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1 Introduction

The subprime financial crisis, which started in the US mortgage credit market in 2007 following a

sudden decrease in house prices and finally propagated to the real sector, has revealed the strong

linkages between the housing sector, the credit market and the real sector. Such macro-financial

linkages have been accentuated since the early 2000s because of the fast development of mortgage

debt contracts, in which house prices determined how much agents could borrow. Therefore, it

seems crucial to explain the dynamics of house prices to understand the credit and business cycles

over the last decades. However, as for other assets, such as stocks, patterns of excess volatility in

house prices relative to fundamentals have been apparent.

As stated by Piazzesi and Schneider (2016), "a major outstanding puzzle is the volatility of

house prices – including but not only over the recent boom-bust episode. Rational expectations

models to date cannot account for house price volatility – they inevitably run into "volatility puz-

zles" for housing much like for other assets. Postulating latent "housing preference shocks" helps

understand how models work when prices move a lot, but is ultimately not a satisfactory founda-

tion for policy analysis. Moreover, from model calculations as well as survey evidence, we now

know that details of expectation formation by households – and possibly lenders and developers

– play a key role" (p. 5).

To simultaneously explain several puzzling features of the dynamics of house prices and expec-

tations, along with the dynamics of credit and standard macroeconomic variables in the US since

the mid-1980s, this paper presents a stylized small-scale DSGE model in the spirit of Iacoviello

(2005). In this setting, impatient households and entrepreneurs can borrow from patient house-

holds against a fraction of the expected value of their real-estate assets. The model features stan-

dard real frictions (capital adjustment costs) and financial frictions (credit market frictions) related

to the asymmetry of information between lenders and borrowers.1 The specificity of the model

mechanism is that it relies on non-rational expectations about future housing returns. This as-

sumption is motivated by two distinct recent pieces of evidence. First, survey data about expected

house price growth have recently developed (see the Michigan Survey of Consumers), thereby

1In addition, the housing supply is fixed, which can be interpreted as an additional rigidity in the housing market.
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filling a gap in the understanding of the formation of house price expectations. Similar to what

has been long established for macroeconomic variables and other assets, recent survey data reveal

that US households make systematic forecast errors when predicting future house price growth

and that these forecast errors are predictable. This means that they are correlated with variables

that are observable at the time of the forecast. These features obviously conflict with the implica-

tions of the rational expectations assumption. Second, the recent theoretical literature shows that

modeling non-rational expectations about future house prices enables a better explanation of the

empirical behavior of house prices (e.g. Granziera and Kozicki (2015) and Glaeser and Nathanson

(2017)).

In this paper, non-rational expectations about future house price growth relate to the assump-

tion that agents do not understand how house prices form endogenously through market clearing.

Agents, instead, believe that house price growth is exogenous and equals the sum of two compo-

nents: a persistent time-varying component and a transitory component. Because agents cannot

observe the two components separately, the agents learn over time the unobservable persistent

component of house price growth, by using past data. To introduce the smallest degree of freedom

into the model and the smallest deviation from the rational expectations assumption, I follow Win-

kler (2019) in assuming that, conditional on house price expectations, expectations of all variables

are rational. This assumption does not imply that expectations of other variables are fully ratio-

nal (such an implication would not accord with survey data), as errors in the estimation of house

prices propagate to other variables. However, expectations of other variables are model consistent.

Under this assumption, the solving method is close to the standard perturbation method used for

models with rational expectations.

In contrast to current literature on learning about future house prices, the learning mechanism

is embedded into a production economy. Thus, both the asset price and the business cycles im-

plications of the learning mechanism can be investigated. In addition to standard total factor pro-

ductivity shocks, the model features credit sector shocks, namely, lenders’ intertemporal shocks

that mimic sudden variations in the willingness to lend independently of borrowers’ ability to

repay the debt. Indeed, as emphasized by Iacoviello (2015), productivity shocks, which are the

traditional drivers of business cycles in most DSGE models, are unlikely to fully explain the Great
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Moderation dynamics, the 2007-2008 financial crisis and its aftermath, when business cycles have

been mainly financial.

Our approach yields the following main results. First, the learning model explains several puz-

zling features of housing market dynamics. The model is able to generate endogenously persistent

booms in house prices in response to small macroeconomic and credit sector shocks. In addition,

in contrast with the rational expectations version of the model, the learning model replicates the

strong autocorrelation in house prices and the positive sign of the autocorrelation in housing re-

turns observed in US data during 1985-2019. These results arise because learning about future

house prices generates a strong feedback mechanism between house prices and beliefs. When

housing returns are expected to be higher, housing demand and, thus, house prices increase. This

increase, in turn, makes housing returns expectations more optimistic as long as realized returns

are higher than expected returns. More optimistic expectations then further fuel the increase in

house prices.

Second, the learning model generates an amplified response of credit and macroeconomic vari-

ables to shocks. This amplification is made apparent by the fact that the shocks variance that

is required to simultaneously replicate the volatility in house prices and in additional variables

observed during 1985-2019 in the US is significantly smaller under learning. This result arises

because housing assets serve as collateral in the borrowing sector and are a factor of production

and because investment in housing assets enables the transference of money over time. Therefore,

the dynamics of forecast errors and beliefs concerning housing returns, which are slow-moving

state variables in the learning model, amplify the effects of shocks on the other model variables.

Third, the learning model replicates the predictability of forecast errors in both housing returns

and macroeconomic variables, in accord with survey data.

The remainder of the paper is organized as follows. Section 2 presents the related literature.

Section 3 describes the baseline model with collateralized borrowing constraints, credit frictions

and capital adjustment costs. Section 4 explains the formation of beliefs about future house prices

and describes the equilibrium under learning. Section 5 displays the simulated results obtained

in the learning model, compares them to those of the rational expectations model and discusses

how they can help explain features of the joint dynamics of house prices, credit, real variables and
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expectations since the mid-1980s in the US. Finally, Section 6 concludes.

2 Related literature

This paper is related to two strands of the literature that have for the most part remained separate.

The first strand relates to the relaxation of the rational expectations assumption in standard asset

pricing models, whereas the second strand relates to the role of the housing market in the business

cycle. The first strand aims at modelling expectations that are more consistent with the results

of survey data and at better replicating house price dynamics. Thus, Gelain and Lansing (2014)

and Granziera and Kozicki (2015) explain house price volatility by introducing intuitive, but not

microfounded, extrapolative models of house price expectations.

By contrast, I directly follow Adam et al. (2012), Adam et al. (2016), Caines (2016) and Adam

et al. (2017) in specifying the perceived law of motion of asset prices. Expectations of future house

price growth are then microfounded, relying on Bayesian updating. These papers model exchange

economies in which consumption and output streams are exogenous. Therefore, they cannot ac-

count for the impact of asset prices on the business cycle. An exception is the recent paper by

Winkler (2019). In contrast to this paper, the model developed in the present paper focuses on

house prices rather than on stock prices and includes credit sector shocks and household debt to

account for the specificites of the recent period in the US.

The literature on the role of the housing market in the business cycle is the second strand of

literature this paper relates to. Several papers investigate the linkages between asset markets,

the credit market and the real sector in production economies with financial frictions, where con-

sumption and production are endogenous, featuring a well-known financial accelerator mecha-

nism (Kiyotaki and Moore (1997), Bernanke et al. (1999)). Most papers featuring a financial accel-

erator mechanism have focused on firms’ borrowing but more recent papers have also modeled

financial accelerator dynamics related to household borrowing (Aoki et al. (2004), Iacoviello (2005),

Iacoviello (2015)). This mechanism seems consistent with the role of household debt in the sub-

prime financial crisis.

However, in most of the papers that feature housing assets as collateral, at least part of the dy-
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namics of house prices is driven by exogenous changes directly related to the housing sector. The

most common approach consists in introducing housing price shocks, housing demand shocks,

or housing technology shocks (Iacoviello (2005), Darracq-Paries and Notarpietro (2008), Iacoviello

and Neri (2010)). Such ingredients are not very helpful in understanding house price dynamics,

as the latter thus remain largely exogenous. Other elements of explanations resort to monetary

policy shocks and financial conditions shocks (Aoki et al., 2004), or to non-time separable prefer-

ences (Jaccard, 2012). In all cases, this set of explanations, based on standard rational expectations

specifications, is difficult to reconcile with survey data about expected future house price growth.

Even in papers modelling non-rational expectations and learning about financial variables such

as leverage, house price shocks are introduced to replicate the boom-bust pattern observed in the

2000s (Pintus and Suda (2019)).

By contrast, I only introduce discount factor shocks in the lending sector (in addition to stan-

dard productivity shocks), such that the dynamics of the housing market are initially driven by

shocks related to the credit market and not directly by shocks related to the housing market. The

response of house prices to exogenous shocks is thus more endogenous, less close to the shock, and

more consistent with patterns observed during the last boom-and-bust episode in the US housing

market. Indeed, the steep increase in house prices that started in 2001 in the US arised as a conse-

quence of relaxed financial conditions and the fast development of mortgage credit (e.g. Mian and

Sufi (2009), Demyanyk and Van Hemert (2011), Dell’Arricia et al. (2012)).2 Therefore, by explaining

house price dynamics more endogenously, it is possible to investigate the feedback transmission

channels between the credit sector, the housing market and the real sector. In the next section, I

turn to the description of the baseline model.

3 The baseline model

The baseline model is close to the extended model presented in Iacoviello (2005), except that it

focuses on real and financial frictions. The model features a discrete-time, infinite horizon econ-
2The 2011 U.S. Financial Crisis Inquiry Commission Final Report on the Causes of the Financial and Economic Crisis

in the United States presents a similar view on the chain of events that triggered the crisis: increased willingness to lend
fueled credit and housing demand, and thus fueled a housing boom, which in turn fueled credit. When house prices
fell, the mortgage-credit sector then collapsed.
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omy with three sectors: lenders in the form of patient households and borrowers in the form of

both entrepreneurs and impatient households. The housing stock in the economy is exogenous

and normalized to 1. All variables are expressed in units of a single consumption good, which also

serves as an investment good.

3.1 Lenders

Following Iacoviello (2005), it is assumed that a set of households displays a high discount fac-

tor relative to other households. Those households put more weight on future periods in their

intertemporal utility function; they are more patient and thus more willing to postpone consump-

tion and save money through lending. Their preferences take the standard following form:

maxE0

∞∑
t=0

βtPdt[ln(Ct,P ) + j ln(Ht,P ) + ψ ln(1−Nt,P )]. (1)

Patient households thus value consumption Ct,P , housing services provided by real-estate assets

Ht,P and leisure hours equal to 1 − Nt,P , where Nt,P are working hours. Patient households dis-

count future periods with the discount factor βP , j is the weight allocated to housing services in

the utility function and ψ is the weight allocated to leisure. dt is the discount factor shock, i.e., a

time preference shock which follows an autoregressive process in the form of:

ln(dt) = ρd ln(dt−1) + εd,t, (2)

where ρd < 1 and εd,t follows a normal distribution with mean zero and variance σd. The inter-

pretation of this shock is that time preferences are time varying: patient households can suddenly

display more or less preference for current consumption, housing services and leisure. This shock

is introduced to mimic a context of higher willingness to lend, independently of borrowers’ net

worth. An exogenous decrease in the current period discount factor of lenders thus increases the

credit supply, independently of borrowers’ ability to pay back the debt.
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The intertemporal flow of funds constraint of patient households writes as follows:

Ct,P + qtHt,P +Bt = wtNt,P +Rt−1Bt−1 + qtHt−1,P , (3)

where qt is the price of houses, Bt is the debt held by patient households, Rt is the (gross) interest

rate on debt and wt is the wage. Housing assets are traded in each period.

The inter-temporal first-order conditions with respect to housing, debt and hours worked are

standard, except that the preference shock is included:

dt
1

Ct,P
qt = βPEt

[
1

Ct+1,P
qt+1dt+1

]
+ jdt

1

Ht,P
. (4)

dt
Ct,P

= βPEt

[
dt+1

Ct+1,P
Rt

]
. (5)

wt
Ct,P

=
ψ

1−Nt,P
. (6)

3.2 Entrepreneurs

Entrepreneurs own the capital stock and the firm and maximize the intertemporal utility of con-

sumption streams:

maxE0

∞∑
t=0

βtF [ln(Ct,F )], (7)

subject to the following flow of funds constraint:

Ct,F + qtHt,F +Rt−1Bt−1,F + wtNt + It = Yt +Bt,F + qtHt−1,F , (8)

where βF is the entrepreneurs’ discount factor, Ct,F is consumption, Ht,F represents real-estate

holdings, Bt,F is debt, Nt is labor demand, It is investment and Yt is output.3 The production

function is a typical Cobb-Douglas production function, with three factors of production: labor,

3Entrepreneurs’ consumption being residual income after investment, labor costs, housing and interest payments
have been made, the decision problem of entrepreneurs is equivalent to maximizing a concave function of discounted
dividends.
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capital and housing. Both capital and housing become productive only after one period:

Yt = AtK
α
t−1H

v
t−1N

1−α−v
t . (9)

Total factor productivity At follows a standard AR(1) process in the log:

ln(At) = ρa ln(At−1) + εa,t, (10)

where εa,t follows a normal distribution with mean zero and variance σa. Adjusting capital too fast

is assumed to be costly (notably because installing new machines implies temporarily not running

some of the existing machines). Therefore, the capital accumulation equation takes the standard

following form under capital adjustment costs (Hayashi, 1982):

Kt = It + (1− δ)Kt−1 −
φ

2

(
It

Kt−1
− δ
)2

Kt−1, (11)

where Kt is the capital stock, δ is the capital depreciation rate and φ is a parameter governing the

size of the capital adjustment cost.

Entrepreneurs can borrow a limited amount of debt and face a collateralized borrowing con-

straint in which housing assets play the role of pledgeable assets:

Bt,F ≤ mEt
[
qt+1

Ht,F

Rt

]
, (12)

where the term Et[qt+1
Ht,F
Rt

] represents expected future asset value and m is the loan-to-value ra-

tio. The lender can recover only some fraction of the pledgeable assets in case of default, due to

asymmetry of information between lenders and borrowers, implying that m < 1. Even though the

entrepreneurs’ borrowing constraint is not directly microfounded in the present model, it is both

standard (e.g. Kiyotaki and Moore (1997), Iacoviello (2005) and Iacoviello (2015) to mention just

a few) and intuitive. Indeed, the borrowing constraint (12) implies that the borrowing capacity of

agents depends on the expected future value of their assets, because assets can be seized and sold

by the lender in case of default. In addition, the borrowing constraint implies that transaction costs
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arising when the lender seizes borrowers’ assets reduce the final recovery value.

The first-order conditions for firms with respect to labor, debt and real-estate assets write:

wt =
(1− α− v)Yt

Nt
, (13)

1

Ct,F
= βFEt

[
1

Ct+1,F

]
Rt + µF,t, (14)

and
qt
Ct,F

= βFEt

[
1

Ct+1,F

(
qt+1 +

vYt+1

Ht,F

)]
+ µF,tmEt

[
qt+1

Rt

]
, (15)

where µF,t ≥ 0 is the Lagrange multiplier associated with the borrowing constraint. The comple-

mentary slackness condition writes:

µF,t

[
Bt,F −mEt

[
qt+1

Ht,F

Rt

]]
= 0. (16)

The first-order condition with respect to labor is standard, except that the share of labor in the

production function depends not only on the share of capital but also on the share of real-estate

assets in the production function.

The Lagrange multiplier µF,t associated with the borrowing constraint appears in the previous

two equations, which shows that financial frictions act as an inter-temporal wedge in the first-

order conditions by comparison to standard first-order conditions. The Lagrange multiplier of

the borrowing constraint enters the first-order condition with respect to housing, because buying

more of this asset today relaxes the borrowing constraint. House price expectations enter the bor-

rowing constraint, they thus matter for determining the entrepreneurs’ demand for credit. As a

consequence, learning proves able to generate dynamics that are distinct from rational expecta-

tions ones even for similar states of the economy.

Note also that in the non-stochastic steady state, the Lagrange multiplier associated with the

borrowing constraint of firms µF is equal to (βP−βFβF
) 1
CF

. Therefore, the discount factor of lenders

must be strictly higher than the discount factor of borrowers to ensure that the Lagrange multiplier

associated with the borrowing constraint is strictly positive, and thus that the borrowing constraint
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is binding. Therefore, βF < βP is a necessary condition for ensuring that the borrowing constraint

is binding in a neighborhood of the steady state.

The combination of the first-order conditions with respect to capital and to investment yields:

1

Ct,F

(
1− φ( It

Kt−1
− δ)

) =

Et

[
βF

1

Ct+1,F

(
αYt+1

Kt
+

1

1− φ( It+1

Kt
− δ)

(1− δ − φ

2

(
It+1

Kt
− δ
)2

+ φ(
It+1

Kt
− δ)It+1

Kt
)

)]
. (17)

When the capital adjustment cost parameter φ is null, this equation reduces to the standard first-

order condition with respect to capital.

3.3 Impatient households

The preferences of impatient households are similar to those of patient households except that

their time preference rate βI differs (βI < βP ). This assumption, which is standard in a borrower-

saver model, makes impatient households willing to borrow rather than lend. The maximization

program of impatient households is thus the following:

maxE0

∞∑
t=0

βtI [ln(Ct,I) + j ln(Ht,I) + ψ ln(1−Nt,I)] (18)

s.t.

Ct,I +Rt−1Bt−1,I + qtHt,I = wtNt,I + qtHt−1,I +Bt,I (19)

Bt,I ≤ mEt
[
qt+1

Ht,I

Rt

]
. (20)

All variables indexed by I for impatient households are equivalent to similar variables indexed

by P for patient households. Impatient households face a borrowing constraint similar to that of

entrepreneurs.

The first-order conditions with respect to housing, labor supply and debt write:

qt
Ct,I

= βIEt

[
qt+1

Ct+1,I

]
+ j

1

Ht,I
+ µI,tmEt

[
qt+1

Rt

]
, (21)
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wt
Ct,I

=
ψ

1−Nt,I
, (22)

1

Ct,I
= βIEt

[
1

Ct+1,I
Rt

]
+ µI,t, (23)

where µI,t ≥ 0 is the Lagrange multiplier associated with the borrowing constraint of the impatient

households. The complementary slackness condition writes:

µI,t

[
Bt,I −mEt

[
qt+1

Ht,I

Rt

]]
= 0. (24)

In the first-order condition with respect to housing, the last term is what differentiates the im-

patient households’ first-order condition from that of patient households. Indeed, for borrowers,

buying real-estate assets also presents the advantage of relaxing the borrowing constraint. Simi-

lar to the entrepreneurs case, the Lagrange multiplier associated with the borrowing constraint of

impatient households µI is equal to (βP−βIβI
) 1
CI

in the deterministic steady state, requiring βI < βP

for the borrowing constraint to be binding in the steady state.

3.4 Market clearing

Finally, the model is closed by adding market clearing conditions, and standard transversality

conditions are imposed. The model features four markets: a goods market, credit market, labor

market and housing market.The market clearing condition on the goods market is:

Yt = It + Ct,P + Ct,F + Ct,I . (25)

Bonds are assumed to be in zero-net supply:

Bt = Bt,F +Bt,I . (26)

The equilibrium condition on the labor market is:

Nt = Nt,P +Nt,I . (27)
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Finally, the market clearing condition on the housing market is:

HP,t +HF,t +HI,t = 1. (28)

In the rational expectations case, the model is solved relying on standard perturbation methods.

Appendix A provides a summary of the model’s equilibrium equations in level under the assump-

tion that the borrowing constraint of both entrepreneurs and impatient households is binding (and

thus that the associated Lagrange multipliers µF,t and µI,t are strictly positive). When numerically

solving the model both under rational expectations and under learning, I verify that this assump-

tion holds true in all simulations, as in Iacoviello (2005) and Iacoviello (2015).

4 The learning model

We now describe the model under subjective expectations, when agents no longer form rational

expectations about the law of motion of house prices, while still holding model-consistent beliefs

for all other variables.

4.1 Optimal Bayesian learning

Following a recent trend in the literature on learning regarding asset prices (Adam et al. (2012),

Adam et al. (2016), Adam et al. (2017), Winkler (2019)), I now assume that agents in the economy do

not understand the endogenous process through which house prices form. The actual equilibrium

price results from the equalization of the demand for housing of the three sectors in the model

to the exogenous supply of housing. However, in the learning model, market participants have

imperfect knowledge of the market process and do not properly understand how house prices

form. Instead, agents observe house prices realizations and try to determine whether the actual

evolution is permanent or temporary. They thus try to evaluate the persistence of the current

variation in house prices based on their past experience. Price determination is indeed a difficult

task for atomistic agents. It implies perfect knowledge of the mapping between state variables

and prices, and thus perfect knowledge about other agents’ knowledge. Therefore, instead of
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taking into account the housing market clearing condition, atomistic market participants believe

that logged house prices follow an exogenous process which takes the following form:

ln(qt)− ln(qt−1) = ln(µt) + ln(ηt), (29)

where ηt is a temporary disturbance, and where the time-varying persistent component µt follows

the process:

ln(µt) = ln(µt−1) + ln(νt), (30)

where νt is an additional disturbance. This assumption is grounded on several empirical elements.

First, the learning mechanism is intuitive: when house prices rise, it is hard to disentangle whether

the increase is persistent or wether it is only temporary. Observers thus try to evaluate the persis-

tence of the increase based on their past experience. Second, the perceived law of motion for house

prices is consistent with the short-term empirical behavior of house prices. Indeed, US house

prices present episodes of persistent increase followed by episodes of persistent decrease. Third,

Adam et al. (2012) and Caines (2016) show that this specification for perceived house price growth

helps better understand the recent dynamics of house prices in G7-countries prior to the subprime

financial crisis. Fourth, recent papers (Adam et al. (2016), Adam et al. (2017) and Winkler (2019))

show that this specification is successful in explaining several features of survey data about future

stock returns, which are similar to patterns observed in survey data about future housing returns.

Agents perceive the innovations ηt and νt to be normally distributed according to the following

joint distribution: ln(ηt)

ln(νt)

 ∼ N

0

0

 ,

σ2
η 0

0 σ2
ν


 . (31)

Note that all sectors in the economy share common beliefs on the house price process. Agents

observe house price realizations qt without noise, but they are not able to separately observe the

persistent component and the transitory component of what they believe to be the exogenous pro-

cess driving house price dynamics. Therefore, they face an optimal filtering problem and come up

with the best statistical estimate ln(µ̂t) of the persistent component ln(µt) in each period t. Due
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to normality of residuals and the linearity of the process, Bayesian filtering amounts to standard

Kalman filtering in the set-up. Again following the related literature, the prior distribution of

beliefs is assumed to be a normal distribution with mean parameter ln(µ̂0) and dispersion param-

eter σ0. Because the deterministic steady state is the starting point in the simulations below, as

is usual in DSGE models analysis, I set the prior mean and dispersion parameters at their steady

state values.4 The prior mean belief about house price growth is thus set at ln(µ̂0) = 0, and prior

uncertainty σ2
0 is set at its Kalman filter steady state value σ2:5

σ2 =
−σ2

ν +
√

(σ2
ν)2 + 4σ2

νσ
2
η

2
. (32)

Agents’ subjective probability measure P is specified jointly by equations 29, 30 and 31, by prior

beliefs and by knowledge of the productivity and lenders’ discount factor random processes.

The posterior distribution of beliefs in time t following some history up to period t, ωt, is ln(µt)|ωt ∼

N(ln(µ̂t), σ
2), where ln(µ̂t) is given by the following optimal updating rule:

ln(µ̂t) = ln(µ̂t−1) + g [ln(qt)− ln(qt−1)− ln(µ̂t−1)] . (33)

This unique recursive equation – in which g is the Kalman filter gain, which optimal expression

is σ2

σ2+σ2
ν

– fully characterizes agents’ beliefs about house price growth, which are summarized in

each period t by the state variable µ̂t. The Kalman filter gain governs the size of the updating in

the direction of the last forecast error. Logically, the Kalman filter gain increases in the signal-to-

noise ratio σ2
ν
σ2
η

. A higher signal-to-noise ratio means that changes in house prices are driven to a

higher extent by changes in the persistent component µt relative to changes in the transitory noise

ηt. Thus, the last forecast error is more informative for predicting future house prices.

Given the perceived law of motion for house prices, agents believe that house prices in period

t are such that:

ln(qt) = ln(qt−1) + ln(µ̂t−1) + z1t, (34)

4Note that in the steady state, agents assume both η̄ and ν̄ to be equal to zero.
5This implies that posterior uncertainty will remain at its steady state value following new house price realizations,

because it is already starting at its minimal value.
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where z1t is seen by agents as an exogenous forecast error, normally distributed with mean 0 and

variance σz , whereas it is actually endogenous: it is equal to the difference between the expected

growth rate of house prices and the actual growth rate formed endogenously on the housing mar-

ket.

4.2 Internally rational expectations equilibrium

Given the perceived law of motion for the growth rate of house prices, agents form optimal beliefs

and make optimal decisions. Therefore, agents are ’internally rational’ despite not holding rational

expectations on the future dynamics of house prices.6

Definition 1: Internal rationality for each sector in each period t

• Patient households are internally rational if they choose (Ct,P , Ht,P , Nt,P , Bt) to maximize the

expected utility (1) subject to the budget constraint (3), for the given subjective probability

measure P .

• Entrepreneurs are internally rational if they choose (Ct,F , Ht,F , Bt,F , Nt,Kt, It) to maximize

the expected utility (7) subject to the budget constraint (8), the production function (9), the

capital accumulation equation (11) and the complementary slackness condition (16), for the

given subjective probability measure P .

• Impatient households are internally rational if they choose (Ct,I , Ht,I , Nt,I , Bt,I) to maximize

the expected utility (18) subject to the budget constraint (19) and to the complementary slack-

ness condition (24), for the given subjective probability measure P .

The internally rational expectations equilibrium of the model is thus defined as follows.

6The concept of internal rationality was defined by Adam and Marcet (2011): "[i]nternal rationality requires that
agents make fully optimal decisions given a well-defined system of subjective probability beliefs about payoff relevant
variables that are beyond their control or "external", including prices." By contrast, "[e]xternal rationality postulates
that agents’ subjective probability belief equals the objective probability density of external variables as they emerge in
equilibrium" (p. 1225).
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Definition 2: The internally rational expectations equilibrium

The internally rational expectations equilibrium is defined by:

• The subjective probability measure P over the space Ω of all possible realizations of variables

which are external to agents’ decisions.7

• A sequence of contingent choices {Ct,P , Ct,F , Ct,I , Ht,P , Ht,F , Ht,I , Bt, Bt,F , Bt,I ,

Nt, Nt,P , Nt,I ,Kt, It} : Ωt → R14
+ such that the internal rationality of each agent defined above

is satisfied.

• A sequence of equilibrium prices {qt, Rt, wt}∞t=0 where (qt, Rt, wt) : Ωt → R3
+ such that mar-

kets clear in each period t and all realizations in Ω are almost surely in P .

4.3 Solving the model under imperfect market knowledge

To solve the model under subjective expectations, I resort to lagged beliefs updating to avoid the

simultaneous determination of beliefs and house prices. Indeed, according to equation (33), the

mean belief about house price growth ln(µ̂t) in period t depends on current house prices qt. At the

same time, house prices in period t depend on the expectations of future house price growth and,

thus, on the current mean belief ln(µ̂t). To avoid this issue, which is inherent in self-referential

learning, lagged beliefs updating is assumed, that is, agents rely on lagged information when

updating their beliefs. This assumption is common to all papers that model the same specification

of asset prices and is also standard in the general self-referential learning literature. Adam et al.

(2017) provide microfoundations for this updating rule with delayed information. Lagged beliefs

updating consists in rewriting the beliefs updating equation rule (33) as:

ln(µ̂t) = ln(µ̂t−1) + g [ln(qt−1)− ln(qt−2)− ln(µ̂t−2)] . (35)

7Note that under learning the space of realizations of variables external to agents’ decisions includes the realizations
of house prices. Under rational expectations, house price realizations provide information redundant with that provided
by exogenous fundamental realizations because agents understand the mapping of fundamentals into house prices.
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The slightly modified updating rule means that in period t, agents update their mean belief in

the direction of the forecast error of the previous period rather than of the current period. Conse-

quently, the mean belief ln(µ̂t) is now predetermined at time t, and equilibrium house prices are

determined by the housing market clearing condition. Lagged beliefs updating thus ensures that

the equilibrium is unique. Following Winkler (2019), I treat the lagged forecast error as an exoge-

nous disturbance z2t in the belief system of agents in period t while ensuring that z2t is equal to

the lagged forecast error (i.e., to ln(qt−1)− ln(qt−2)− ln(µ̂t−2)).

Under imperfect market knowledge, all expected future realizations are conditional on the sub-

jective probability measure P . The system of equations characterizing the policy function under

P includes the first-order conditions (4-6), (13-15), (17) and (21-23), the flow of fund constraints

(3), (8), and (19), the production function (9), the capital accumulation equation (11), the comple-

mentary slackness conditions (16-24), market clearing conditions (26) and (27), random processes

(2) and (10) and the beliefs’ updating equation (35). The market clearing condition on the housing

market is not included in the system under the subjective probability measure P because agents

do not understand how house prices form.

Solving this subjective system of equations yields the subjective policy functions, obtained un-

der the probability measure P . However, subjective policy functions do not characterize the ac-

tual equilibrium house prices, which, despite being seen as exogenous, arise endogenously in the

model through the market clearing condition.

Therefore, to solve the model under imperfect market knowledge, I rely on two steps, follow-

ing the method proposed in Winkler (2019). First, I numerically solve for the coefficients of the

approximate subjective policy function h of the above system of equations in the neighborhood of

the deterministic steady state, relying on standard second-order perturbation methods. Second,

I solve for the approximate actual policy function, i.e., the objective policy function g, by deriv-

ing actual endogenous house prices from the subjective policy function h, relying on chain rules

derivation. Therefore, I obtain the derivatives of the Taylor expansion of the actual policy function

g in the neighborhood of the deterministic steady state. This yields a numerical approximation for

g, which fully characterizes the numerical solution to the learning model. The method is explained

with more details in Appendix B and closely follows that presented in Winkler (2019).
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5 Results: house price dynamics and macro-financial linkages

The model is solved under both the assumptions of rational expectations and imperfect market

knowledge, to assess the relevance of the model in explaining the US asset price, credit and busi-

ness cycles during 1985-2019. Appendix C details the quarterly data used in the calibration and

for assessing the results.

5.1 Calibration strategy

The first set of parameters consists of static parameters (βP , βI , βF , α, ψ,m1,m2, δ, j), which affect

only the steady state. The discount factor of patient households βP is set at 0.9934 so that the

steady-state mortgage rate R̄ equals the mean of the average 1-year adjustable mortgage rate in

the US over the period of interest. The discount factors of impatient households and firms (βI , βF )

are set at 0.94, following Iacoviello (2015).

The weight on leisure in the household utility function is set at ψ = 2. This value implies that

households allocate approximately one-third of their active time to work and that the Frisch elas-

ticity of labor supply is around 2, which is consistent with values used in the macroeconomic lit-

erature (see Peterman (2016)) and with the calibration in Iacoviello (2015). The weight on housing

in the household utility function is set at j = 0.075, whereas the share of housing in the consump-

tion goods production function is set at v = 0.05. These parameter values imply a steady-state

entrepreneurial share of housing of 24%. Given the US average labor share to output during 1985-

2019, we obtain α = 0.34 for the share of capital in the production function. The capital deprecia-

tion rate δ is set at the standard value of 0.025, corresponding to a 10% annual depreciation.

The loan-to-value ratio m is set at 0.5 to match the steady state debt-to-GDP ratio in the model

with the average debt-to-GDP ratio in the data. This value is consistent with the values estimated

in Iacoviello (2005) and Kuang (2014) for the household sector. It implies a significant degree of

financial frictions and is such that the borrowing constraints are always binding throughout the

simulations.

In what regards the dynamic parameters of the model, the persistence parameter of the pro-

ductivity shock ρa is estimated from the US data during 1985-2019 by using the perpetual inven-
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tory method. The linearly detrended Solow residual displays relatively strong persistence, with

ρa = 0.93. For the persistence parameter of the lenders’ preference shock, I rely on the literature

on intertemporal disturbances and set ρd = 0.83 (Primiceri et al., 2006).

Finally, the four remaining dynamic parameters (g, φ, σa, σd) are estimated by using the gener-

alized method of moments (GMM), in both the rational expectations and learning models. Param-

eters are chosen to minimize the distance function between four targeted second-order moments

in the data (namely, the variances of production, investment, consumption and house prices) and

corresponding theoretical moments. In the minimization procedure, higher weight is allocated to

the empirical moments that are estimated more precisely. Therefore, the estimated parameters θ̂

are those that minimize the following distance function:

θ̂ = argmin
θ∈Θ

(m(θ)− m̂)′ŴT (m(θ)− m̂),

wherem(θ) denotes the vector of theoretical moments, m̂ denotes the vector of moments estimated

in the data during 1985-2019, and Ŵ denotes the weighting matrix estimated in the data.8 An up-

per bound on the value of the Kalman filter gain g is imposed to exclude cases in which oscillations

in the model variables are too high; high oscillations are not consistent with the empirical behavior

of these variables. The estimated parameter g reaches the upper bound of 0.05.9 Table 1 gathers

the values of all parameters used in the model simulations.

8ŴT is equal to diag(Σ̂)−1, with Σ̂ the variance-covariance matrix of the data moments estimated with the standard
Newey-West kernel.

9The value of the upper bound for g is chosen by relying on the learning literature (an upper bound of 0.05 is
consistent with the value estimated in Winkler (2019) in what regards stock price fluctuations) and on the analysis of
the impulse response functions.
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Parameter Calibrated value (Learning) Calibrated value (Rational expectations)
βP 0.9934 0.9934
βI 0.94 0.94
βF 0.94 0.94
ψ 2 2
j 0.075 0.075
v 0.05 0.05
α 0.34 0.34
m 0.5 0.5
δ 0.025 0.025
φ 9.7111 13.6399
ρa 0.93 0.93
ρd 0.83 0.83
σa 0.0060 0.0062
σd 0.0070 0.0259
g 0.005 NA

Table 1: Calibration

The estimated variances of the productivity shock are roughly similar in both the rational ex-

pectations and learning model, even though the variance is slightly lower under learning. In both

models, the estimated variance of the lenders’ preference shock is higher than that of the produc-

tivity shock. This result is consistent with the idea that financial shocks recently became stronger

and play a larger part in business cycles, notably in the run-up to the Great Recession. However,

the estimated variance is more than three times larger in the rational expectations model than in

the learning model. This result reveals the strong amplification in the responses to shocks gen-

erated by the learning mechanism.10 Due to the high variance of the financial shock, the capital

adjustment cost parameter is higher in the rational expectations model than in the learning model.

5.2 Business cycle, credit and house price statistics

Table 2 compares the standard business cycle, credit and house price moments in the data with

those of the learning model. The table also reports the moments obtained in the rational expecta-

10As a comparison, in his model, Iacoviello (2015) estimates the volatility of the housing demand shock, which is
introduced to replicate the volatility of house prices, at 0.0346. This value is higher than the sum of the volatility of the
two shocks in our model. Our model can, however, fully replicate the dynamics of house prices while providing a more
endogenous explanation of these dynamics, i.e., without resorting to housing sector shocks.
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tions model for values of dynamic parameters that are identical to those estimated in the learning

model ("RE Calibration 1") and for values of dynamic parameters specifically estimated for this

version of the model ("RE Calibration 2"). The use of the first calibration helps identify differences

in the size of the propagation mechanisms between the rational expectations and the learning

model, whereas the use of the second calibration enables the study of the version of the rational

expectations model that best fits the targeted data.

Table 2 presents both the moments that were directly targeted in the estimation strategy (out-

put, house prices, investment and consumption volatility) and a large set of standard moments

that were not targeted. Both the empirical quarterly data and the model-generated data are logged

(except for the house price growth rate) and hp-filtered with a parameter of 1600. Moments tar-

geted in the estimation strategy are displayed with an asterisk. The model-generated consumption

is the sum of the consumptions of patient households, impatient households and entrepreneurs.

US Data Q1 1985-Q4 2019 Learning RE Calibration 1 RE Calibration 2
σYt
∗ 0.0102 0.0099 0.0086 0.0095

σIt

σYt
∗ 3.36 3.48 2.84 3.69

σCt

σYt
∗ 0.71 0.77 0.83 0.78

σNt

σYt
1.50 0.38 0.21 0.59

σBt

σYt
1.95 2.73 1.45 2.71

σqt

σYt
∗ 1.91 1.92 0.94 1.93

ρ(It, Yt) 0.89 0.95 0.95 0.83
ρ(Ct, Yt) 0.81 0.99 0.99 0.96
ρ(Nt, Yt) 0.87 0.77 0.57 0.52
ρ(Bt, Yt) 0.41 0.90 0.91 0.73
ρ(qt, Yt) 0.54 0.74 0.87 0.69
ρ(Yt−1, Yt) 0.88 0.76 0.72 0.72
ρ(It−1, It) 0.91 0.77 0.70 0.69
ρ(Ct−1, Ct) 0.84 0.73 0.73 0.76
ρ(Nt−1, Nt) 0.94 0.79 0.66 0.65
ρ(Bt−1, Bt) 0.96 0.80 0.67 0.62
ρ(qt−1, qt) 0.93 0.86 0.74 0.73

ρ(ln( qt
qt−1

), ln( qt−1

qt−2
)) 0.68 0.20 -0.03 -0.03

Table 2: Business cycles, credit and house price moments

Despite the parsimony of the baseline model, both the learning and the rational expectations

model with calibration 2 replicate relatively well the volatility of production and the relative

volatility of most other variables. However, both models tend to overpredict the volatility of debt,
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and they unsurprisingly have difficulties in replicating the volatility of hours. These difficulties are

a well-known issue in standard basic real business cycle models due to the simplicity of labor mar-

ket decisions.11 When the rational expectations model is solved with the same parameter values as

the learning model (calibration 1), the model cannot match the volatility of the distinct variables,

thus revealing that amplification mechanisms arise under learning. In addition, the learning model

replicates the high autocorrelations observed in the dat, better than both versions of the rational

expectations model. The learning mechanism indeed acts as an endogenous source of persistence

without needing to resort to habit or other exogenous sources of persistence. The learning model

also replicates the strong procyclicality in the model variables, even though the model tends to

overpredict the correlation of debt and house prices with output. In addition, interestingly, the

learning model predicts a positive autocorrelation in house price growth ρ(ln qt
qt−1

, ln qt−1

qt−2
), as ob-

served in the data. The rational expectations model is unable to replicate this feature of the data.

Indeed, unlike the learning model which generates extrapolation in house price beliefs and thus

autocorrelation in housing returns, the rational expectations model generates a mean-reverting

behavior in housing returns.

Our quantitative results suggest that learning about future house prices offers a promising

and intuitive mechanism for explaining the joint dynamics of macroeconomic variables, credit and

house prices in a simple and standard production economy, while considering that the empirical

validity of the rational expectations assumption is called into question.

5.3 Impulse response functions analysis

To better understand the amplification mechanism in operation in the learning model, the impulse

response functions to the two shocks under learning and under rational expectations are displayed

below. The impulse response functions represent log-deviations from the steady state in response

to a one-standard-deviation positive productivity shock and a one-standard-deviation negative

lenders’ preference shock.12

11Several assumptions have been made in the literature to overcome this limitation inherent in standard real business
cycle theory, such as indivisible labor and the search model of the labor market. An avenue for future research is to
incorporate the learning mechanism into larger DSGE models that feature more realistic labor market decisions.

12To compare impulse response functions under subjective and rational expectations for similar shocks, the standard
deviations of shocks that I retain are those estimated for the learning model.
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Figure 1: Impulse response functions following a positive productivity shock

Following a productivity shock (Figure 1), entrepreneurs increase labor demand and invest-

ment, and output grows. The labor supply of patient households rises as well, while the labor

supply of impatient households decreases. Demand for housing grows, and this growth in de-

mand is reflected in higher house prices. The shock generates a reallocation of the fixed housing

stock: the share of the housing stock held by the productive sector and by impatient households

increases at the expense of patient households. Credit increases in equilibrium, notably because

borrowers hold more housing assets, thereby relaxing the borrowing constraint. These redistribu-

tive effects thus affect the financial accelerator mechanism of the model, both in the household

sector and in the productive sector. Consumption of the three sectors increases due to a rise in

wealth.

Despite this common mechanism, there are significant differences between the impulse re-

sponse functions in the learning and rational expectations model. In the learning model, house

prices are booming following the shock. Indeed, the initial effect of the shock is amplified over

time; house prices display a persistent hump-shaped response. The response of credit to the shock

is initially stronger and is amplified over time relative to the response in the rational expectations

model. Hours worked also react more strongly in the learning model. The responses of output,

consumption and investment are also stronger and slightly hump-shaped compared to the same

responses in the rational expectations model.
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A negative lenders’ preference shock (Figure 2) implies that patient households value the cur-

rent period less and are, thus, more willing to transfer money into the future through lending. This

shock thus mimics a context of higher willingness to lend and easier access to credit independent

of borrowers’ net worth.
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Figure 2: Impulse response functions following a negative lenders’ preference shock

Following the shock, patient households increase the credit and labor supply and decrease con-

sumption. In equilibrium, credit is, thus, higher, and impatient households increase investment in

housing assets, while firms invest more in both housing assets and capital. House prices rise in

response to the increase in housing demand. Output grows because hours worked rise. Con-

sumption of both impatient households and firms increases. Once again, in the learning model,

the shock generates an endogenous boom in house prices, whereas the response of house prices

is much smaller and not persistent in the rational expectations model. The responses of the other

variables are amplified, and the initial effect of the shock on these variables is propagated over

time. The impulse response functions are thus hump-shaped.

Differences in the impulse response functions in the learning and rational expectations model

relate to differences in the evolution of expected housing returns and prices, which affects current

housing demand in the three sectors of the economy. Expected housing returns and prices, thus,

affect intertemporal trade-offs and affect the financial accelerator mechanism. To understand the

mechanism at play in the learning model, Figure 3 presents the joint dynamics of expected and re-
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alized housing returns and their impact on prices in response to a one-standard-deviation negative

lenders’ preference shock. The mechanism is similar for the productivity shock.
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Figure 3: House prices and the dynamics of beliefs

House prices grow in response to the shock (green curve). Therefore, the realized growth rate

at the time of the shock ln(q1)− ln(q0) (blue curve) is higher than the expected growth rate before

the shock ln(µ̂0) (red curve)13, thus implying that forecast errors – which are measured as the

difference between the two curves – are positive. According to equation (35), when lagged forecast

errors are positive, beliefs are updated upward. Therefore, expected housing returns increase.

Housing demand rises, thereby further propagating the initial increase in house prices.

As long as the realized housing returns are higher than the expected housing returns, the fore-

cast error is positive, and expected future housing returns continue to increase, fueling the demand

for housing. The forecast error then gradually decreases. Eventually, the forecast error becomes

null, i.e., the expected growth rate is equal to the actual growth rate. The demand for housing no

longer increases. The realized growth rate of house prices thus decreases below the expected value,

and forecast errors become negative. Expected housing returns thus start to decrease, thereby gen-

erating an endogenous reversal in house prices.

Therefore, in the learning model, surprise effects in housing returns endogenously propagate

the initial effect of the shock. In contrast, under rational expectations, surprise effects arise only in

the first period, when the shock hits. This result explains that the learning model better replicates

13Due to the scale of the figure, expected housing returns look constant but they actually fluctuate around zero.
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the autocorrelations observed in the data. Even though the learning mechanism generates very

small variations in expected housing returns, these variations strongly affect the dynamics of house

prices. Housing returns expectations and forecast errors are state variables; consequently, their

variations also affect the other model variables’ realized and expected values.

5.4 Explaining non-rational patterns in expectations: forecast errors predictability

I now investigate the ability of the learning model to explain some features of macroeconomic

and house price expectations, as measured by survey data. In particular, survey data reveal that

forecast errors are predictable. Therefore, forecast errors are correlated with variables that were

observable at the time of the forecast. By contrast, the rational expectations hypothesis implies

that forecast errors are unpredictable because all information available at the time of the forecast is

already incorporated into the forecast. Forecast errors, thus, only result from unpredictable shock

realizations. Consequently, by nature, models that assume rational expectations fail to explain the

data in what regards the formation of expectations.

Table 3 presents evidence of forecast errors predictability in survey data about expected future

macroeconomic variables and housing returns and compares this predictability to that obtained

by the learning model. Forecast errors for house price growth εR are defined as the difference

between realized annual house price growth and one-year-ahead household forecasts from the US

Michigan Survey of Consumers available for 2007-2019. Forecast errors for output, investment

and consumption (εY , εI and εC) are retrieved from the Survey of Professional Forecasters and are

computed for annualized quarter-on-quarter growth rates of the variables for 1985-2019.

US Survey data Learning RE
ρ(εRt+4

, qt) -0.55 -0.22 0
ρ(εRt+4

, ln( qt
qt−1

)) 0.56 0.30 0
ρ(εYt+1

, ln( qt
qt−1

)) 0.13 0.13 0
ρ(εIt+1

, ln( qt
qt−1

)) 0.03 0.06 0
ρ(εCt+1

, ln( qt
qt−1

)) 0.16 0.32 0

Table 3: Forecast errors predictability
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The results reveal that the learning model is able to replicate the sign, and, to some extent,

the size, of the predictability of forecast errors, even though predictability was not targeted in the

calibration method. Thus, the learning model predicts a negative correlation between housing

returns forecast errors and house prices observed at the time of the forecast, whereas the model

predicts, in accord with the data, a positive correlation between these same forecast errors and

house price growth at the time of the forecast. These features emerge because agents tend to

underpredict housing returns when house prices start to rise (i.e., when house price growth is

high) and to overpredict housing returns when house prices are high (i.e., close to the peak). For

the forecast errors of macroeconomic variables, the learning model succeeds in replicating the

positive correlation of these errors with the observed house price growth at a short-term horizon.

This positive correlation suggests that agents tend to underpredict future macroeconomic variables

at the beginning of a housing boom.

Embedding a learning mechanism about housing prices into a stylized production economy

framework enables an explanation, in accord with survey data, of non-rational patterns in ex-

pectations of both housing returns and macroeconomic variables. Even though expectations of

macroeconomic variables are model consistent, these expectations are conditional on house price

growth expectations and are, thus, not rational either. Therefore, a small deviation from rational

expectations (regarding only the perceived process of the housing returns) enables improving the

explanation of subjective features of macroeconomic expectations.

6 Conclusion

The present paper proposes an interpretation of the recent US macro-financial linkages based on

imperfect knowledge regarding the formation of house prices. This assumption, which is consis-

tent with the rejection of the rational expectations hypothesis evidenced by survey data, is intro-

duced into an otherwise standard borrower-saver model with a production sector, collateralized

borrowing constraints and financial frictions.

The learning mechanism about house price growth generates amplification and propagation

over time of small macroeconomic and credit sector aggregate disturbances involving feedback
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transmission channels between the housing market, the credit market and the real sector.

Compared with the rational expectations model, the subjective expectations model, by intro-

ducing learning about house prices, yields three main empirical results. First, the learning mech-

anism enables the replication of persistent booms in house prices in response to shocks, followed

by endogenous reversals, in accord with what was observed in the US in recent decades, particu-

larly in the run-up to the subprime crisis. Second, the setup helps simultaneously replicate several

aspects of standard business cycle moments in the last 30 years and additional features of the dy-

namics of house prices. Estimated shock variances are smaller in the learning model than in the

rational expectations model because the learning mechanism acts as an endogenous source of per-

sistence. Third, the learning model can explain non-rational patterns in expectations of both future

housing returns and macroeconomic variables, namely, the predictability of forecast errors.

The parsimonious and stylized model offers an explanation with intuitive appeal of the excess

volatility in house prices and the macroeconomic consequences of such volatility. The promising

results that are obtained despite the small scale of the model pave the way for several extensions

in larger DSGE models, notably those that model more complex labor market decisions. An im-

portant avenue for future research is to derive optimal policies when asset prices display excess

volatility. In particular, the setup could be extended by introducing nominal frictions and investi-

gating optimal monetary policy under non-rational expectations.
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A Equilibrium conditions in the rational expectations model

A.1 The first-order conditions

dt
1

Ct,P
qt = βPEt

[
1

Ct+1,P
qt+1dt+1

]
+ jdt

1

Ht,P
.

dt
Ct,P

= βPEt

[
dt+1

Ct+1,P
Rt

]
.

wt
Ct,P
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ψ

1−Nt,P
.
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Nt
.
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Ct+1,F

]
Rt + µF,t.

qt
Ct,F
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+ µF,tmEt
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− δ
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Ct+1,I

]
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1

Ct,I
= βIEt

[
1

Ct+1,I
Rt

]
+ µI,t.

Bt,I = mEt

[
qt+1

Rt

]
Ht,I .

A.2 The flow of fund constraints

Ct,P + qtHt,P +Bt = wtNt,P +Rt−1Bt−1 + qtHt−1,P .

Ct,F + qtHt,F +Rt−1Bt−1,F + wtNt + It = Yt +Bt,F + qtHt−1,F .

Ct,I +Rt−1Bt−1,I + qtHt,I = wtNt,I + qtHt−1,I +Bt,I .

A.3 The production function and the capital accumulation equation

Yt = AtK
α
t−1H

v
t−1N

1−α−v
t .

Kt = It + (1− δ)Kt−1 −
φ

2

(
It

Kt−1
− δ
)2

Kt−1.

A.4 The shock processes

ln(dt) = ρd ln(dt−1) + εd,t.

ln(At) = ρa ln(At−1) + εa,t.

A.5 The market clearing equations

Yt = It + Ct,P + Ct,F + Ct,I .

Bt = Bt,F +Bt,I .

Nt = Nt,P +Nt,I .

HP,t +HF,t +HI,t = 1.
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B The approximation method

Appendix B presents a summary of the original method presented in Winkler (2019) applied to the

specific case of our model.

A general way to describe the learning model is to write it as the combination of the two fol-

lowing systems of equations under the subjective probability measure P :

EPt [f(yt+1, yt, xt, ut, zt)] = 0, (36)

EPt [φ(yt+1, yt, xt, ut, zt)] = 0, (37)

where yt is a vector of endogenous variables in period t, yt+1 is a vector of these variables in the

next period, xt is a vector of state variables such that xt = Cyt−1, where C is a matrix including 0

and 1 values, and yt−1 is a vector of the endogenous variables in the previous period. ut is a vector

of stochastic disturbances with variances σ. zt is a vector of the variables that are perceived by

agents as iid exogenous disturbances. They affect the house price process and the belief updating

process, and have zero mean and variances σz . They are assumed to be uncorrelated with ut. They

can be interpreted as house price growth forecast errors and are assumed to be null in the steady

state. EPt is the expectations operator under the subjective probability measure P . As discussed

in Section 3, the elements of zt are actually not exogenous. They are determined endogenously by

market clearing on the housing market, and thus by a second set of equilibrium conditions, given

by the system of equations (37), which is unknown to agents.

In the specific case of our model, the second set of equilibrium conditions takes the form of two

equations:

HI,t +HF,t +HP,t − 1 = 0, (38)

and

z2t − z1,t−1 = 0. (39)

Solving the model under the subjective probability measure P first amounts to finding the func-

tion h, which is the subjective policy function, such that all endogenous variables are expressed as
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functions of the state variables xt and of the two types of exogenous disturbances ut and zt (and of

the shock variances): h(xt, ut, zt, σ). We obtain a numerical approximation for the subjective pol-

icy function by implementing standard perturbation methods for solving the system of equations

under P that includes the first-order conditions (4-6), (13-15), (17) and (21-23), the flow of fund

constraints (3), (8), and (19), the production function (9), the capital accumulation equation (11),

the complementary slackness conditions (16-24), market clearing conditions (26) and (27), random

processes (2) and (10), and the beliefs’ updating equation (35). This step yields the coefficients

of the Taylor expansion of h around the deterministic steady state. This is the first step of the

approximation method.

Secondly, the aim is to find the values of zt such that the market clearing condition on the

housing market is actually satisfied, that is, such thatHI,t+HF,t+HP,t = 1. The elements of zt can

thus be written as a function r of state variables xt, stochastic disturbances ut and shock variances

σ: zt = r(xt, ut, σ). We thus need to approximate the function r (at this point, it is assumed to exist

and to be unique, which is then verified ex-post in the case of our model) in order to approximate

the objective policy function g. The latter is such that, in equilibrium, yt = g(xt, ut, σ). By applying

chain rules for derivation, g can be approximated in the neighborhood of the non-stochastic steady

state at the first order as follows:

yt = g(xt, ut, σ) = h(xt, ut, r(xt, ut, σ), σ)

' g(x̄, 0, 0) + (hx + hzrx)(xt − x̄) + (hu + hzru)ut + (hσ + hzrσ)σ,

where x̄ is the vector of steady state values of the state variables. The first order derivatives of h

and r are written without time subscripts (e.g. hx = ∂h
∂xt

).

To derive the objective policy function g, we still need to find the approximate values of rx,

ru and rσ in the steady state. These derivatives can be obtained by total differentiation of the

second set of equilibrium conditions (37) at the deterministic steady state. Indeed, the second set
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of equilibrium conditions (37) can be rewritten as:

0 = Φ(xt, ut, σ) = EPt [φ(yt+1, yt, xt, ut, zt)] =

EPt

[
φ

[
h

(
Ch(xt, ut, r(xt, ut, σ), σ), ut+1, zt+1, σ

)
︸ ︷︷ ︸

yt+1

, h

(
xt, ut, r(xt, ut, σ), σ

)
︸ ︷︷ ︸

yt

, xt, ut, r

(
xt, ut, σ

)
︸ ︷︷ ︸

zt

]]
.

Total differentiation at the steady state makes it possible to obtain the derivatives of r, which are,

in our case, as follows (given that yt+1 and ut do not appear in the second set of equilibrium

conditions (38-39), we have: φyt+1 = 0 and φut = 0):

dΦ

dx
(x̄, 0, 0) = φyhx + φx + (φyhz + φz)rx = 0

⇔ rx = −(φyhz + φz)
−1(φyhx + φx).

First-order derivatives are written without time subscripts in the above equation because they all

involve variables in t only.

dΦ

du
(x̄, 0, 0) = φyhu + (φyhz + φz)ru = 0

⇔ ru = −(φyhz + φz)
−1φyhu.

dΦ

dσ
(x̄, 0, 0) = φyhσ + (φyhz + φz)rσ = 0

⇔ rσ = −(φyhz + φz)
−1φyhσ = 0,

because hσ = 0.

Because the matrix φyhz + φz is invertible in our model, the function r exists and is unique.

The method is similar for higher order approximations (see Winkler (2019) for more details).
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C Data series

All data series are extracted from the Federal Reserve Bank of St Louis database (FRED), mainly

from the US Flow of Funds Statistics, and are expressed in real terms using the GDP Implicit Price

Deflator.

Variable Series
Output Gross Domestic Product (GDP)

House prices All-transactions House Prices Index (USSTHPI)
Investment Private Non-Residential Fixed Investment (PNFI) + Durable Consumption (PCDG)

Consumption Personal Consumption Expenditures, Nondurable Goods and Services (PCND + PCESV)
Debt Entrepreneur Loans (MLBSNNCB+NNBTML+BLNECLBSNNCB+OLALBSNNCB+OLALBSNNB

+BLNECLBSNNB) and Household Loans (HHMSDODNS+HCCSDODNS)
Hours Hours of All Persons, Nonfarm Business Sector (HOANBS)

Labor share Share of Labour Compensation in GDP at Current National Prices (LABSHPUSA156NRUG)
Mortgage rate 1-year adjustable rate (average in the US) (MORTGAGE1US)
Price Deflator GDP Implicit Price Deflator (GDPDEF)
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