2 ∑2

i=1 ψi−∑2
i=1 log(2ψi + 1) over {δ̂ ∈ Θc

δ}∪{ξ̂ ∈ Θc
ξ}∪{β̂ ∈

Θβ} is no less than

2(d + e)√
2
− log

(
1 +

2(d + e)√
2

)
≥ 2(d2 + e2)

6
.

Then, given that f (x, y) has a unique minimum on {(x, y) : y > −x− 1} at (x, y) = (0, 0),

inf
{δ̂∈Θc

δ}∪{ξ̂∈Θc
ξ}∪{β̂∈Θβ}

S3(θ) ≥
2(d2 + e2)

6
+ O(m−1 log m),

inf
{δ̂∈Θn

δ }∪{ξ̂∈Θn
ξ }∪{β̂∈Θβ}

S3(θ) = o(1).

The two remaining cases are {δ̂ ∈ Θc
δ} ∪ {ξ̂ ∈ Θn

ξ } ∪ {β̂ ∈ Θβ} and {δ̂ ∈ Θn
δ} ∪ {ξ̂ ∈ Θc

ξ} ∪ {β̂ ∈ Θβ}.

In the former case, S3(θ) is no less than 2d2/6 + O(m−1 log m) while in the latter, S3(θ) is no less than

2e2/6 + O(m−1 log m).

Finally we turn to the analysis of S1(θ). It reduces to

log det Ĝ(θ)− 2ψ1 log λm − 2ψ2 log λm − log
(

det G0(2ψ1 + 1)−1(2ψ2 + 1)−1
)

= log det
(
VmĜ(θ)Vm

)
− log

(
det G0(2ψ1 + 1)−1(2ψ2 + 1)−1

)
,

by (16) and where Vm = diag(λ−ψ1
m , λ

−ψ2
m ) and det

(
VmĜ(θ)Vm

)
= λ

−2ψ1−2ψ2
m (Ĝ11(θ)Ĝ22(θ) − Ĝ2

12(θ)).
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Then, the analysis of S1(θ) reduces to the study of

λ
−2ψ1−2ψ2
m

(
Ĝ11(θ)Ĝ22(θ)− Ĝ2

12(θ)
)
−
(

G11G22 − G2
12

)
(2ψ1 + 1)−1(2ψ2 + 1)−1.

Using Ĝab(θ) = m−1 ∑m
j=1 λ

ϑa+ϑb
j Ijab, one can rewrite S1(θ) as S11(θ) + S12(θ) + S13(θ) with

S11(θ) = λ
−2ψ1−2ψ2
m

(
m−1

m

∑
j=1

λ2δ1
j Ij11 ×m−1

m

∑
j=1

λ
2(δ2+ξ)
j Ij22

)
,

S12(θ) = −λ
−2ψ1−2ψ2
m

(
m−1

m

∑
j=1

λ
δ1+δ2+ξ
j Re(Ij12)

)2

,

S13(θ) = −
(

G11G22 − G2
12

)
(1 + 2ψ1)

−1(1 + 2ψ2)
−1.

Distinguishing the two summations by indexes j and k and then rearranging S11(θ) and S12(θ) we find

S11(θ) =
1

m2

m

∑
j=1

m

∑
k=1

(
j

m

)2ψ1(
k
m

)2ψ2 Ij11 Ik22

λ
−2δ01
j λ

−2(δ02+ξ0)
k

and

S12(θ) = −
1

m2

m

∑
j=1

m

∑
k=1

(
j

m

)ψ1+ψ2(
k
m

)ψ1+ψ2 Re(Ij12)Re(Ik12)

λ
−δ01−δ02−ξ0
j λ

−δ01−δ02−ξ0
k

.

Then, we correct for the fact that I11(λ) and I12(λ) are based on estimated cointegration errors as in

Nielsen (2007). Denoting by I11(λ)− I0
11(λ) and I12(λ)− I0

12(λ) = (β0λξ0 − βλξ)I22(λ) the measurement

errors from estimating β and ξ, we obtain

I11(λ) = I0
11(λ)− 2λν0

m λ
ξ0
j β̃ Re(I0

12(λ)) + λ2ν0
m λ

2ξ0
j β̃2 I22(λ),

I12(λ)
2 = I0

12(λ)
2 − 2λν0

m λ
ξ0
j β̃ Re(I0

12(λ))I22(λ) + λ2ν0
m λ

2ξ0
j β̃2 I22(λ)

2

with λν0
m λ

ξ0
j β̃ = (β0λ

ξ0
j − βλ

ξ
j ) and ν0 = δ02 − δ01. Substituting this in S11(θ) and S12(θ) and after rear-

rangements we have

22



S11(θ) =
G11G22

m2

m

∑
j=1

m

∑
k=1

(
j

m

)2ψ1(
k
m

)2ψ2 I0
j11 Ik22

G11λ
−2δ01
j G22λ

−2(δ02+ξ0)
k

− 2β̃
G12G22

m2

m

∑
j=1

m

∑
k=1

(
j

m

)2ψ1−ν0(
k
m

)2ψ2 Re(I0
j12)Ik22

G12λ
−δ01−δ02−ξ0
j G22λ

−2(δ02+ξ0)
k

+ β̃2 G2
22

m2

m

∑
j=1

m

∑
k=1

(
j

m

)2ψ1−2ν0(
k
m

)2ψ2 Ij22 Ik22

G2
22λ
−2(δ02+ξ0)
j λ

−2(δ02+ξ0)
k

,

S12(θ) = −
G2

12
m2

m

∑
j=1

m

∑
k=1

(
j

m

)ψ1+ψ2(
k
m

)ψ1+ψ2 Re(I0
j12)Re(I0

k12)

G2
12λ
−δ01−δ02−ξ0
j λ

−δ01−δ02−ξ0
k

+ 2β̃
G12G22

m2

m

∑
j=1

m

∑
k=1

(
j

m

)ψ1+ψ2(
k
m

)ψ1+ψ2−ν0 Re(I0
j12)Ik22

G12λ
−δ01−δ02−ξ0
j G22λ

−2(δ02+ξ0)
k

− β̃2 G2
22

m2

m

∑
j=1

m

∑
k=1

(
j

m

)ψ1+ψ2−ν0(
k
m

)ψ1+ψ2−ν0 Ij22 Ik22

G2
22λ
−2(δ02−ξ0)
j λ

−2(δ02−ξ0)
k

.

In the following, we will use the fact that m−1 ∑m
j=1(j/m)α = (1 + α)−1. Moreover, by the analysis of

Robinson (1995, p. 1636-1638), we have

m−1
m

∑
j=1

(
Re(I0

jab)

Gabλ
−ϑ0a−ϑ0b
j

− 1

)
= m−1

m

∑
j=1

Re(I0
jab)G

−1
ab λ

ϑ0a+ϑ0b
j − 1 = op(1).

Finally, we can rewrite

S1(θ) = G2
12

( ∫ 1

0
x2ψ1 dx

∫ 1

0
x2ψ2 dx−

(∫ 1

0
xψ1+ψ2

)2
)

+ β̃2G2
22

( ∫ 1

0
x2ψ1−2ν0 dx

∫ 1

0
x2ψ2 dx−

(∫ 1

0
xψ1+ψ2−ν0

)2
)

+ 2β̃G12G22

(∫ 1

0
xψ1+ψ2−ν0 dx

∫ 1

0
xψ1+ψ2 dx−

∫ 1

0
x2ψ1−ν0 dx

∫ 1

0
x2ψ2 dx

)
+ G11G22

(
(1 + 2ψ1)

−1(1 + 2ψ2)
−1 − (1 + 2ψ1)

−1(1 + 2ψ2)
−1
)
+ op(1).

Recall that G12 = 0 and ν0 > 0 under cointegration. Then, by the Cauchy-Schwarz inequality, S1(θ) is

bounded away from zero in all cases but {θ̂ ∈ Θc} ∩ {ξ̂ ∈ Θξ ∪ β̂ ∈ Θβ}. In the latter, S1(θ) ≥ op(1)

whereas S3(θ) is bounded away from zero, hence proving Equation (9) in view of (10)-(15) and implicitly

Theorem 1.

�
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Appendix B : Proof of Theorem 2

As an implication of the consistency Theorem 1, θ̂ satisfies

∂Rm(θ)

∂θ

∣∣∣
θ̂
=

∂Rm(θ)

∂θ

∣∣∣
θ0
+

∂2Rm(θ)

∂θ∂θ′

∣∣∣
θ̄
(θ̂ − θ0) = 0 (18)

where ||θ̄ − θ0|| ≤ ||θ̂ − θ0||. Then, by application of the Cramer-Wold theorem we can show that θ̂ has

the stated distribution if

η′
√

m diag(I2, λν0
m , λν0

m log(λm)
−1)

∂Rm(θ)

∂θ

∣∣∣
θ0

d−→N (0, η′Ωη) (19)

and

diag(I2, λ2ν0
m , λ2ν0

m log(λm)
−2)

∂2Rm(θ)

∂θ∂θ′

∣∣∣
θ̄

p−→Ω. (20)

B.1. Limit of the score

In this section we investigate the limit of the score to prove (19), while (20) will be analyzed in the

next section. Note also that the subscript 0, indicating the true parameter values, will be omitted unless

its absence causes confusion.

Proof. By the chain rule for matrix derivatives with respect to δ1 and δ2 we have

∂Rm(θ)

∂δa
= tr

(
Ĝ(θ)−1 ∂Ĝ(θ)

∂δa

)
− 2

m

m

∑
j=1

log λj,

with a = {1, 2} and

∂Ĝ(θ)

∂δ1
=

∂ 1
m ∑m

j=1 Λj Re(Ij)Λj

∂δ1
=

1
m

m

∑
j=1

λδ1
j log λj Re

 2λδ1
j Ij11 λ

δ2+ξ
j Ij12

λ
δ2+ξ
j Ij21 0

 (21)

∂Ĝ(θ)

∂δ2
=

∂ 1
m ∑m

j=1 Λj Re(Ij)Λj

∂δ2
=

1
m

m

∑
j=1

λ
δ2+ξ
j log λj Re

 0 λδ1
j Ij12

λδ1
j Ij21 2λ

δ2+ξ
j Ij22

 (22)

finally yielding

∂Rm(θ)

∂δ1
=

2
m

m

∑
j=1

νj Re
(

Ĝ1�(θ)
−1(Λj IjΛj)�1 − 1

)
(23)

∂Rm(θ)

∂δ2
=

2
m

m

∑
j=1

νj Re
(

Ĝ2�(θ)
−1(Λj IjΛj)�2 − 1

)
(24)
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where νj = log λj − m−1 ∑m
j=1 log λj and Ĝa�(θ)−1 denotes the a-th row of the matrix Ĝ(θ)−1 where As-

sumption 7 holds. We also have that

∂Rm(θ)

∂β
=

1
m

m

∑
j=1

tr Re

Ĝ(θ)−1

2λ2δ1
j (βλ

2ξ
j Ijxx − λ

ξ
j Ijxy) −λ

δ1+δ2+2ξ
j Ijxx

−λ
δ1+δ2+2ξ
j Ijxx 0


= − 2

m

m

∑
j=1

λ−ν0
j Re

(
Ĝ1�(θ)

−1(Λj IjΛj)�2
)

.

Finally, the last derivative is

∂Rm(θ)

∂ξ
= tr Re

(
Ĝ(θ)−1

(
∂G̃(θ)

∂β
+

∂Ĝ(θ)

∂δ2

))
− 2

m

m

∑
j=1

log λj

with

∂G̃(θ)

∂β
=

1
m

m

∑
j=1

βλδ1
j log λj Re

2λ
ξ
j (βλ

ξ
j Ijxx − Ijxy) −λ

δ2+2ξ
j Ixx

−λ
δ2+2ξ
j Ijxx 0


and Ĝ(θ)/∂δ2 defined in (22), which finally gives

∂Rm(θ)

∂ξ
=

2
m

m

∑
j=1

log λj Re
(

βλ−ν0
j Ĝ1�(θ)

−1(Λj IjΛj)�2 + Ĝ2�(θ)
−1(Λj IjΛj)�2 − 1

)
=

∂R̃m(θ)

∂β
+

∂Rm(θ)

∂δ2
(25)

where

∂R̃m(θ)/∂β = − 2
m

β
m

∑
j=1

λ−ν0
j log λj Re

(
Ĝ1�(θ)

−1(Λj IjΛj)�2
)

.

We analyze (19) for each parameter and begin with β. We proceed as in Robinson (2008a) and

after rearrangements implying only negligible errors (see Lobato 1999, Appendix C) arising from the

replacement of (Λj IjΛj) by Pj IjεP∗j := Λj A(λj)Ijε A(λj)
∗Λj and Ĝ(θ0) by G as ||Ĝ(θ0)− G|| = Op(m−1/2),

we obtain

η3
√

mλν0
m

∂Rm(θ)

∂β

∣∣∣
θ0
= −η3λν0

m
2√
m

m

∑
j=1

(
λ−ν0

j −m−1
m

∑
k=1

λ−ν0
k

)
Re
(

G−1
1� Pj IjεP∗j2�

)
+ op(1). (26)
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In (26) we decompose Ijε = (2πn)−1|∑n
t εt|2 such that

η3
√

mλν0
m

∂Rm(θ)

∂β

∣∣∣
θ0
=− η3λν0

m
1

π
√

m

m

∑
j=1

γj Re
(

G−1
1� PjP∗j2�

)
(27)

− η3λν0
m

1
π
√

m

m

∑
j=1

γj Re
(

G−1
1� Pj

( 1
n

n

∑
t=1

εtε
′
t − I2

)
P∗j2�
)

(28)

− η3λν0
m

2√
m

m

∑
j=1

γj Re
(

G−1
1� Pj

1
2πn

n

∑
t=1

∑
s,t

εtε
′
sei(t−s)λj P∗j2�

)
, (29)

with γj =
(
λ−ν0

j −m−1 ∑m
k=1 λ−ν0

k
)
. As fz(λ) = (2π)−1 A(λ)A(λ)∗, by Assumpions 7 and 10, (27) is

O

(
1√
m

λν0
m

m

∑
j=1

f12(λj)λ
δ1+δ2+ξ−ν0
j

)
= O

(
1√
m

λν0
m

m

∑
j=1

λα−ν0
j

)
= O(n−αm1/2+α log m)→ 0,

(28) is

Op

(
1√
m

λν0
m

m

∑
j=1

1√
n

f12(λj)λ
δ1+δ2+ξ−ν0
j

)
= Op

(
λ1/2+α

m log m
) p−→ 0

by the law of large numbers and the remaining term (29) can be rearranged as

−
n

∑
t=1

ε′t
t−1

∑
s=1

η3

πn
√

m
λν0

m

m

∑
j=1

γj Re
(

P′j G−1
�1 ei(t−s)λj P̄j2�

)
εs (30)

where P̄j denotes the conjugate of Pj. We pursue our analysis of (19) and discuss δ1 and δ2. By similar

arguments to Lobato (1999), equations (23) and (24) have the following asymptotic equivalences

2

∑
a=1

ηa
√

m
∂Rm(θ)

∂δa

∣∣∣
θ0
=

2√
m

2

∑
a=1

ηa

2πn

n

∑
t=1

t−1

∑
s=1

ε′tεs

m

∑
j=1

νj Re

(
G−1

a� Pje
i(t−s)λj P∗ja�

)
.

A simple rearrangement of this equation gives

n

∑
t=1

ε′t
t−1

∑
s=1

2

∑
a=1

ηa

πn
√

m

m

∑
j=1

νj Re
(

P′j G−1
�a ei(t−s)λj P̄ja�

)
εs. (31)

Regarding ξ, as the second term in (25) is identical to the score with respect to δ2 it will be treated in

the same way, resulting in

n

∑
t=1

ε′t
t−1

∑
s=1

η4

πn
√

m
λν0

m
log λm

m

∑
j=1

νj Re
(

P′j G−1
�2 ei(t−s)λj P̄j2�

)
εs. (32)
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We hence focus on the first term and by analogy with (26) we obtain

η4
√

m
λν0

m
log λm

∂R̃m(θ)

∂β

∣∣∣
θ0
= −η4

λν0
m

log λm

β

π
√

m

m

∑
j=1

log λjγj Re
(

G−1
1� PjP∗j2�

)
(33)

− η4
λν0

m
log λm

β

π
√

m

m

∑
j=1

log λjγj Re
(

G−1
1� Pj

( 1
n

n

∑
t=1

εtε
′
t − I2

)
P∗j2�
)

(34)

− η4
λν0

m
log λm

2β√
m

m

∑
j=1

log λjγj Re
(

G−1
1� Pj

1
2πn

n

∑
t=1

∑
s,t

εtε
′
sei(t−s)λj P∗j2�

)
. (35)

As fz(λ) = (2π)−1 A(λ)A(λ)∗, by Assumptions (7) and (10), (33) is

O

(
1√
m

λν0
m

log λm

m

∑
j=1

log λj f12(λj)λ
δ1+δ2+ξ−ν0
j

)
= O(n−αm1/2+α log m)→ 0,

(34) is

Op

(
1√
m

λν0
m

log λm

m

∑
j=1

log λj
1√

n
f12(λj)λ

δ1+δ2+ξ−ν0
j

)
= Op

(
λ1/2+α

m log m
) p−→ 0

and the remaining term (35) can be rearranged as

−
n

∑
t=1

ε′t
t−1

∑
s=1

η4

πn
√

m
λν0

m
log λm

β
m

∑
j=1

log λjγj Re
(

P′j G−1
�1 ei(t−s)λj P̄j2�

)
εs. (36)

Using (31), (36) and (30) and Euler formula, (19) has the same asymptotic distribution as ∑n
t=1 ε′t ∑t−1

s=1 Ξt−s,nεs,

where

Ξt−s,n =
1

πn
√

m

m

∑
j=1

(θj,1 + θj,2 + θj,3) cos((t− s)λj),

θj,1 = νj

2

∑
a=1

ηa θ̃a,

θj,2 = −λν0
m η3γj θ̃β,

θj,3 =
λν0

m
log λm

η4(νj θ̃2 − log λjβγj θ̃β)

with θ̃a = Re
(

P′j G−1
�a P̄ja� + Pj�aG−1

a� P̄j

)
and θ̃β = Re

(
P′j G−1

�1 P̄j2� + Pj�2G1�P̄j

)
. By Assumption 3, ||θj,1|| =

O(1) and ||θj,2|| = O((m/j)ν0). Using that the first term in θj,3 is the same as θj,1 when a = 2 it can be

shown that ||θj,3|| = O((m/j)ν0 × (log j)/(log m)). It follows that

2

∑
a=1

ηa
√

m
∂Rm(θ)

∂θa

∣∣∣
θ0
+ η3λν0

m
√

m
∂Rm(θ)

∂θ3

∣∣∣
θ0
+ η4

λν0
m

log λm

√
m

∂Rm(θ)

∂θ4

∣∣∣
θ0
=

n

∑
t=1

ζt + op(1)
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where ζt = ε′t ∑t−1
s=1 Ξt−s,nεs is a martingale difference array with respect to Ft = σ({εs, s ≤ t}). By a

standard martingale central limit theorem, (19) follows if

n

∑
t=1

E(ζ2
t |Ft−1)−

4

∑
a=1

4

∑
b=1

ηaηbΩab
p−→ 0 (37)

n

∑
t=1

E(ζ2
t1(|ζt| > d))→ 0, ∀d > 0. (38)

We first show (37). For this, we use the following decomposition

n

∑
t=1

E(ζ2
t |Ft−1) =

n

∑
t=1

E
( t−1

∑
s=1

t−1

∑
r=1

ε′sΞ′t−s,nεtε
′
tΞt−r,nεr|Ft−1

)
=

n

∑
t=1

t−1

∑
s=1

ε′sΞ′t−s,nΞt−s,nεs +
n

∑
t=1

t−1

∑
s=1

s−1

∑
r=1

ε′sΞ′t−s,nΞt−r,nεr, (39)

where the second term has mean 0 and variance

O

(
n
( n

∑
s=1
||Ξs,n||2

)2
+

n

∑
t=3

t−1

∑
u=2

( u−1

∑
s=1
||Ξu−s,n||2

u−1

∑
s=1
||Ξt−s,n||2

))
(40)

as shown by Lobato (1999). Following Nielsen (2007), when s < n/m, ||Ξs,n|| = O(1/(n
√

m)∑n
j=1 ||θj,1 +

θj,2 + θj,3||) = O(n−1√m log m) and when s > n/m, ||Ξs,n|| = O(s−1m−1/2 log m), where for the latter we

use |∑j cos(sλj)| = O(n/s) and therefore

n

∑
s=1
||Ξs,n||2 = O

( bn/mc

∑
s=1

m(log m)2

n2 +
n

∑
s=bn/mc+1

(log m)2

s2m

)
= O((log m)2n−1)

such that the first term of (40) is O((log m)4n−1). Besides, the second term in (40) is O
(
n ∑n

s=1 ||Ξs,n||2 ∑n/2
s=1 s||Ξs,n||2),

following the analysis in Robinson (1995), where

n/2

∑
s=1

s||Ξs,n||2 = O
(

m−1(log m)2 log n
)

.

It follows immediately that (40) is O(n−1(log m)4 + m−1(log m)4 log n)→ 0.

To complete the proof of (37) we now have to show that the mean of the first term in (39) is equal to
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∑4
a=1 ∑4

b=1 ηaηbΩab. Since E(εtε
′
t|Ft−1) = I2 by Assumption (4), we can rewrite

E(
n

∑
t=1

t−1

∑
s=1

ε′sΞ′t−s,nΞt−s,nεs) =
n

∑
t=1

t−1

∑
s=1

E tr (Ξ′t−s,nΞt−s,nεsε′s)

=
n

∑
t=1

t−1

∑
s=1

E tr (Ξ′t−s,nΞt−s,n)

and decompose it as

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k=1

1
π2n2m

tr
(
(θ′j,1 + θ′j,2 + θ′j,3)(θk,1 + θk,2 + θk,3)

)
× cos((t− s)λj) cos((t− s)λk) (41)

=
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,1θj,1) cos((t− s)λj)

2 (42)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,2θj,2) cos((t− s)λj)

2 (43)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,3θj,3) cos((t− s)λj)

2 (44)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

2 tr
(
θ′j,1θj,2) cos((t− s)λj)

2 (45)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

2 tr
(
θ′j,1θj,3) cos((t− s)λj)

2 (46)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

2 tr
(
θ′j,2θj,3) cos((t− s)λj)

2 (47)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

tr
(
θ′j,1θk,1) cos((t− s)λj) cos((t− s)λk) (48)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

tr
(
θ′j,2θk,2) cos((t− s)λj) cos((t− s)λk) (49)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

tr
(
θ′j,3θk,3) cos((t− s)λj) cos((t− s)λk) (50)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

2 tr
(
θ′j,1θk,2) cos((t− s)λj) cos((t− s)λk) (51)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

2 tr
(
θ′j,1θk,3) cos((t− s)λj) cos((t− s)λk) (52)

+
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
π2n2m

2 tr
(
θ′j,2θk,3) cos((t− s)λj) cos((t− s)λk). (53)

Following Lobato (1999), it can be shown that (42) is asymptotically equal to ∑2
a=1 ∑2

b=1 ηaηbEab with
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E = 2(I2 + G
⊙

G−1) and (48) is asymptotically negligible. Also, (45), (49) and (51) are asymptotically

equivalent to B.16, B.18 and B.19 in Nielsen (2007) and therefore asymptotically negligible. For (43), after

approximating a Riemann sum by an integral and using ∑n
t=1 ∑t−1

s=1 cos(sλj)
2 = (n− 1)2/4, we have that

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,2θj,2) cos((t− s)λj)

2 ∼ η2
3

2G22

G11

ν2
0

(1− 2ν0)(1− ν0)2 .

Among the remaining terms we first analyze (44) and observe that

tr (θ′j,3θj,3)

4π2 = tr

(
η2

4
λ2ν0

m

4π2(log λm)2

(
ν2

j θ̃′2θ̃2 + β2θ̃′β θ̃βγ2
j − γjνjβθ̃′2θ̃β − γjνjβθ̃′β θ̃2

))

= η2
4

λ2ν0
m

(log λm)2

(
4ν2

j + 2β2G22G−1
11 γ2

j

)
,

as tr (θ̃′2θ̃β) = tr (θ̃′β θ̃2) = 0 by Assumption (7). Then, using m−1 ∑m
j=1 ν2

j = 1 + O(m−1(log m)2) and the

same approximation as for (43),(44) is asymptotically equal to

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

1
π2n2m

tr
(
θ′j,3θj,3) cos((t− s)λj)

2 ∼ η2
4

2β2G22

G11

ν2
0

(1− 2ν0)(1− ν0)2 .

The next term is (46), for which one observes that all elements in tr (θ′j,1θj,3)/(4π2) are trivially equal to 0

except

tr (θ(2)
′

j,1 θj,3)

4π2 = tr

(
η2η4

λν0
m

4π2 log λm

(
ν2

j θ̃′2θ̃2

))
= η2η44ν2

j
λν0

m
log λm

,

where θ
(2)
j,1 denotes θj,1 with a = 2 only. Then, it is immediate that

n

∑
t=1

t−1

∑
s=1

m

∑
j=1

4
n2m

η2η3
4ν2

j (n− 1)2

4
λν0

m
log λm

= o(1).

As the joint limiting distribution of β and ξ is singular, when analyzing (47) we find that it is asymptoti-

cally equivalent to

η3η42β
G22

G11

ν2
0

(1− 2ν0)(1− ν0)2 .

Equations (50), (52) and (53), where j , k, remain to analyze. Using that ||θj,3|| = O((m/j)ν0(log j)/(log m))
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we show that (50) is equivalent to

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
j

)ν0(m
k

)ν0 (log j)2

(log m)2 cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m(log m)2)

where ∑n
t=1 ∑t−1

s=1 cos((t− s)λj) cos((t− s)λk) = −n/2 for λj , λk. For (52) we also use that ||θj,1|| = O(1)

and obtain the following bound

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
k

)ν0 log j
log m

cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m log m

)
.

For the last term we use that ||θj,2|| = O((m/j)ν0) and find that (53) is bounded by

O

(
n

∑
t=1

t−1

∑
s=1

m

∑
j=1

m

∑
k,j

1
n2m

(m
j

)ν0(m
k

)ν0 log j
log m

cos((t− s)λj) cos((t− s)λk)

)
= O

(
n−1m(log m)2).

It remains to show (38) or equivalently the sufficient condition ∑n
t=1 E(ζ4) → 0. As our analysis of (37)

is similar to Lemma 4 of Nielsen (2005), this condition can be proved under Assumption (8). We then

obtain ∑n
t=1 E(ζ4) = O(n(∑n

t=1 ||Ξ2
tn||)2) = O(n−1(log m)4) as in Nielsen (2007). This completes the proof

of (19). �

B.2. Limit of the Hessian

We now derive the limit of the Hessian for any estimator θ̄ such that ||θ̄ − θ0|| ≤ ||θ̂ − θ0|| and prove

that

∂2Rm(θ̄)

∂δa∂δb

p−→ Eab (54)

λν0
m

∂2Rm(θ̄)

∂δa∂β

p−→ 0 (55)

λν0
m log(λm)

−1 ∂2Rm(θ̄)

∂δa∂ξ

p−→ 0 (56)

λ2ν0
m

 1

log(λm)−2

′∂2Rm(θ̄)/(∂β∂β)

∂2Rm(θ̄)/(∂ξ∂ξ)

 p−→

 1

β2

 F. (57)

Proof. As Nielsen (2007) we strengthen the approximation ||Ĝ(θ0)− G|| = Op(m−1/2) by showing that

||Ĝ(θ̄)− Ĝ(θ0)|| = op(1). (58)
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We first analyze Ĝ22(θ̄) and proceed to the following decomposition

Ĝ22(θ̄)− Ĝ22(θ0) =
1
m

m

∑
j=1

(
λ2ϑ̄2

j − λ2ϑ2
j

)
Ij22

= Op

(
1
m

(
max

1≤j≤m
λ2ϑ̄2−2ϑ2

j − 1
) m

∑
j=1

λ2ϑ2
j Ij22

)
= op(1).

Similarly,

Ĝ12(θ̄)− Ĝ12(θ0) =
1
m

m

∑
j=1

(
λϑ̄1+ϑ̄2

j Īj12 − λϑ1+ϑ2
j Ij12

)
=

1
m

m

∑
j=1

(
λϑ̄1+ϑ̄2

j (βλ
ξ
j − β̄λ

ξ̄
j )Ij22

)
+

1
m

m

∑
j=1

(
λϑ̄1+ϑ̄2

j − λϑ1+ϑ2
j

)
Ij12 (59)

with Īj12 − Ij12 = (βλ
ξ
j − β̄λ

ξ̄
j )Ij22. The first term in (59) is bounded by

1
m

(
max

1≤j≤m
λϑ̄1+ϑ̄2−ϑ1−ϑ2

j

) m

∑
j=1

λϑ1+ϑ2
j (βλ

ξ
j − β̄λ

ξ̄
j )Ij22 = op(1)

and the second term in (59) is

Op

(
1
m

(
max

1≤j≤m
λϑ̄1+ϑ̄2−ϑ1−ϑ2

j − 1
) m

∑
j=1

λϑ1+ϑ2
j Ij12

)
= op(1)

Regarding the first diagonal element of Ĝ(θ̄), the same bound can be obtained by Cauchy-Schwartz

inequality. Then, using (58) and similar arguments to Lobato (1999) one can easily show (54). Proceeding

in a similar way to (58), it can be shown that

λν0
m

(∂2Rm(θ̄)

∂δa∂β
− ∂2Rm(θ0)

∂δa∂β

) p−→ 0 (60)

λ2ν0
m

(∂2Rm(θ̄)

∂β∂β
− ∂2Rm(θ0)

∂β∂β

) p−→ 0 (61)

λν0
m

log λm

(∂2Rm(θ̄)

∂δa∂ξ
− ∂2Rm(θ0)

∂δa∂ξ

) p−→ 0 (62)

and implicitly

λ2ν0
m

(log λm)2

(∂2Rm(θ̄)

∂ξ∂ξ
− ∂2Rm(θ0)

∂ξ∂ξ

) p−→ 0. (63)
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To analyze (57) we first observe that

λ2ν0
m

∂2Rm(θ0)

∂β∂β
= λ2ν0

m tr
(

Ĝ(θ0)
−1 ∂2Ĝ(θ0)

∂β∂β
− Ĝ(θ0)

−1 ∂Ĝ(θ0)

∂β
Ĝ(θ0)

−1 ∂Ĝ(θ0)

∂β

)
. (64)

The first term can be shown to correspond to C.9 in Nielsen (2007)

λ2ν0
m tr

(
Ĝ(θ0)

−1 ∂2Ĝ(θ0)

∂β∂β

)
= λ2ν0

m
2
m

G22

G11

m

∑
j=1

λ
2(δ1−δ2)
j + op(1)

∼ 2G22

G11(1− 2ν0)
, (65)

where the Riemann sum was approximated by an integral. Using the same arguments and approximation

as above, it can also be shown that the second term in (64) is

−λ2ν0
m tr

(
Ĝ(θ0)

−1 ∂Ĝ(θ0)

∂β
Ĝ(θ0)

−1 ∂Ĝ(θ0)

∂β

)
= −λ2ν0

m
2

m2
G22

G11

m

∑
j=1

λ−ν0
j

m

∑
k=1

λ−ν0
k + op(1)

∼ − 2G22

G11(1− ν0)2

and overall λ2ν0
m ∂2Rm(θ0)/(∂β∂β)

p−→ F = 2G22ν2
0 /(G11(1− 2ν0)(1− ν0)

2), which in view of (61) proves

the first term in (57). We now show that λν0
m ∂2Rm(θ0)/(∂δa∂β)

p−→ 0. Observe that

λν0
m

∂2Rm(θ0)

∂δa∂β
= tr

(
Ĝ(θ0)

−1 ∂2Ĝ(θ)

∂δa∂β
− Ĝ(θ0)

−1 ∂Ĝ(θ)

∂δa
Ĝ(θ0)

−1 ∂Ĝ(θ)

∂β

)

= λν0
m

2
m

m

∑
j=1

νj Re

[
G−1

a�

(
1
m

m

∑
k=1

λ
ξ
kΛk

2Ik1a Ika2

Ika2 0

Λk

)
G−1Λj

Ij12

Ij22

 λ
δa+ξ
j

]

− λν0
m

4
m

m

∑
j=1

νj Re

[
G−1

a� Λj

Ija2

0

 λ
δa+ξ
j

]
+ op(1).

Using Assumption (3), it can be easily shown that both terms are op(1), which proves (55) in view of (60).

To show that λν0
m (log λm)−1∂2Rm(θ0)/(∂δa∂ξ)

p−→ 0, we decompose it as

λν0
m

log λm

∂2Rm(θ0)

∂δa∂ξ
=

λν0
m

log λm

(
∂2R̃m

∂δa∂β
+

∂2Rm

∂δa∂δ2

)
.

The first term is op(1) by analogy with the result on ∂2Rm(θ0)/(∂δa∂β) while the second term vanishes

asymptotically as in Lobato (1999) when a = 1 and is O(λν0
m (log λm)−1) when a = 2 since ∂2Rm/∂δ2

2 = 4.

By (62), (56) follows.

To complete the proof, it remains to analyze λ2ν0
m (log λm)−2∂2Rm(θ0)/(∂ξ∂ξ). Writing it as λ2ν0

m (log λm)−2×
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(∂2R̃m(θ)/(∂β∂ξ) +∂2Rm(θ)/(∂δ2∂ξ)), observe that the second term of the sum vanishes as shown above

for a = 2, whereas the first term is

λ2ν0
m (log λm)

−2 ∂2R̃m(θ0)

∂β∂ξ
= λ2ν0

m (log λm)
−2tr

(
Ĝ(θ0)

−1 ∂2G̃(θ0)

∂β∂ξ
− Ĝ(θ0)

−1 ∂G̃(θ0)

∂β
Ĝ(θ0)

−1 ∂G̃(θ0)

∂ξ

)
. (66)

The first component in (66) can be analyzed by analogy with (65) to show that in the vicinity of the origin

the following approximation holds

λ2ν0
m

(log λm)2 tr
(

Ĝ(θ0)
−1 ∂2G̃(θ0)

∂β∂ξ

)
= λ2ν0

m log(λm)
−2β2G−1

11 G22
2
m

m

∑
j=1

log λ2
j λ−2ν0

j + op(1)

∼ 2β2G22

G11(1− 2ν0)
.

The second component follows from the same arguments

− λ2ν0
m

log(λm)2 tr
(

Ĝ(θ0)
−1 ∂G̃(θ0)

∂β
Ĝ(θ0)

−1 ∂G̃(θ0)
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= − λ2ν0

m

log(λm)2
2β2

m2
G22

G11

m

∑
j=1

log λjλ
−ν0
j

m

∑
k=1

log λkλ−ν0
k + op(1)

∼ − 2β2G22

G11(1− ν0)2 ,

finally yielding

λ2ν0
m log(λm)

−2 ∂2Rm(θ0)

∂ξ∂ξ

p−→ β2F =
2β2G22

G11

ν2
0

(1− 2ν0)(1− ν0)2 ,

which completes the proof in view of (63). Besides, as the joint limiting distribution of β and ξ is singular,

we omit the superfluous covariance term. �
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