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ABSTRACT

We investigate the ability of the Fama equation to compute proper conditional
densities and currency risks. Based on quantile regressions, we fit a Skewed t-
distribution to estimate the conditional densities on the monetary policy of eight
currency pairs. We demonstrate that the conditional densities are highly sensitive
to the monetary policy stance. Then, we use the estimated conditional densities to
measure the currency risks. Our results highlight that the depreciation/appreciation
risks are extremely heterogeneous and that the currencies are more exposed to de-
preciation risks, especially during turmoils. Our findings can be used as a supple-
mentary tool to assess whether a currency behaves as a safe-haven currency. We
also investigate the relative and absolute performance of our model in forecasting
densities. We find that the predictive densities are perfectly well-calibrated. Moreo-
ver, our results also demonstrate that our methodology can outperform the random
walk in forecasting densities.
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currency.
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1 Introduction

According to the Bank for International Settlements in the last Triennial Survey,
the trading volumes in the foreign exchange (FX) markets averaged 6.6 trillion per day
in April 2019 against 5.1 trillion per day three years earlier. This important volume of
trading makes this market the most important but also the most liquid and volatile. These
characteristics are obviously due to the great importance of exchange rates in the daily
decisions of agents. Hence, there is a real need to develop models not only to analyze the
current evolution but also to predict the future paths of exchange rates. Large numbers
of theories emerged in the literature to propose explanations and drivers for exchange
rates future movements. However, in practice, forecasting exchange rates turns out to be
one of the most complicated puzzles in international finance. Since the works of Meese
and Rogoff (1983), large numbers of researchers evaluated the out-of-sample performances
of different empirical and theoretical models but failed to outperform the random walk
(see Rossi (2013) for a literature review). Although the prediction of the exchange rate
level has been widely explored in the literature, forecasting the density of exchange rates
remains somewhat unexplored. Nowadays, there is a growing interest in predicting the full
distribution of exchange rates insofar as forecasting densities depicts all the uncertainty
associated with a prediction. Economic agents, practitioners, and policymakers do no
longer focus only on a point forecast but also and particularly on the full predictive
density of a variable. Moreover, the expanding field of financial risk management is also
a reason to focus more on predictive densities. As some risk measures largely depend on
distributions, the better the predictive densities are calibrated, the better the risks are
measured. In this paper, we investigate this issue for eight currency pairs, all against the
US dollar.

This paper has three main objectives. First, we try to estimate the conditional den-
sities of exchange rates. We exploit the ability of the quantile regressions developed by
Koenker and Bassett (1978) to convert conditional quantile functions into conditional
densities. We begin by estimating the traditional Fama equation regarding four different
horizons : one month, three months, six months and twelve months. Then, we employ the
quantile interpolation methodology to smooth the estimated conditional quantiles using
the skewed t-distribution developed by Azzalini and Capitanio (2003) and obtain the es-
timated conditional densities of the currency pairs. The choice of a skewed t-distribution
is justified by its flexibility and its ability to encompass several class of distributions
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according to the value of its parameters. Second, we evaluate the depreciation and ap-
preciation risks. We rely on the Expected Shortfall, which has become the most widely
used measure in risk management. The Basel Committee On Banking Supervision (2016)
imposed the Expected Shortfall as the new benchmark for managing risk. It measures the
total probability mass that the conditional density assigns to the left tail. As we are also
interested in the upside risk, we consider the upper tail counterpart of Expected Shortfall
that we term Expected Longrise as in Adrian et al. (2019). To backtest our Expected
Shortfall/Longrise, we use the test proposed by Bayer and Dimitriadis (2019). We make
two robustness analyses. We begin by fitting a Normal distribution and explore its ability
to compute currency risk measures. After that, we augment the Fama equation with the
economic policy uncertainty (EPU) of Baker et al. (2016) to evaluate the currency risks
related to both monetary policy and uncertainty events. Third, we compute out-of-sample
density forecasts and evaluate them. Two kinds of evaluations are performed. On the one
hand, we use the test of Rossi and Sekhposyan (2019) to carry out an absolute evaluation.
On the other hand, the relative evaluation our of model is performed by comparing it to
the traditional benchmark when forecasting exchange rates, namely the random walk.
We rely on the notion of predictive score and the framework proposed by Amisano and
Giacomini (2007).

We obtain the following findings. First, evidence from the quantile regressions sug-
gests that, for most currency pairs, a common pattern appears for most of the currency
pairs. For lower quantiles of exchange rates, the Fama coefficient is positive. But for the
upper quantiles, the Fama coefficient decreases and tends to be negative. This result is
an evidence of the nonlinear features of the Fama equation and suggests that the Fama
coefficient depends on the distribution of exchange rates. We also find that the estimated
conditional densities are sensitive to the monetary policy stance. The entire distribution of
exchange rates exhibits a time-varying pattern and depicts significant and robust asymme-
tries. The Expected Shortfall/Longrise highlight an important feature : for most currency
pairs, the depreciation risks are more volatile than the appreciation risks, especially du-
ring crises. Furthermore, the risk of depreciation drops significantly during turmoils. In
other words, the currency pairs are more exposed to a downside risk, except for the Swiss
Franc and the Japanese Yen. Our methodology can also be used to assess whether a cur-
rency behaves like a safe-haven currency. If the volatility of the appreciation risk is higher
than the volatility of the depreciation risk, then the currency behaves as a safe-haven
currency. We find that the US Dollar but also the Japanese Yen and the Swiss Franc can
be considered as safe-haven. The backtesting procedure of our depreciation/appreciation
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risks demonstrates that the risk measures are correctly specified. These measures can be
beneficial for policymakers or practitioners insofar as they will be able to evaluate the risk
of depreciation/appreciation and use them to monitor their different strategies or policies.
The robustness analysis made with the EPU provides the same conclusions. Moreover,
based on the backtesting procedure, we find that the Normal distribution is not suitable
to fit the currency risks. Finally, the results of the test of Rossi and Sekhposyan (2019)
suggest that our predictive conditional densities are well specified. In other words, our
model is suitable to estimate the predictive densities of the exchange rates. Concerning
the relative performance, our model overperforms the random walk for the one-month-
ahead framework. For the three-month-ahead, six-month-ahead and twelve-month-ahead,
the random walk provides more accurate predictive densities.

Our paper is closely linked to several strands of the literature. First, from a methodo-
logical point of view, our research is part of a field that uses quantile regressions to inves-
tigate exchange rates issues. Several studies used quantile regressions to analyze exchange
rate dynamics. For example, Nikolaou (2008), with semi-parametric and non-parametric
frameworks based on quantile autoregressions, investigates the question of mean reversion
in real exchange rates. The same, using quantile regressions for six Asian countries, Tsai
(2012) demonstrates that exchange rate and stock price index are negatively correlated for
extreme quantiles of the exchange rate. More recently, Kuck and Maderitsch (2019), using
quantile autoregression, find a negative autocorrelation for central quantiles of exchange
rates and positive autocorrelation for extreme quantiles. Our paper goes beyond quantile
regressions and uses the estimated quantile functions to fit a distribution. Koenker (2005)
provides a formula to transform the estimated conditional quantile functions into condi-
tional densities. After him, Gaglianone and Lima (2012) build on this framework and fit
an Epanechnikov Kernel to estimate the conditional densities of the US unemployment
rate. The same, Korobilis (2017) uses the same methodology in a panel framework. More
closely to our paper, Adrian et al. (2019) fit a Skewed t-distribution and estimate the
conditional distribution of the US growth.

Second, our paper is also related to the literature that investigates the field of currency
risk. This strand of the literature has not been widely explored. A first way to evaluate the
currency risk is to use the value-at-risk (VaR). As an example, based on the value-at-risk
methodology and three different models, Sarno and Valente (2005) evaluate the risk asso-
ciated with eight currencies. The same, Bredin and Hyde (2004) compute different VaR
based on various methodologies for a portfolio of exchange rates. In the same vein, Akh-
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tekhane and Mohammadi (2012) evaluate the daily VaR for the Rial-Euro exchange rate.
More recently, Chulia et al. (2018) evaluate the downside risk spillover for twenty advanced
and emerging foreign exchange markets using a Conditional Autoregressive value-at-risk
(CAViAR) model.

Finally, we are also close to a strand that has focused on forecasting exchange rate
densities and evaluating them. One of the first articles to consider the issue of the den-
sity forecast of exchange rate is Diebold et al. (1999). With high-frequency data, they
provide a framework to compute half-hour-ahead density forecasts for the Deutschmark
and the Yen. After this study, a few researchers investigate this subject. Christoffersen
and Mazzotta (2005), with a dataset of daily data on over-the-counter currency options
prices, provide one-month-ahead and three-month-ahead density and interval forecasts.
Sarno and Valente (2005) also investigate this field and evaluate the performance of a
vector error correction model to forecast exchange rate density. In the same vein, Rapach
and Wohar (2006) evaluate the performance of nonlinear models to forecast densities of
the US dollar. More recently, Gaglianone and Marins (2017) use a broad range of statis-
tical and economic-based models and construct multi step-ahead density forecast of the
Brazilian Real. Most of the previous studies use the methodology based on the probability
integral transform (PIT) proposed by Diebold et al. (1998) to evaluate the accuracy of
the predictive densities.

Our paper differs from the existing literature in various dimensions. First, we use a
better approach to measure the risk. Indeed, we rely on the Expected Shortfall and its
upper tail counterpart, the Expected Longrise. The literature broadly demonstrates that
the Expected Shortfall has several advantages over the VaR. The main advantage of the
Expected Shortfall is that it permits us to take into account the tails of the distribution.
As the exchange rates are fat-tailed, considering a measure which does not account for
extreme tails is not appropriate. Moreover, we also consider the Expected Longrise. In
some cases, the appreciation of a currency turns out to be a problem. For example, the
Brazilian Real in 2012 largely appreciated after rate cuts in the United States, Europe,
and Japan and Brazilian authorities talked about "currency war". Hence, the need to
account for appreciation risk. Concerning the densities forecasts, we rely on a more recent
test namely the test of Rossi and Sekhposyan (2019). Contrariwise to existing procedures
that assess the predictive densities at their pseudo-true values, the test of Rossi and
Sekhposyan (2019) permits to evaluate the predictive densities given the specific model
and estimation techniques of the researcher and thus evaluate the predictive densities at
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the estimated parameter values of the model. Our paper is a complementary tool in this
flourishing field and tries to apply more parsimonious methodologies to compute density
forecasts and to evaluate them with very recent evaluation test.

The remainder of the paper is organized as follows. Section 2 presents the methodo-
logical framework and the data. Section 3 depicts the results. In section 4, we provide
the out-of-sample densities and their absolute and relative evaluation. And section 5
concludes.

2 Methodological framework

We follow a two-step approach to compute the conditional densities. We begin by esti-
mating the conditional quantiles on the differential of interest rates. Then we fit a skewed
t-distribution based on the quantile functions obtained in the first step. The empirical
framework is centered around the traditional Fama equation. We rely on this equation
because it permits us to evaluate the risk associated with the monetary policy stance.
Moreover, it is simple, founded and represents a benchmark when modeling exchange
rates. We investigate four different horizons : one month, three months, six months and
twelve months. In this way, we will compare the evolution of the results according to the
horizon forecast. We consider the following Fama equation :

st+h − st = α + β(iust,h − i∗t,h) + εt+h, h = 1, 3, 6, 12 (1)

with st the logarithm of exchange rate measured as the number of US dollars per
foreign currency unit, ius and i∗ are respectively the US interest rate and the foreign
interest rate.

2.1 Conditional densities and risk measures

We rely on quantile regressions to estimate equation 1. Quantile regressions permit to
estimate conditional quantile functions. This method is based on the asymmetric minimi-
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zation of the weighted absolute errors, in opposition to the ordinary least squares (OLS),
which minimizes the sum of squared errors. The most important motivation for preferring
the quantile regressions to the OLS is that the former method depicts in a better way and
with more accuracy the relationship between random variables. Moreover, as argued by
Koenker and Bassett (1978), in a non-Gaussian settings, quantile regressions frameworks
provide more robust and efficient estimates compared to conventional least squared esti-
mators. Another justification for using quantile regression in our paper is that the impact
of the conditioning variables (the interest rates differential and the intercept) may depend
on the distribution of exchange rates.

To simplify the equations that will follow, let us denote yt+h the exchange rate growth
st+h − st and xt the vector of the conditioning variables. By minimizing the quantile
weighted absolute value of errors, we obtain the following slope estimator :

β̂τ = argmin
βτ

T−h∑
t=1

(τ.11(yt+h≥xtβ) | yt+h − xtβτ | +(1− τ).11(yt+h<xtβ) | yt+h − xtβτ |), (2)

where 11(.) is the indicator function. Q̂yt+h|xt(τ |xt) = xtβ̂τ represents the predicted
values and are a consistent linear estimator of the conditional quantile function of yt+h,
as argued by Koenker and Bassett (1978). For low (high) level of τ , the τth conditional
quantile of the exchange rate growth (xtβ̂τ ) describes the behavior of the dependent
variable yt+h at the left (right) tail of the distribution.

The quantile functions from the quantile regressions can be used to obtain the proba-
bility density function. The literature investigates various ways to use the inverse CFD
(ICDF) obtained from quantile regressions and transform them into estimated conditio-
nal densities. For example, Gaglianone and Lima (2012) and Korobilis (2017) use the
Epanechnikov Kernel to smooth their ICDF and to estimate the conditional densities. In
the same vein, Adrian et al. (2019) use the quantile interpolation framework to fit a ske-
wed t-distribution. We employ the same methodology as Adrian et al. (2019). Previous
researchers consider different distributions to model the exchange rate. The possibility
that the Normal distribution can fit exchange rate has been discussed in the literature.
For instance, Coppes (1995) argues that the exchange rates monthly returns are normally
distributed. However, theoretical and empirical studies demonstrate that exchange rates
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follow distributions with fatter and more asymmetric tails compared with those that pre-
vail under Normal distribution ( see De Vries and Leuven (1994) for some properties of
exchange rates). The skewed t-distribution, developed by Azzalini and Capitanio (2003),
presents the great advantage of encompassing a large set of distributions. According to
the value of its four parameters, the skewed t-distribution can become a particular distri-
bution. That way, we are almost sure to get closer to the true distribution of the exchange
rate growth. The probability density function of the skewed t-distribution is written as
follow :

f(y;µ, σ, α, ν) = 2
σ
t
(
y − µ
σ

; ν
)
T

αy − µ
σ

√√√√ ν + 1
ν + (y−µ

σ
)2 ; ν + 1

 , (3)

with the location µ, the scale σ, the fatness ν and the shape α. t(.) and T (.) are
respectively the PDF and the CDF of the student t-distribution. Three particular cases
can be mentioned. First, if the shape parameter α is null, the skewed t-distribution reduces
to a t-distribution. Second, the distribution is a traditional Gaussian distribution if α = 0
and ν =∞. Lastly, when α 6= 0 and ν =∞, the distribution is a Normal skewed.

The quantile interpolation methodology consists in estimating the four parameters of
the skewed t-distribution by minimizing the squared distance between the estimated condi-
tional quantiles and the ICDF of the skewed t-distribution. As the skewed t-distribution
has four parameters, we run the quantile interpolation for four different percent quantiles
targets : 5%, 25%, 75% and 95%. In other words, for each month, we choose the four
parameters of the skewed t-distribution to match the four different percentiles mentioned
above. The optimization equation can be written as follow :

{µ̂t+h, σ̂t+h, α̂t+h, ν̂t+h} = argmin
µ,σ,α,ν

∑
τ

(
Q̂yt+h|xt(τ |xt)− F−1(τ ;µ, σ, α, ν)

)2
, (4)

with F−1(.) the inverse cumulative skewed t-distribution. The result of this optimiza-
tion is a set of the four estimated parameters for each period and thus the evolution of
the fitted conditional distributions.
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The tails of the estimated conditional distributions can be used to estimate the risk of
depreciation/appreciation. One of the most widely used risk measures is the value-at-risk
(VaR). The VaR is defined as the maximum loss for an investment given a confidence level
and a specific investment period. However, the drawbacks of the VaR lead researchers to
compute new risk measures. A well-known drawback of the VaR is its incapacity to account
for severe losses. Moreover, the VaR does not respect some mathematical properties. More
precisely, it does not satisfy the subadditivity property 1. In opposition, the Expected
Shortfall is a coherent measure and is capable to account for extreme losses. The Expected
Shortfall is defined as the average of all losses which are greater (or equal) than the VaR.
For all these reasons, the Expected Shortfall is preferred to the VaR. As we are also
interested in the appreciation risk, we consider the upper tail counterpart of the Expected
Shortfall named the Expected Longrise.

The Expected Shortfall/Longrise can be expressed as follow :

ESt+h = 1
π

∫ π

0
F̂−1
yt+h|xt(τ |xt) dτ ELt+h = 1

π

∫ 1

1−π
F̂−1
yt+h|xt(τ |xt) dτ, (5)

with π the risk level and F̂−1
yt+h|xt(τ |xt), the estimated conditional cumulative ske-

wed t-distribution. In this paper, we consider a risk level of 5% for the Expected Short-
fall/Longrise. The Expected Longrise and the Expected Shortfall are respectively inter-
preted as the appreciation risk and the depreciation risk of the foreign currency.

The computation of risk measure (VaR or Expected Shortfall/Longrise) is generally
followed by the backtesting procedure, which is " a set of statistical procedures designed
to check if the real losses are in line with the value-at-risk forecasts", as defined by Jorion
(2007). The literature documents different methodologies to backtest the Expected Short-
fall (see Engle and Manganelli (2004), Christoffersen (2011), McNeil and Frey (2000) or
Nolde and Ziegel (2017) ). In this paper, we rely on the test of Bayer and Dimitriadis
(2019). This test is based on a joint regression that models both the VaR and the Ex-
pected Shortfall. If the Expected Shortfall is correctly specified, then the slope parameter
associated with the Expected Shortfall and the intercept should be respectively equal to
1 and 0. A Wald statistic permits to test for the values of the parameters. More precisely,
their procedure is based on the following joint equation :

1. According to the subadditivity property, the VaR of a portfolio must not be greater than the sum
of the VaRs of the individual assets in the portfolio.
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yt+h = γ + θv̂t+h + εvt+h and yt+h = α + βêst+h + εet+h (6)

where yt+h represents the exchange rate growth, êst+h and v̂t+h are respectively the
estimated Expected Shortfall and VaR. εv and εe are error terms. The null hypothesis of
correct specification of the Expected Shortfall is given by :

H0 : (α, β) = (0, 1) against H1 : (α, β) 6= (0, 1), (7)

The test statistic is given by :

TESR = T
(
(α̂, β̂)− (0, 1)

)
Σ̂−1
ES

(
(α̂, β̂)− (0, 1)

)′

, (8)

with Σ̂ES the estimator of the covariance matrix of the parameters (α, β) and T, the
size of the sample. We also backtest the expected longrise. The procedure is quite the
same except that we use the negative returns instead of the returns themselves.

2.2 Data

The data set for this paper includes monthly data spanning from 2000M1 to 2017M12.
We collect data on end-of-month exchange rates and interest rates for nine advanced
economies, namely : Australia, Canada, Euro Zone, Japan, Norway, Sweden, Switzerland,
United Kingdom, and the USA as the reference country. The exchange rates are extracted
from the Federal Reserve database, H.10 release. The interest rates are from Datastream,
and they are measured as the midpoint of bid and offer rates for h-month Eurocurrency
rates. For the robustness analysis, we use the economic policy uncertainty of Baker et al.
(2016). 2

2. The EPU is available for only six countries of our sample : Australia, Canada, Euro Zone, Japan,
Sweden and the United Kingdom.
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3 Results

3.1 Conditional densities

The results of the quantile regression estimations are presented in Figure 2. It presents
the evolution of the estimated Fama parameter through quantiles and suggest that the
impact of interest rates differential is heterogeneous across exchange rate quantiles. A
common pattern emerges from these results. While the slope parameter is positive for the
left tail of the distribution, it decreases over quantiles and switches to negative for the
right tail. This result is strengthened for the twelve-month-ahead framework. According
to Figure 2, a positive shock of the US interest rate generates different effects according
to the distribution. In a period of high appreciation of the US dollar (left tail of the
distribution), a rise of the US interest rate tends to induce a depreciation of the US
dollar. Alternatively, in a period of high depreciation of the US dollar (right tail of the
distribution), a rise of the US interest rate induces an appreciation of the US dollar.
This result is another evidence of the presence of nonlinearity in the relationship between
exchange rates and interest rates differential. The literature widely investigates this issue
and finds many explanations for this nonlinear dynamic among them transaction costs
(Baldwin (1990), Michael et al. (1997)), central bank interventions (McCallum (1994),
Mark and Moh (2007)) or limits to speculation (Lyons (2001), Baillie and Kilic (2006),
Sarno et al. (2006)). The quantile regression permits to deepen the question and reveals
that the impact of the interest rates differential depends on the distribution of exchange
rates. For the lower quantiles, the Fama coefficient is found to be positive. On the contrary,
we find the traditional Fama puzzle for the upper quantiles.

The quantile interpolation provides us with the conditional densities on interest rates
differential. The results are presented in Figure 3. We plot the fitted conditional densities
for two periods : a normal period and a stress period 3. The conditional densities are very
different from a currency pair to another. However, this graph permits us to highlight the
time-varying feature of all the conditional densities. Indeed, they clearly evolve, especially
the tails of the distribution. In other words, the tails of the distribution, even the central
tendency, are very sensitive to particular events such as crises.

3. The normal period referred to 2006 January and the stress period referred to the height of the
financial crisis, around 2008 October
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For several currency pairs, the changes appear principally in the left tail (depreciation
of the foreign currency). More explicitly, the left tail is fatter during the 2007-2008 crisis,
meaning by the way that, during the 2008 crisis, the foreign currency is subject to an in-
creased chance of depreciation. Moreover, the conditional densities shifts to the left during
the great financial crisis. These results reflect the increasing probability of depreciation
of the currencies against the US Dollar during crises and are not surprising insofar as the
US dollar is a safe-haven. As a safe-haven currency, the US dollar remains one of the most
reliable currencies during a crisis. Kaul and Sapp (2006) highlight that during the Y2K
(Year 2000) fears 4, investors believed in the USD, and evidence demonstrated that the
presence of safe-haven flows towards the US dollar. The same, during the 2007 financial
crisis, even if the USA was the epicenter of the crisis, Habib and Stracca (2012) argue
that the USD acts as a safe-haven currency.

Switzerland turns out to be a particular case as it acts as a go-to choice during turmoils.
Conditional to the differential of interest rates, the conditional distributions shift to the
right during the 2008 crisis.

3.2 Expected Shortfall/Longrise

Figure 4 depicts the evolution of the currency risks and highlights a real asymmetry
between the upside and the downside risks. We notice that, globally, the depreciation risks
are more volatile than the appreciation risk. The impact of the crises is clearly identifiable
by significant drops in the depreciation risks. Thus, the currency pairs are exposed to more
considerable depreciation risks, and appreciation risks are more stable and less significant.
In other words, the monetary polisy stance has a significant impact on the depreciation
risk while it has much less impact on the appreciation risk. As a result, against the USD
and conditional to the monetary policy stance, most of the global currencies face an
important downside risk, while the upside risk is generally less important.

However, the risk measures are heterogeneous across the currency pairs. Some of them
are more resilient to shocks and crises. The Swiss Franc and the Japanese Yen present
more moderate falls during the crisis and less volatilities in their depreciation risks. Yet,

4. The fear of Y2K refers to the phenomenon at the beginning of the 21st century where many computer
users feared huge errors in the calculation of dates because many programs represented four-digit years
with only the last two digits, which could lead to not distinguishing the years 1900 to 2000.
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their upside risks are extremely volatile. 5

The panel A of table 1 presents the variance for the Expected Shortfall/Longrise.
This table clearly confirms the previous results. The variance of the Expected Shortfall is
generally larger than the variance of the Expected Longrise, reflecting a more significant
importance of the downside risk over the upside risk. The particular cases of the Swiss
Franc and the Japanese Yen, especially for the one-month-ahead, are highlighted by this
table.

The risk measures perfectly highlight some particular events. For example, all the cur-
rencies depict a sharp drop in the depreciation risk around the global financial crisis in
2007-2008. This period is associated with global uncertainty and strong expansionary mo-
netary policies. This leads to a large flight-to-quality towards the US dollar. For example,
the one-month-ahead depreciation risk of the euro goes from -0.05 at the beginning of
2007 to -0.08 in the height of the crisis (October 2008).

The panel A of table 2 presents the results of the test of Bayer and Dimitriadis (2019).
The p-values of the test are presented. For most of the currency pairs and horizons, the null
hypothesis is not rejected at 5 % : the Expected Shortfall and Longrise are well specified.
This result means that our depreciation risk and appreciation risk can be reliable and be
used to monitor exchange rate risk measurement.

3.3 Robustness analysis

In this part, we try to evaluate the out-of-sample performance of our methodology.
We repeat the quantile matching estimations and reestimate the measures of risks by
considering a Normal distribution instead of a skewed t-distribution. We try to compare
the ability of these two distributions to compute the best risk measure. We use the test of
Bayer and Dimitriadis (2019) to compare the ability of these two distributions to evaluate
the risk measures. The more a risk measure reject the misspecification, the more this
measure is better specified. The panel B of table 2 presents the results of the test of Bayer
and Dimitriadis (2019) under the Normal distribution. This table confirms the previous
results of the literature and shows clearly that the Normal distribution is not able to
model currency risks. Most of the p-values are inferior to the confidence level 5% rejecting

5. To a less extend for the Japanese Yen.
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the null hypothesis of correct specification of the Expected Shortfall/Longrise.

The main reason that justifies these results is that the Normal distribution syste-
matically underestimates the risk as it does not account for fat tails. As the exchange
rate series exhibit extreme values and fat tails, these results illustrate perfectly that the
Normal distribution is not well designed to model exchange rates.

Concerning the augmented Fama equation, figure 5 confirms the previous findings. All
the currency pairs depict strong asymmetries in the evolution of their risk measures and
suggest that the appreciation risk is less volatile than the depreciation risk. As a result,
the monetary policy stance and the uncertainty largely drive the downside risk of the
currency pairs. Introducing the uncertainty in the Fama equation permit us to highlight
some particular events. For example, if we consider the the British case, we denote a large
drop, especially for the one-month-ahead and the three-month-ahead, in the depreciation
risk around 2016 reflecting the risk associated with the Brexit referendum. The panel
B of table 1 presents the variance of the risk measures under the augmented Fama. As
previously mentioned for the Fama equation, the extended Fama equation also permits
to highlight a more volatile downside risk compared to the upside risk.

3.4 Implications of our results

Even if the documentation on the safe-haven currencies is large, several aspects re-
main unexplored. Moreover, there is no real consensus about the safe-haven status of the
currencies. The role of the US Dollar as safe-haven currency has been largely discussed in
the literature and several researchers demonstrate that the international status of reserve
currency of the US Dollar could make this currency a safe-haven. However, conclusions
for the Swiss Franc, the Japanese Yen or even the Euro are more mitigated. This is surely
due to the various definitions and characteristics of a safe-haven currency among studies.
Hossfeld and MacDonald (2015) define a safe-haven currency as a currency whose effective
returns are negatively correlated to global stock market returns during turmoils. They find
that only the US Dollar and the Swiss Franc can be qualified as safe-haven currencies.
In opposition, according to Coudert et al. (2014), safe-haven currencies depict positive
excess returns during crises. They argue that the US Dollar and the Japanese Yen are the
only candidates for the role of safe-haven currency. Other studies do not focus on which
currency acts as a safe-haven but on the fundamental drivers of the safe-haven currencies.
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Habib and Stracca (2012) argue that factors such the net foreign asset position, the size
of the stock market and the interest rate spread against the US drive the safe-haven be-
havior of a currency. However, among this diversity of results, a common result emerges.
Indeed, the safe-haven behavior of a currency follows a nonlinear fashion insofar as, the
safe-haven behavior is more pronounced during period of stress.

Our paper is a complementary tool to investigate this question and our methodology
can be used to assess whether a currency behaves as a safe-haven. We define safe-haven
currencies as those able to depict an appreciation risk more volatile than a depreciation
risk, especially during crises. Indeed, the more the downside/upside risk is stable over
time, the less the currency is vulnerable to it. In opposition, when the downside/upside
risk largely comoves with the interest rates spread and depicts strong volatilities, then,
conditional to the monetary policy stance, the currency is more vulnerable to the risk.
Consequently, if the volatility of the upside risk is higher than that of the downside
risk, particularly during turbulences, the currency is then more exposed to a greater
appreciation risk, thereby reflecting a flight-to-quality/safe-haven phenomenon.

We compute the rolling variances of the one-month-ahead 6 Expected Shortfall/Longrise,
with a window of twelve months. Figure 1 presents the evolution of the rolling variances
over time. Our results can be separated into two groups. The first group of countries
contains Australia, Canada, the Euro Zone, Norway, Sweden and the United Kingdom.
All these currencies present a more volatile depreciation risk. Moreover, the volatility of
the depreciation risks depict a surge during crises, especially during the 2007-2008 cri-
sis. In opposition, the volatility of the appreciation risk of these currencies remains flat.
The second group refers to Japan, Switzerland. In opposition to the first group, the ap-
preciation risk is more volatile than the depreciation risk. Furthermore, the volatility of
the appreciation risk largely increases during the last financial crisis. As a result, three
currencies emerge as safe-haven namely the US Dollar, the Swiss Franc and the Japanese
Yen.

6. As the flight-to-quality refers to short-term phenomena, we focus only on the one-month-ahead
framework.
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Figure 1: Evolution of the variance of the Expected Shortall and the Expected Longrise.

4 Out-of-sample densities

4.1 The out-of-sample estimation schemes

In this section, based on a rolling window estimation scheme, we compute a sequence
of out-of-sample conditional densities. More in detail, we estimate the equation 1 using
quantile regression with data from 2000M1 to 2004M12. Then, we predict the h-step
ahead conditional quantile (1 month, three months, six months and twelve months). Once
the out-of-sample conditional quantile is computed, we smooth it by fitting a skewed
t-distribution and estimate the h-step ahead out-of-sample densities. We repeat the ope-
ration for data ranging from 2000M2 to 2005M1. And so on, until the end of the sample.
At the end of the process, we obtain a sequence of P out-of-sample predictive densities
denoted {f̂t+h(yt+h|ζtt−R+1)}Tt=R where f̂t+h denotes the probabilitity density function of
a skewed t-distribution, ζtt−R+1, the set of information available at each iteration, and R
the size of the in-sample portion of the procedure. The rolling window procedure is pre-
ferred to the recursive process insofar as a rolling window permit to get better predictive
densities in presence of breaks in the conditional moments of the predictive densities. As
we work with financial data, the presence of breaks is obvious (see Clark (2011) and Jore
et al. (2010)).

In a key paper in the field, Diebold et al. (1998) evaluate the conditional densities by
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testing the properties of the probability integral transforms (PITs), namely the uniformity
and the independence. After them, many researchers tried to find other ways to evaluate
the predictive densities (see Tay and Wallis (2000) or Corradi and Swanson (2006) for an
overview of the existing tests). In this paper, we rely on the test of Rossi and Sekhposyan
(2019). For each probability density function f̂t+h, the PIT is defined as the cumulative
density function evaluated at the realized value :

wt+h =
∫ yt+h

−∞
f̂t+h(y|ζtt−R+1) dy ≡ F̂t+h(yt+h|ζtt−R+1), (9)

Diebold et al. (1998) demonstrate that if the predictive densities are well calibrated,
then the sequence of {wt+h} is an independent and identically distributed Uniform U(0, 1)
and its cumulative distribution function is the 45-degree line. Rossi and Sekhposyan (2019)
develop a test to assess the correct specification of the predictive densities. They test the
null hypothesis that the predictive densities are correctly specified :

H0 : F̂t+h(y|ζtt−R+1) = F̂0(y|It) for all t = R, ..., T, (10)

where F̂0(y|It) ≡ Pr(yt+h ≤ y|It) is the distribution specified under the null and It is
the true set of information.

The test is based on the probability of the out-of-sample forecasts :

ΨP (r) ≡ P−1/2
T∑
t=R

ξt+h(r), (11)

where :
ξt+h(r) ≡

(
11{Φ̂t+h(yt+h|ζtt−R+1) ≤ r} − r

)
, (12)

11{.} is the indicator function and r ∈ [0, 1] the different quantiles.

The test statistic of Rossi and Sekhposyan (2019)’ test is as follow :

κP = sup
r∈[0,1]

|ΨP (r)| (13)
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At α significance level, if κP < κα, the test does not reject the null hypothesis of correct
specification ; with κα the critical value tabulated by Rossi and Sekhposyan (2019).

Instead of applying the test on the whole distribution, an interesting way to apply the
test of Rossi and Sekhposyan (2019) is to implement a graphical analysis which focuses
on specific parts of the distribution such as the left tail, the right rail or the central part.
The idea is to plot the CDF of the PITs, the 45 degree line and the critical values. The
critical values for each quantile can be tabulated as follow : r±κα/sqrt(P ). The graphical
interpretation permits to go deeper in the analysis and evaluate the predictive densities
at particular tails of the distribution.

We conclude the out-of-sample exercises by analyzing the relative performance of our
model. Using the predictive scores defined as the predictive densities evaluated at the
outturn, we compare our model to the well-known random walk. Higher predictive scores
mean more accurate predictive densities. A way to compare two models is to compute
their predictive scores and compare their evolutions over time or simply their average :
a higher average score indicates a better out-of-sample performance (see Adrian et al.
(2019) for example). However, we rely on a more formal framework and apply the test
of Amisano and Giacomini (2007) to compare the scores of our models. Amisano and
Giacomini (2007) derive their test from the difference between the loss functions (here,
the log predictive scores) associated with the two competing models. The test statistic
follows a standard Normal distribution. Given two alternative density forecasts f̂ and f̂ rw,
let us define the following Log Predictive Scores Difference(LPSD) :

LPSDt+1 = log f̂ rwt (yt+1)− log f̂t(yt+1), (14)

where, f̂ and f̂ rw correspond to the predictive densities respectively associated with the
Fama equation and the random walk. More formally, we test the following null hypothesis
of equal predictive accuracy :

H0 : E[LPSDt+1] = 0, (15)

The test statistic is written as follow :
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t = LPSD

σ̂P/
√

(P )
, (16)

with LPSD = 1
P

∑T−1
t=R LPSDt+1, σ̂P is a consistent estimator of the standard error of

LPSDt+1 and P corresponds to the size of the out-of-sample portion. The test statistic
follows a standard Normal distribution. If the null hypothesis of equal predictive accuracy
is rejected, the choice between the two competing models depends on the sign of LSPD.
If LSPD is negative, one will choose the Fama equation ; otherwise, one will choose the
random walk.

4.2 The out-of-sample results

Figure 6 depicts the results of the Rossi and Sekhposyan (2019)’test. The blue line
depicts the CDF of the PITs. The 45 degree red line represents the CDF of the PITs
under the null hypothesis. The confidence interval based on the κP test are also reported
in dotted green line. The results of the Rossi and Sekhposyan (2019) demonstrate that
our predictive densities are well calibrated. Indeed, the CDF of the PITs evolves into the
confidence interval for all currencies and for all horizons. Globally, figure 6 suggests proper
calibration for the predictive densities.

This result is interesting from a political point of view. Indeed, our model and specifi-
cation can be used to forecast the downside and upside risks of exchange rates since they
can calibrate properly the predictive densities.

Table 3 presents the results of the test of Amisano and Giacomini (2007). For the
medium-run and long-run, the random walk is statistically better than the Fama equation.
However, this is no longer true in the one-month-ahead framework where our the Fama
equation outperforms the random walk.

The literature already investigates the ability of some models to outperform the ran-
dom walk. For example, Sarno and Valente (2005) find that a Markov-switching VECM
produces more accurate predictive densities than the random walk. Contrariwise to them,
we employ a simple linear methodology which is more easily to estimate and replicate.
The same, Gaglianone and Marins (2017) find that, with a daily frequency, the random
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walk can be beaten in many cases. However, they did not work out to outperform the
random walk in the monthly frequency but only in a daily frequency. In that sense, our
results are a complementary analyses to previous ones insofar as they are based on simple
model and methodologies, and second they propose a reliable framework to estimate pro-
per predictive densities of exchange rates, and, moreover, they produce more accurate
predictive densities than the random walk in the short-run.
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5 Conclusion

We investigate in this paper two critical issues concerning exchange rates. On the
one hand, the measurement of currency risks. And on the other hand, the question of the
predictive densities. The currency risks are measured based on the Expected Shortfall and
its upper tails counterpart, the expected longrise. To do so, we begin by computing the
conditional quantiles that we use to fit a skewed t-distribution. Based on this estimated
distribution, we compute our risk measures. The predictive densities are evaluated using
two criteria : An absolute criterion which referred to the test of Rossi and Sekhposyan
(2019) and a relative criterion based on the predictive scores.

We find that the conditional densities are extremely time-varying and are affected by
crises. Another interesting result is the measurement of the currency risks. We find that
the depreciation risks are more volatile than the appreciation risk. In other words, most
of the global currencies usually face depreciation episodes against the US dollar. These
results are robust to the extension of our Fama with the economic policy uncertainty. We
dive into the literature of safe-haven currencies and find that the US Dollar, the Swiss
Franc and the Japanese Yen behave as safe-haven. We also investigate the ability of the
Normal distribution to compute risk measures. Our results confirm the previous findings
of the literature and evidence that the Normal distribution is not adequate to model
exchange rates. Finally, we find that the predictive densities are well calibrated. The PIT-
based test suggests, for all the currency pairs and all horizons, a proper calibration of the
out-of-sample densities. More importantly, our simple linear model has better predictive
accuracy in forecasting densities, especially in the short-run.

The findings of this paper are quite interesting for practitioners and also for policyma-
kers. Predictive densities can be an excellent means to evaluate future uncertainty around
exchange rates. The same, the out-of-sample depreciation/appreciation risks are proper
tools for risk management of exchange rates.
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6 Appendix

Table 1: Descriptive statistics for the risk measures.

Panel A : Variance of the risk measures for the Fama equation

Country H = 1 H = 3 H = 6 H = 12
ES EL ES EL ES EL ES EL

Australia 6.48e-04 7.40e-05 6.55e-06 1.24e-04 3.00e-03 9.61e-04 5.33e-03 3.87e-04
Canada 7.65e-05 3.10e-05 7.93e-04 3.38e-05 1.44e-03 3.85e-04 5.45e-03 1.49e-04
Euro Zone 1.36e-04 8.65e-05 1.46e-04 1.07e-05 1.57e-03 2.07e-04 6.07e-04 2.49e-03
Japan 2.80e-05 4.86e-05 4.06e-04 7.73e-05 4.39e-04 3.41e-06 1.19e-03 4.63e-04
Norway 4.39e-04 4.59e-06 1.00e-03 7.31e-06 1.98e-02 1.21e-03 2.09e-02 7.54e-04
Sweden 1.96e-04 9.75e-06 1.95e-04 8.54e-06 8.08e-03 3.44e-05 4.75e-03 4.04e-04
Switzerland 4.76e-07 2.36e-04 2.24e-05 9.82e-06 6.12e-04 7.76e-04 1.09e-04 1.15e-03
United Kingdom 1.17e-04 2.76e-06 1.19e-03 2.51e-04 1.25e-02 2.30e-04 1.51e-02 5.33e-05

Panel B : Variance of the risk measures for the augmented Fama equation

Country H = 1 H = 3 H = 6 H = 12
ES EL ES EL ES EL ES EL

Australia 1.16e-03 3.65e-04 2.97e-05 1.67e-04 2.85e-03 1.28e-03 5.52e-03 1.24e-02
Canada 9.55e-05 3.77e-05 1.13e-03 5.82e-05 1.76e-03 5.88e-04 7.03e-03 5.82e-04
Euro Zone 2.33e-04 1.38e-04 1.02e-03 3.63e-05 1.60e-03 4.34e-04 3.01e-03 2.49e-03
Japan 2.91e-05 3.36e-04 5.42e-04 9.26e-05 8.46e-04 2.89e-04 1.80e-03 3.65e-04
Sweden 2.56e-04 3.94e-06 4.91e-04 1.27e-04 1.25e-02 2.06e-04 3.33e-03 6.79e-04
United Kingdom 9.73e-04 8.56e-05 1.60e-03 2.90e-04 9.53e-03 4.05e-04 1.46e-02 4.58e-05
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Table 2: Results of the regression-based backtesting. The p-values of the test are
presented. When the p-value is superior to the confidence level 5% (in bold in
the table), the null hypothesis of correct specification is not rejected.

Panel A : Results of the test for the Fama equation under the Skewed t-distribution.

Country Expected Shortfall Expected Longrise
H = 1 H = 3 H = 6 H = 12 H = 1 H = 3 H = 6 H = 12

Australia 0.74 0.66 0.95 0.15 0.36 0.46 0.37 0.63
Canada 0.11 0.90 0.37 0.82 0.32 0.81 0.34 0.62
Euro Zone 0.93 0.89 0.18 0.51 0.52 0.74 0.97 0.00
Japan 0.99 0.40 0.96 0.05 0.84 0.59 0.19 0.60
Norway 0.91 0.23 0.00 0.00 0.28 0.62 0.60 0.88
Sweden 0.99 0.30 0.02 0.13 0.73 0.51 0.38 0.94
Switzerland 0.41 0.00 0.96 1.00 0.48 0.22 0.76 0.75
United Kingdom 0.48 0.99 0.00 0.00 0.31 0.40 0.78 0.70

Panel B : Results of the test for the Fama equation under the Normal distribution.

Country Expected Shortfall Expected Longrise
H = 1 H = 3 H = 6 H = 12 H = 1 H = 3 H = 6 H = 12

Australia 0.03 0.11 0.00 0.04 0.03 0.44 0.14 0.04
Canada 0.02 0.04 0.04 0.02 0.08 0.01 0.00 0.25
Euro Zone 0.00 0.02 0.00 0.10 0.02 0.46 0.73 0.72
Japan 0.00 0.02 0.00 0.06 0.03 0.24 0.74 0.72
Norway 0.03 0.03 0.00 0.00 0.04 0.29 0.04 0.80
Sweden 0.11 0.11 0.00 0.04 0.03 0.38 0.41 0.28
Switzerland 0.15 0.00 0.00 0.03 0.01 0.24 0.04 0.00
United Kingdom 0.19 0.03 0.00 0.00 0.06 0.10 0.10 0.71
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Table 3: Fama model VS Random Walk : Results of the test of Amisano and Giacomini
(2007). The test statistic and the p-values of the test are presented. When the
p-value is superior to the confidence level 5% and the test statistic negative (in
bold in the table), then Fama outperformed the random walk.

Country H = 1 H = 3 H = 6 H = 12

Australia
-2.19 6.95 8.33 8.08
0.03 0.00 0.00 0.00

Canada
-1.54 4.30 5.81 7.87
0.13 0.00 0.00 0.00

Euro Zone
-1.84 9.58 9.20 9.23
0.07 0.00 0.00 0.00

Japan
-2.08 10.03 11.66 12.24
0.04 0.00 0.00 0.00

Norway
-2.74 9.78 5.08 8.05
0.01 0.00 0.00 0.00

Sweden
-1.89 10.94 9.60 10.67
0.06 0.00 0.00 0.00

Switzerland
-1.67 7.12 11.09 9.65
0.10 0.00 0.00 0.00

United Kingdom
-1.36 8.49 10.78 11.57
0.17 0.00 0.00 0.00
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Figure 2: Results of quantile regressions. The first, the second, the third and the last
column represent, respectively, h=1, h=3, h=6 and h=12. The dotted black
line represents the estimated coefficients of the quantile regression. The solid
red line represents the OLS coefficient.
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Figure 3: Estimated conditional densities. The first, the second, the third and
the last column represent, respectively, h=1, h=3, h=6 and h=12.
The blue and the red lines corresponds respectively to a normal
period and a period of stress
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Figure 4: Expected Shortfall/longrise. Expected Shortfall is in blue and the red
line is the Expected Longrise. The first, the second, the third and the
last column represent, respectively, h=1, h=3, h=6 and h=12.
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Figure 5: Expected Shortfall/Longrise based on the augmented Fama.
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Figure 6: Results of the Rossi and Sekhposyan (2019)’s tests. The first, the
second, the third and the last column represent, respectively, h=1,
h=3, h=6 and h=12.
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