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Abstract: 

As large scale penetration of renewables into electric systems requires increasing flexibility from 

dispatchable production units, the electricity mix must be designed in order to address brutal variations of 

residual demand. Inspired from the philosophy of Distributionally Robust Optimization (DRO), we 

propose a trajectory ambiguity set including residual demand trajectories verifying both support and variability 

criterion using ambiguous quantile information. We derive level-maximizing, level-minimizing and 

variability-maximizing residual demand trajectories using two algorithms based on forward-backward path 

computation. This set of limiting trajectories allows us to make investment decisions robust to extreme 

levels and brutal variations of residual demand. We provide a numerical experiment using a MILP 

investment and unit commitment model in the case of France and discuss the results. 
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I- Introduction  

Modeling time-varying weather events is a pivotal element in investment and operational decisions for 

electricity production systems, especially when the share of renewables in the production mix is important. 

Weather dynamics that affect electricity demand and renewable energy sources (RES) availability are 

characterized by non-normal distributions, autocorrelation and cross-correlations, in addition to cycles 

following various time scales (seasonal and daily). Net load uncertainties have a direct impact on the level 

of risks taken by investors when financing new production units (De Sisternes, 2016 ; Alvarez Lopez & 

Kumaraswamy, 2010) and on mechanisms required for adequate remuneration. These uncertain features 

need to be precisely modeled in optimization models in order to take informed investment and 

dispatching decisions. However, the distributions of electricity demand and RES availability parameters 

are often subject to uncertainties. In this paper, we provide a set of tools inspired from distributionally 

robust optimization in order to derive a set of extreme trajectories of a set of uncertain parameters. The 

originality of our work lies in the definition of robustness, conceived not only as a protection against 

extreme values of an uncertain parameter but also against its most extreme variations in time.  

Traditional approaches to optimization under uncertainty (Babonneau et al., 2009) include stochastic 

optimization (SO) (Birge & Louveaux, 1997; Kall & Wallace, 1994), chance-constrained programming 

(Charnes & Cooper, 1959; Prékopa, 1970) and stochastic dynamic programming (Bellman, 1957; Ross, 

1983; Bertsekas, 1995). These models assume the perfect knowledge of a well-defined probability model 

of an uncertain parameter. In the deterministic formulation of stochastic optimization, each value of the 

parameter is associated with a scenario with a positive probability of occurrence. This results in high 

complexity and makes the computation of the solution quickly intractable for large models. Moreover, 

solutions are highly sensitive to errors in the estimation of the distribution of the uncertain parameter. 

First proposed by Soyster (1973), robust optimization (RO) adopts a non-probabilistic formulation of 

uncertainty and only requires knowledge of the support of the distribution of uncertainties. The idea of 

robust optimization is to determine solutions that remain satisfactory for all realizations of the uncertain 

parameters, by hedging against the worst-case. In order to avoid over-conservative solutions, recent work 

focused on the development of more elaborate uncertainty sets of parameters (Ben-Tal & Nemirovski, 

2000; Bertsimas & Sim, 2004), introducing uncertainty budgets, asymmetries in the distribution of 

uncertainties (Chen et al, 2007), correlated uncertainties (Yuan et al., 2016; Jalilvand-Nejad et al., 

2016; Ning & You, 2018) and dynamic uncertainty sets (Lorca & Sun, 2014). 

Distributionally robust optimization (DRO) is an emerging approach combining insights from SO and 

RO by searching for a solution that optimizes the worst-case expected performance on a set of 

distributions of the uncertain parameters, referred to as the ambiguity set. Contrary to SO, DRO does not 

require knowledge of the entire distribution of the uncertain parameters but only information about its 

moments, which makes it increasingly popular (Shapiro & Nemirovski, 2005; Goh & Sim, 2010; 

Wiesemann et al., 2014; Yue & You, 2016). The ambiguity set can be moment-based or metric-based: in 
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the first case, it includes all distributions of uncertain parameters with common support set and moment 

statistics, which are estimated from available empirical data, while it includes all probability distributions 

within a certain distance from the a nominal distribution in the latter, for a given distance metric. Recent 

developments on ambiguity sets include higher order moments and “entropic dominance” as a new 

characterization of stochastic independence of uncertainty (Chen et al.,  2019). The use of DRO models 

is becoming increasingly popular for modeling power dispatch, power flows and production planning in 

the electricity sector (Chen et al., 2016; Ma et al., 2020; Shang & You, 2018; Dong et al, 2019). 

In order to properly model decisions involving stochastic processes, DRO coupled with Markov Decision 

Processes with uncertain transition probabilities and reward parameters provides a popular approach. Xu 

& Mannor (2012) describe uncertainty using a sequence of nested ambiguity sets and propose a decision 

criterion based on “distributional robustness”. Yu & Xu (2015) propose a general class of state-wise 

ambiguity sets and derive tractable distributionally robust MDPs under mild assumptions. Under similar 

uncertain conditions, Nakao et al. (2019) build an ambiguity set of the joint distribution using bounded 

moments and propose state-wise piecewise linear convex approximations of Bellman value functions with 

a heuristic iteration method allowing to derive its lower and upper bounds.  

Instead of modeling uncertain states with their associated transition probabilities within a process, we 

define longitudinal clusters of each component of multidimensional random process and construct a 

trajectory ambiguity set for each cluster. This set includes all probability distributions of a given stochastic 

process with their quantiles included in a ball centered on the empirical quantile value. Similarly, the 

distribution of the variations between two consecutive quantile values in the stochastic process has each 

quantiles centered around each quantile value of the empirical distribution of variations. The radius of 

these balls are defined as functions of both the number of quantiles considered and the number of 

observations in the training dataset. This framework allows us to refine the usual definition of robustness. 

Robustness is usually implicitly considered as hedging against the highest or lowest value the uncertain 

parameters can take. Yet, in the case of electric systems with high renewables penetration, system 

flexibility is increasingly required and valued. Thus, it seems appropriate to define a production mix that is 

also robust to the most extreme variations of the uncertain parameters, namely electric load, solar and 

wind capacity factors. Using a combination of backward and forward iterative computations to calculate 

the longest path (highest variations) between each consecutive values of the uncertain parameter, we 

propose two polynomial time algorithms allowing to determine the variability-maximizing and level-

maximizing trajectories of the uncertain parameters’ quantiles. A set of worst-case trajectories can then be 

defined for each possible distribution included in the trajectory ambiguity set. Finally, we propose a numerical 

experiment, using our original framework for electricity mix optimal investment decisions under residual 

demand uncertainty in the case of one of the most industrial French regions. We provide a discussion of 

the results and hints for further research and improvement of the simplified framework proposed in this 

paper. 
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Section II details our clustering and DRO-inspired methodology in a quantile information framework, 

providing theoretical properties for our trajectory ambiguity set and two original algorithms for computing 

worst-case trajectories. Section III proposes a numerical simulation using a cost minimizing optimization 

model for the electricity mix of the French region Auvergne Rhône-Alpes, comparing solutions obtained 

when using only parameter’s level robustness to both level and variability robustness, before concluding in 

Section IV.  

 

II- Methodology 

Our method first consists in clustering individual cyclical components of residual demand in order to 

identify patterns in their trajectories. Then, we propose an extended version of the ambiguity set proposed 

by Delage & Ye (2010), called trajectory ambiguity set, in order to include uncertainty in the quantity of 

variations of the uncertain parameter. We provide its theoretical properties with proofs in addition to an 

algorithmic method for estimating the most-adverse trajectories. 

II.1. Clustering methodology 

II.1.1. Definitions 

We define the multidimensional random process of dimension  | |  | |, {  }    ({   }   
   

). We 

assume {  }    takes discrete values. Furthermore, we assume individual components of {  }    have 

different scales and are not commensurable. The first step of our method consists in determining 

statistical patterns in the trajectories of each component     of our random process. {  }    can be 

decomposed as the stacking of   one dimensional random vectors {   }   , with    . We assume that 

    , {   }    is a weakly cyclically stationary stochastic process of period  , such that       

 (    )   (       ) and  (    )   (       ), for     , where    is the set of strictly positive 

integers.  Finally, we define the support of {  }    as   ∏       ∏ ∏          , where     

             . 

{  }    can thus be decomposed into the reunion of several cyclical stochastic processes of period   such 

that {  }    ({  }        {    }          {   (   ) }
       

), where        . In a similar 

fashion, {   }    can be decomposed into a reunion of stochastic processes such that {   }    

({   }        {     }          {    (   ) }
       

).  

The clustering step consists in identifying in the data, for each {   }       , different clusters of 

trajectories of period  , where a cluster includes all trajectories which share similar statistical properties. A 

number of relevant statistical measures can be used to identify patterns in individual longitudinal 
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trajectories (Leffrondree et al.,2004; Sylvestre et al, 2006), including range, mean over time, standard 

deviation, coefficient and variation, maximum and standard deviation of the first differences. A subset of 

these measures is selected using factor analysis and then used for clustering analysis. This first clustering 

step is performed through using a statistical program (modeled in R and using the package traj.) For    , 

the corresponding set of clusters is noted    with elements   
     , where       |  | . 

Once clusters of trajectories have been determined for each {   }   , we further identify a set of “meta-

clusters” noted    , in order to identify associative patterns between individual clusters of trajectories. 

“Meta-clusters” correspond to the set of exogenous conditions generate a combination of clusters for 

each component of {  }   . By construction, we assign a single meta cluster to each period of length  , 

where    is associated with the trajectory {     }                . In the case of electricity generation, 

,“meta-clusters” can be defined as the set of exogenous meteorological conditions which jointly determine 

electricity demand trajectories, PV and wind capacity factor trajectories.  

 For each period        , we define the joint state of trajectories as    (       )  ∏   
 
   . Then, 

for a given combination   , if there exists no      such that {             |    (  
  )

   
}   , 

we say that    is impossible. “Meta-clusters” are computed using the k-means method and their optimal 

number is determined using the “elbow” method. Note that in the case of residual demand, which is a 

linear combination of electricity demand and RES production, each element or component had follows a 

daily cycle with the same period     . 

 

II.1.2. Computation of the worst-case joint state of nature 

Once clusters are identified for each random vector {   }   , we determine which trajectory type   
      

is likelier to produce trajectories taking the highest values within the multidimensional set 

∏                        . Formally, we note the state in which {      }        is more likely to take 

its highest values (resp. its lowest values) as   
  (resp.   

 ). Each trajectory type   
   corresponds to a 

distribution of trajectories, and thus generated a distribution of values for each time period    .  As we 

are also interested in the most volatile types of trajectories, we may further restrict our attention to 

trajectory types that generate distributions of values with variance superior to a given threshold. 

Computing   
  is equivalent to measuring which type   

      is second-order stochastically dominated by 

all other types   
        {  

  }.   

First, we define the matrix     |  |   |  |, with elements    
  defined such that : 
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  ∫ ∫ (   {      |  (      |    )          }     {      |  (      |    )          })    

 

 

 

 

      ( ) 

where (   )     |  | 
  and   (   ) corresponds to the cumulative distribution function of    . We 

further define the binary matrix  ̃   associated to   , with elements defined    
  

 such that : 

                                                                        
  

  {
             

   

                     
                                                                   ( ) 

Using this definition of  ̃ ,   
  and   

  can respectively be computed as follows: 

                               
  {    |       ∑    

  
 

 

 ∑   
  

 

 

}         
 

(∑   
  

 

 

)                        ( ) 

                               
  {    |       ∑    

  
 

 

 ∑   
  

 

 

}         
 

(∑   
  

 

 

)                        ( ) 

The definition of the worst-case joint state of nature    ∏   
 
    is conditional on the type of variables 

included in the multidimensional random process {  }    and the users’ objectives. In the context of 

electricity generation mix optimization under residual demand uncertainty, the worst-case trajectory 

corresponds to the case where demand trajectory takes its highest values while PV and wind capacity 

factor trajectories take their lowest values, or when the exact opposite happens. If we assume {   }    

corresponds to electricity demand trajectory and {   }    corresponds to capacity factor trajectory for 

renewable generation technology      , then the worst-case joint states of nature are defined as 

    (  
    

      
 ) and     (  

    
      

 ). Yet, although (       ) are theoretically possible, 

they may be empirically impossible, i.e. there may exist no “meta-cluster” such that those combinations 

are generated. Thus, the worst-case joint states of nature that are feasible, defined as  ̂  and  ̂ , are 

respectively the solutions to the following optimization problems: 

 ̂        
(       )

(∑    
 ̃

 

  ∑(|  |      
 ̃ )

   

) 

                                                         {             |    ∏  

 

   

}                                       (  ) 

 

 ̂        
(       )

(∑    
 ̃

 

  ∑(|  |      
 ̃ )

   

) 
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                                                         {             |    ∏  

 

   

}                                       (  ) 

It is important to note that the clustering step is only required for non-commensurable individual 

stochastic processes. In the case of residual demand, electricity load is typically measured in MWh while 

wind and solar capacity factors have no unit. It is thus not possible to aggregate them. If installed 

capacities in wind and solar units are known a priori, it is possible to directly compute the renewable 

production, which in turns allows us to aggregate components of {  }    into a one dimensional 

stochastic process corresponding to residual demand. 

 

II.2. Trajectory-based DRO using quantile information 

Robust optimization consists in finding a solution that remains feasible in the case where an unknown 

parameter takes its worst possible value, yet it may result in overly conservative solutions. On the other 

hand, DRO consists in finding a solution that maximizes the expected performance (or minimizes the 

expected cost) under the most averse distribution of an unknown parameter. However, the expected 

performance might not only be a function of   , but also of   ̇  
   

  
        . In the case of 

electricity mix optimization, starting and ramping costs, in addition to technical limitations to the variation 

of production (minimum production level, minimum-up and down time, ramping limits) may significantly 

affect the optimal solution. A suboptimal mix in terms of flexibility may result in load shedding or 

overproduction if dispatchable production units cannot rapidly adjust to residual demand fluctuations. 

The worst-case distribution of parameters can thus be defined as the distribution of residual demand 

components that maximizes or minimizes the values taken by residual demand and maximizes the 

volatility of residual demand trajectories. We define the ambiguity set associated with the multidimensional 

random process {  }    as  . Let     (  )  be the decision vector and  (     ̇)       be 

a random cost function (Rahimian & Mehrotra, 2019), increasing both in   and  ̇. Given this 

formulation, the robust optimization problem has the following form: 

                                                                              
   

{   
   

{ (     ̇)}}                                                                 ( ) 

Assuming separability of the cost function and (    )    , the robust optimization problem can be 

reformulated as 

                                                       
   

{   
   

{ (   )}     
    

{ (    ̇)}}                                                         ( ) 
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II.2.1. Definitions and main properties 

Let us start with a general presentation of our approach and drop subscript   without loss of generality. 

We define the trajectory ambiguity set associated with the distribution of  {  }    as follows: 

  

{
 
 

 
 

         |
|

 (     )                                                 ( )

|  
 ( )    

( )
|                                          ( )

|  
 (   )̇  (  ̇          

( ) )
( )

|          (  )
}
 
 

 
 

 

We assume that the true support of the unknown parameter, denoted by    , is unknown. The originality 

of our work is summarized in constraints (9) and (10). For        and | | the cardinal of  , we 

note   
 ( )          

{    (  )  
 

| |
} the theoretical  -th quantile of   , while   

( )
 corresponds to its 

empirical  -th quantile. In a similar fashion, for       , we define 

  
 (   )̇       ̇  {  ̇  (  ̇|         

( )
)  

 

| |
} as the  -th quantile in the conditional distribution of 

  ̇|    
( )

, while (  ̇          
( ) )

( )
 corresponds to the  -th quantile in the empirical conditional distribution 

of   ̇|    
( )

. Finally,          ,         . 

We note the vector of quantile values     (  
( )

 
   

( )
     

( )
     

(| |)
   

(| |  )
), where the minimum 

and maximum empirical values   
( )

 and   
(| |  )

are such that   
( )

      
   and   

(| |  )
      

  . 

The ambiguity pertains to the positive nature  of the parameters    and    : higher values indicate the 

true values of quantiles of the distribution of   
( )

 and (  ̇          
( ) )

( )
may lie further away from the 

empirically measured values. Each quantile is constrained to lie within a ball of radius    or     centered 

on   
( )

 and (  ̇          
( ) )

( )
 respectively. Let us define the empirical distribution of    such that: 

                                                                (    )  
 

 
∑     

( )

 

   

                                                              (  ) 

Where     
( ) denotes the Dirac measure at point    ,    , and   is the number of observations in 

the training sample (Kuhn et al., 2019). For any    , we can thus define   
( )

 as 

          
( )

    
    

{   ∑   (      )

      

 
 

| |
}     

    
{   ∑ (

 

 
∑     

(   )

 

   

)

      

 
 

| |
}        (  ) 
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Assume   (    ) is an unbiased estimate of the true probability of     . Then, as the variance of the 

estimator   (    ) decreases with  , the variance of   
( )

 decreases also with   and we can show that, 

for      

 (|  
( )

   
 ( )|   )   (|  

( )
  (  

( )
)|  

 

 
)  

  (  
( )

)

  
   

As     , using the Chebyshev’s inequality. The same holds for the distribution of variations of the 

uncertain parameter. Thus, we can define        as decreasing functions of   and increasing functions of 

| | and | | respectively. By noting    
| |

 
,    

| |

| |
, and by defining    |  ⌊

| |

 
⌋| the distance to 

the median quantile, we can define the functions    ,    as  

    (     ), 
  (     )

   
  , 

  (     )

   
   

     (        ), 
  (        )

   
  , 

  (        )

   
  , 

  (        )

   
   

Where the positive signs when deriving with respect to    and    translate the fact that the ambiguity of 

measure is expected to increase for extreme events. As the number of observations may be low for such 

events, higher values of    and     ensure the ambiguity set includes extreme tail values of the uncertain 

parameter that have not yet been observed in the training dataset. 

 

It is possible to relate our trajectory ambiguity set to a moment-based ambiguity set (Delage & Ye, 2010) by 

approximating its moments. For instance, using information on the vector   (  )   
, it is possible to 

define a distribution of mean values    such that: 

                                       {∑     
( )

   

   ̂ | ̂  ((  ̂)   
)        ̂    }                            (  ) 

With    
 

| |  
. We bound the expected value of   ,  (  ), by successively pushing all the mass into the 

inferior bound and the upper bound of each of the | |    intervals:  

                                                      
      

(  ̂)
   

   ∑   (  
( )

   )

    {| |  }

                                        (  ) 

                                                      
      

(  ̂)
   

   ∑   (  
( )

   )

    { }

                                               (  ) 
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As   
   (  )    

  and (  
    

 )    , then  (  )    . It is then straightforward to verify that 

    (  ) as      and | |  |  |. 

It is possible to show that the trajectories that takes the highest or lowest values of the uncertain 

parameter    are different from the trajectory that maximizes its variations under rather mild conditions. 

Let us consider the trajectory (       
          

  ) that successively takes the supremum values of 

     and   . Let       {‖       ‖|               } and   
  ‖     

          
    ‖. 

We define the maximum absolute variation between consecutive values      and    as   ̇
 
 such that 

                  ‖       ‖    ̇
 
. By definition,   ̇

 
   . If there exist          such 

that   
  ‖(     

    )  (       
       )‖    ̇

 
   , then the level-maximizing trajectory 

(       
          

  ) does not maximize the variations of the uncertain parameter.  

Finally, due to the ambiguity of the measure of quantile values, the probability that the uncertain 

parameter lies within a given set is itself a function of this ambiguity, which is captured by the vector 

  ((  )   
). In order to formalize this intuition, let us define the subset   (    )  [  

( )
   

(  )
]  

   ,  (    )        . Then, for all subset        , it is possible to define   and identify a couple 

(    )    such that: 

                (      )    (     (    )|    
 

  (    )           
  

  (    )       )             (  ) 

Then: 

 (      )   (     (    )) 

                         (     |     
 (  ))   (     |     

 ( )) 

                         (     |     

(  )
    )   (     |     

( )
   ) 

Similarly,  (     (    ))   (     |     

(  )
    )   (     |     

( )
   ). Then, by 

noting   (     )   (     |  
( )

      
( )

   ) and   (     )   (     |  
( )

    

     
( )

), we have: 

    

| |   
 (  (     )    (      ))   (     (    ))  

    

| |   
 (  (      )    (     )) 

Using a similar reasoning in order to derive a lower bound for  (      ), we can provide it with the 

following bounds, with (    )   : 
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| |   
 (  (     )    (      ))   (      )  

    

| |   
 (  (      )    (     )) (  ) 

 

II.1.2. Algorithms for estimating the volatility-maximizing and level-maximizing trajectories 

The purpose of the methodology presented in this subsection consists in computing the trajectory that 

maximizes a given score function when starting from a given point   
( )

,     ,      . In the 

context of electricity mix robust optimization, we are both interested in the trajectories that respectively 

maximize the variability (defined as the absolute variation) and the level of the uncertain parameter. As 

computing the variability and values taken by each trajectory would be extremely costly, we provide two 

algorithms which allow computing exactly the trajectories of quantiles which respectively maximize the 

level and variability of the uncertain parameter, defined as {  
( ) 

}
   

     

and {  
( ) 

}
   

     

 . 

The philosophy of the variability-maximizing algorithm can be summarized as follows: for each value of 

quantile     at each point of time, we compute both forward and backward in time the value that 

maximizes the score function when starting from this value. Starting from   
( )

,      , this yields a 

pair of values (    
(  )

     
(   )

)  (      )   , from which we compute forward the value that maximizes our 

function starting from     
(   )

, and backward starting from the value     
(  )

. By iterating this procedure, we 

construct a unique trajectory of length   originating from   
( )

.  

In order to make the presentation of the algorithms as clear as possible, let us start with a certain number 

of more formal definitions.     ,      , we define   
 
 (resp.     

 
) as the maximum forward 

variation possible from the value   
 
 (resp. the maximum backward variation possible from the value 

    
( )

). Moreover, we define   
  
  

 (resp.   
  
  

) the maximum (resp. the minimum) forward variation 

possible, such that   
 

 {  
  
  

   
  
  

}. In order to avoid confusions, we use subscript   when referring to 

quantile identifier going backward, and   when going forward. The sequences of quantiles corresponding 

to the variability and level-maximizing trajectories are defined recursively as: 

          {    |  
(  )

       
    

{‖  
( )

     
(    )

‖ |‖  
( )

     
(    )

‖      
        }}                (  ) 

          {    |  
(  )

       
    

{‖  
( )

     
(    )

‖ |‖  
( )

     
(    )

‖      
        }}                 (  ) 

And : 



12 
 

            
  {    |  

(  )
    

    
{  

( )
|    

    
  

   
( )

     
    
 

     
    
  

    }}                               (  ) 

In the case we are interest in the level-minimizing trajectory, we just need replacing the supremum by the 

infimum in the previous expression. The subsets of trajectories generated when using the above described 

procedure that respectively maximize the variability of the uncertain parameter and its level are defined as: 

                                           {{(  )       (   )    }              }                                      (  )  

                                           {{  (   
 )

    
}       }                                                                               (  )        

We define the forward and backward variability scores as:  

                                                     
    
 

  ( 
    
 

)  ∑  (    
  )

   

      

                                                         (  ) 

                                                         
 

  ( 
    
 ̂

)  ∑  ( 
      

     ̂ )

    

   

                                                     (  ) 

Where 

                              
           

    
{‖  

( )
     

    ‖ |‖  
( )

     
    ‖      

        }                           (  ) 

                              
 

       
    

{‖  
(  )

     
( )

‖ |‖  

(  )
     

 
‖      

 
     }                               (  ) 

                              
    ̂        

    
{‖  

( )
     

    ‖ |‖  
( )

     
    ‖      

        }                            (  ) 

                              
 ̂

       
    

{‖  
(  )

     
 

‖ |‖  

(  )
     

 
‖      

 
     }                                (  ) 

With the distance operator   which measures the absolute variation between two consecutive values, 

defined as follows: 

 (    
  )  ‖      

      
{‖    

( )
   

  ‖ |‖    
( )

   
  ‖    

      }    
  ‖  ‖    

     
  ‖            (  ) 

 (  
    ̂)  ‖      

    
{‖  

( )
     

    ‖ |‖  
( )

     
    ‖      

        }      
    ‖  ‖  

    ̂      
    ‖         (  ) 

With  (  
 
)   . 
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Concerning level-maximizing trajectory, it is straightforward that any trajectory that takes highest quantile 

values more often than all other trajectories maximizes its level. It is thus sufficient to compute only the  

forward level score, which can be defined as follows: 

                                                                           
( )

 ∑     
  
 

   

   

                                                                   (  ) 

Where  

                                   
        

    
{  

( )
|    

    
  

 ‖  
( )

     
    ‖      

    
  

    }                              (  ) 

In the case we are interested in computing the level-minimizing trajectory again, we just need replacing the 

supremum by the infimum in equation (33). We define the subsets          which include all 

antecedents of     
( )

, that is all elements      such that 

    
( )

             {‖    
( )

   
(  )

‖ |‖    
( )

   
(  )

‖    
  

}. We note the following equality,    

 : 

                      
 

    {{ ⋃   
 

        

}     {‖    
( )

   
(  )

‖ |             ‖    
( )

   
(  )

‖    
  

}}          (  ) 

This equivalence simply states that     
 

 is either equal to the supremum of the absolute distance from the 

antecedents of     
( )

 or the supremum of the absolute distance from all values such that     
( )

 is not the 

furthest value which is feasible from   
(  )

     . In a similar fashion, we define the subsets        

including all elements      such that   
( )

           {‖    
(  )

   
( )

‖ |‖    
(  )

   
( )

‖      
  

}. 

 As       ⋃            , we can further deduce that : 

   
   

    
 

    
   

{{ ⋃   
  

         

}     {‖    
( )

   
(   )

‖ |              ‖    
( )

   
(   )

‖    
   

}}     
   

  
 
                (  ) 

Moreover, for any        , if            , no trajectory takes the value   
( )

. Conversely, there 

exists      such that the trajectory {             } varies more in absolute terms than the trajectory 

defined by {            }. Similarly, if for any sequence (  )       ⋃             ⋃              , 

there exists a trajectory that varies more in absolute terms than the trajectory {  }      .  
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The utility of our iterative approach relies on the fact that any trajectory that is not included in the subset 

  cannot be the trajectory that maximizes the variations of the uncertain parameter. This result is 

summarized in the following theorem with the associated proof: 

Theorem: Let   (  
 )    be a sequence of quantile indexes. Then, by denoting    the sum of absolute 

variations of the sequence of quantiles indexed in  ,                    . 

 

Proof: 

Assume       ,              . Then,    {(  )    
     (   )

     
}     such that the following condition 

is verified: 

(∑ ‖    
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 ∑  
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   ) 

Yet, as            , ‖    

    
 

   
  

 

‖           
 

            
  

, the following condition must hold 

            : 
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This implies that for each trajectory {(  )        
  (   )     }, there exists a couple (     ),            

 , such that the two following conditions holds: 
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))  (∑ ‖    
    

 

   
  

 

‖

    

    

 ∑   
  

    

    

    

 
  
 

) 

As the above conditions hold for any sequence of quantiles {(  )        
  (   )     }, they imply that    

  (   
     )  (   

     ) is true. This further implies that     , so       is impossible and we conclude 

that there exists no trajectory      such that           . 

Then, by computing all trajectories     , the previous theorem implies that the trajectory    which 

maximizes the total variability    is included in the set   . This result avoids the costly computation of 

the total variability of all possible trajectories of the uncertain parameter.  
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In order to compute both trajectories, our method first requires replacing each value of the uncertain 

parameter by its nearest quantile in the empirical distribution of the parameter. The sequence of 

operations that are necessary for computing the variability-maximizing trajectory of quantiles (Algorithm 

1) can be summarized as follows: 

 

Algorithm 1: 4-step algorithm for variability-maximizing trajectory 

1 Step 1: For     to  , for    , do: 

2   Compute  
    

 
 and      

 
 ; 

3 Step 2: Using matrixes    and   , compute        ; 

4 Step 3: Compute the couple (     )                    

5 Step 4: Compute  
    

  

 and  
    
  

 to obtain variability-maximizing sequence of quantiles 

{(  )        
  (   )     } 

6 End 

 

Where    ( 
    
 

)    
      

and    (     
 

)    
      

. The strategy of this algorithm consists in 

computing the variability-maximizing trajectory, using the iterative procedure described above, starting 

from each quantile of the uncertain parameter for each point of time. The values of   correspond to the 

total variability of each trajectory included in the subset   . Then, the row and column index of the 

greatest element of   indicate the “origin” point of the variability-maximizing trajectory, which can finally 

be obtained by computing  
    

  

 and  
    
  

. The variability-maximizing trajectory is noted {  
( ) 

}
     

. 

Similarly, defining the vector   (  )   , the sequence of operations required for computing the level-

maximizing quantile trajectory (Algorithm 2) can be expressed as: 

 

Algorithm 2: 3-step algorithm for level-maximizing trajectory 

1 Step 1: For    , do: 

2   Compute   (  )    ; 

3 Step 2: Compute                

4 Step 3: Compute      
  

 to obtain level-maximizing trajectory {   
  (  

 )   } 

5 End 
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The level-maximizing trajectory is noted {  
( ) 

}
     

. In order to avoid confusion, we further note the 

level-maximizing trajectory as {  
( ) 

 

}
     

and the level-minimizing one as {  
( ) 

 

}
     

. For a given 

set    with cardinal | | and    , the number of possible trajectories of quantile values is equal to 

(| |   ) . The first step of Algorithm 1 requires performing, for each time step, at most | |    

operations. Thus, as the starting value is known for each step, the computation of matrixes  
    
 

 and 

     
 

 requires (   )(| |    )  operations, while the second step requires a maximum of  (| |    ) 

additions. Finally, deriving the maximum value of matrix   corresponds to at most  (| |    ) 

operations, and finally (   )(| |    ) operations are necessary in order to recompose the variability-

maximizing trajectory from the point  
  

(  )
. In total, Algorithm 1 requires exactly (| |    )((  

 )(| |   )    ), so it has a time complexity of  ((| |    )((   )(| |   )    )).  

Algorithm 2 has a time complexity of  ((   )(| |    ) ). Computing the level-minimizing trajectory 

simply requires replacing                in Step 2 by               , which takes the same 

number of operations. We see both our algorithms are polynomial time algorithms and provide efficient 

tools for computing extreme trajectories. For | |    (taking deciles in the distribution of the parameter) 

and     , Algorithm 1 and 2 respectively require at most      and      operations,  while there are 

     possible trajectories. 

Replacing (  
( )

)    
     

by (  
( )

   ̂)    
     

,       ̂      it is possible to estimate the level-

maximizing and variability-maximizing trajectories for all distributions included in the ambiguity set  , 

where the vector   is determined by the number of observations in the training dataset and the size of  . 

Each value of the uncertain parameter is replaced by its nearest neighbor in the vector (  
( )

 

  ̂)    
     

for each time period.  We can say that a distribution is unambiguously worse than another 

distribution if the variability and level scores associated with its variability and level maximizing trajectories 

are both superior or equal to those obtained from the alternative distribution. However, we leave for 

further research the derivation of the worst-case distribution of the uncertain parameter, as the 

comparison of variability and level scores depends on the shape of the cost function.  
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II.2. Cluster-level ambiguity sets 

Let us now reintroduce the subscript   and consider the uncertain vector    (              )  

∏     , where               for all    . For each component of the uncertain vector    and state 

     , it is possible to define a cluster-based ambiguity set. Formally, it can be written as follows: 

 

   

{
 
 

 
 

          
|

|

 (       )                                                (  )

|   
 ( )     

( )
|                                           (  )

|   
 (   )̇  (   

̇  
           

( ) )
( )

|           (  )
}
 
 

 
 

 

 

As the computation of joint trajectories may be intractable, we make the hypothesis similar to Yu & Xu (2015) 

that the trajectories among different state, within a given empirically possible combination, are independent. This 

property is essential in order to be able to derive results and individual trajectories for each component of our 

uncertain vector. This central assumption is equivalent to saying that for any feasible joint state of nature 

   (       ) and pair (    )   ,     , the stochastic processes {   }    (             ) and {    }    

(                ) are independent. The cross correlations between components of {  }    are assumed 

negligible once controlling for the joint state of nature. 

However, it may be objected that this approach may generate unrealistic residual demand trajectories and overly 

conservative results, by introducing too much variability. Moreover, the bounds on the volatility of each 

component of {  }    are estimated separately and not as functions of the volatility of other components. Yet, it 

is possible to hierarchically estimate the matrixes (   
 
)    
     

 and (   
 
)    
     

 as functions of (    
 

)    
     

 and 

(    
 

)    
     

, where      correspond to components different from   which optimal trajectories have been 

estimated in previous steps. Similarly, as the volatility of trajectory is measured for each parameter separately, the 

volatility of residual demand (seen as a linear combination of electricity demand and production of renewables) 

may be quite low due to variations “cancelling” each other (an increase in demand may be cancelled out by an 

increase in wind production at the same period). Again, it is possible to hierarchically estimate 

{(   )         
  (    )     }, where {(   )         

  (    )     } maximizes the volatility of {   }    conditional 

on {(    )          
  (     )     }. 

If the assumption that individual trajectories are independent within cluster combinations is verified, then it is 

possible to estimate the worst-case (level and volatility) trajectories for each component of our uncertain vector. 

Then, assuming that {   }    corresponds to electricity demand parameters and {   }        to RES capacity 

factor parameters, we can define residual demand as follows,     : 
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                                                                                   ∑     

 

   

                                                                           (  ) 

, where    corresponds to the installed capacity of RES technology    . Recall from II.1. that we defined the 

worst-case state combinations as     (  
    

      
 ) and     (  

    
      

 ). Then, it is possible to 

express respectively the maximum level, minimum level and maximum volatility trajectories as linear 

combinations of residual demand components, noted {  
 }   , {  

 }    and {  
 }    respectively. We have, 

    :  

                                                                         
     

( ) 
 

 ∑     
( ) 

 
 

   

                                                                   (  ) 

                                                                         
     

( ) 
 

 ∑     
( ) 

 
 

   

                                                                   (  ) 

                                                                         
     

( ) 
 ∑     

( ) 
 

   

                                                                       (  ) 

 

III- Numerical experiment: Electricity mix optimal investment and dispatch under 

uncertain residual demand 

III.1. Presentation and description of the optimization model 

The presentation and formulation of variables, parameters and equations is largely borrowed from De 

Sisternes (2013) as it provides great readability to the model and facilitates the understanding of 

equations. For saving some space, the full formulation of the model, including description of parameters, 

variables and equations, is provided in the Appendix.  

The model used for this numerical experiment is formulated as a MILP with unit commitment and 

transmission constraints. We include constraints on ramping up and down of production units, maximum 

and minimum stable output levels, minimum up and down times, online or offline status, in addition to 

flow balance and flow capacities constraints for the network. We include storage devices under the form 

of batteries, reservoirs and hydraulic pumped storage stations, and electric vehicles (EVs), which are 

modeled as batteries with an hourly minimum state-of-charge requirement based on the expected distance 

driven in the following time period. Finally, we include constraints on CO2 price, in addition to supply-

demand equilibrium constraints corresponding to both level-maximizing and volatility-maximizing 

residual demand trajectories. The model is formulated at the regional geographical scale, while combining 

yearly, seasonal and hourly time scales.  
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III.2. Numerical simulation results 

III.2.1. Technical assumptions 

In the following section, we present the results of the model described above applied in the case of the 

French region Auvergne Rhône-Alpes. This administrative region is located in the South-East of France 

and enjoys strong solar irradiation compared to the national average. In addition, it accounts for roughly 

11.6% of French GDP, while its mean share of national electricity load equals to 13.8%. 

We assume no initial generation capacities. For convenience, we further assume that no investment occurs 

in hydroelectric production units. As only one region is considered, transmission constraints and 

transmission costs are not included in the model. Moreover, we constrain the variable for capacity 

investment to take only discrete values for nuclear, gas turbines (GT) and combined cycle gas turbine 

plants (CCG), and continuous values for other production and storage technologies. Nuclear investment is 

performed by blocks of 1.6 GW, corresponding to the rated power of the EPR Flamanville plant (the 

most recent nuclear power project in France), while CCG investments are made by blocs of 0.45 GW, 

which corresponds to the average nominal power of General Electric’s 9HA.01/.02 gas turbine. Finally, 

GT investments are performed by blocks of 0.3 GW. Flexibility characteristics of main generation units 

can be found in Table 1. Oil and gas prices are forecasted using linear regression, we take Netherlands 

TTF and OECD countries CIF per million Btu dollar prices as reference on the period 2005-20181. 

Finally, we take a 5% discount rate and a CO2 price equal to 50€/ton, without taking any CO2 emission 

ceiling. Investments decisions are made every two years over the 2021-2029 period. 

 

Technology Minimum Load (% 

nominal power) 

Ramping rate (% of 

nominal power/min) 

Minimum 

uptime/downtime 

(hours) 

Combined cycle gas turbine 45 20 0 

Oil turbine 20 8 2 

Nuclear 50 2-5 10 

Hydroelectric 5 15 0.1 

 

Table 1: Flexibility characteristics of main generation technologies.  

Sources: Gonzalez-Salazar et al. (2018), IAEA (2018), Schill et al. (2016), IEA (2015), Schröder et al. (2013), 

EC JRC (2010). 

In order to simplify the practical application of the methodology presented in section II, we use the 

theoretical worst-case joint state of nature (        ) instead of the empirical one ( ̂   ̂ ). Yet, this 

                                                           
1 See BP Statistical Review of World Energy, June 2019 
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assumption may generate trajectories significantly more variable than empirically observed ones, which 

may lead to overly conservative investment decisions. Thus, we compare the results using residual demand 

trajectories generated using Algorithms 1 and 2 with empirically observed level and variability-maximizing 

residual demand trajectories. For convenience, we let the reader refer to the Appendix for detailed 

explanations on the estimation of empirically observed worst-case trajectories. 

When considering the technical characteristics of generation technologies presented in Table 1, one 

actually notice that ramping rates are high enough for each technology units to vary their output within 

their entire production range. Indeed, as the model is defined using hourly time step, nuclear plants may 

vary their production by more than 100% of their rate power within an hour. Thus, ramping constraints 

are not binding within hourly time resolution.  Moreover, when looking at dispatch data from RTE, it 

appears that nuclear plants especially are operated with much less flexibility than their technical 

characteristics actually allow. Taking national hourly production data on the period 2013-2018,  Figure 1 

shows the distribution of the rate of variation of nuclear output, defined with respect to nominal power: 

 

Figure 1: Percentile distribution of the hourly rate of variation for nuclear power (right) 

Note: The distributions are reported for each season as RD patterns change seasonally. Blue, red orange 

and green respectively correspond to distributions for winter, spring, summer and autumn. The horizontal 

axis corresponding to percentiles of the distribution of variations.  

 

It appears from Figure 1 that in roughly 90% of cases, nuclear output hourly variations are comprised 

within -2.1% and +2.1% on average. If we take the whole distribution, the lower an upper bounds on 

hourly variations observed in the data become -12.4% and +13.9%. Still, these figures remain largely 

inferior to the ramping capacities of nuclear units, which suggests they are operated in a much rigid way 
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considering their flexibility characteristics. This can be linked to the fact that RTE2 uses nuclear plants for 

baseload production instead of load-following.  

A similar reasoning may be carried out for all technologies. We here focus on the case of nuclear, and add 

these operational “rules” as constraints to our optimization model. In order to precisely analyze how 

operational flexibility affects investment decisions, we include the minimum and maximum hourly 

variation values as operational bounds for thermal units. 

III.2.2. Comparison of investment decisions and operational costs using theoretical and empirical worst RD trajectories 

We start by analyzing the investment results obtained when using trajectories obtained using both 

Algorithms 1 and 2, that are presented in Table 2. As we assume no initial installed capacities, the figures 

reported correspond to the level of generation capacity for each technology in 2021, using successively 

theoretical worst-case RD trajectories and empirical trajectories. For each column, the figures on the left 

correspond to the optimal investment level with maximum-level-robust only decisions, while figures on 

the right correspond to both maximum-level-robust and variability-robust decisions. We provide in 

Appendix optimal investment results when taking simultaneously minimum-level-robust, maximum-level-

robust and variability-robust decisions.  As the variability of solar and wind capacity factors would have no 

effect on the shape of residual demand for null installed capacities, we impose various thresholds values 

for the level of investment in renewable technologies.  

 

 > 1 GWe > 3 GWe > 5 GWe 

 TT ET TT ET TT ET 

Combined cycle gas 

turbine 

4.05/8.1 4.95/5.85 4.05/9.9 4.95/6.75 4.05/10.8 5.85/6.75 

Gas turbine 1.2/1.2 1.2/1.8 1.2/0.6 0.9/2.4 1.2/0.9 0.9/2.1 

Nuclear 19.2/12.8 17.6/16 19.2/11.2 17.6/14.4 19.2/9.6 16/14.4 

Wind 0/0 0.52/0 0/0 0.064/0 0/0.33 0.30/1.07 

Utility-scale PV 1/1 1.21/1 3/3 2.93/3 5/4.67 4.70/3.93 

Commercial PV 0/0 0/0 0/0 0/0 0/0 0/0 

Residential PV 0/0 0/0 0/0 0/0 0/0 0/0 

Battery storage 1.40/9.89 3.70/2.73 2.41/10.40 5.51/6.40 2.89/10.73 6.55/3.50 

 

Table 2: Optimal investment level by technology, with constraints on minimum installed 

capacities for renewables (TT= Theoretical trajectories; ET= Empirical Trajectories)  

 

                                                           
2 RTE is the French transmission system operator 
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It can first be noted from Table 2 that as the threshold for renewables installed capacities increases, the 

investments in peaking technologies (CCG and gas turbines) are non-decreasing for all cases, while the 

capacities in nuclear decrease. Yet, while in the level-robust only case, investment in peaking technologies 

remain constant with respect to the threshold value, the sum of their installed capacities is always 

increasing with level-variability robustness (especially using theoretical trajectories). The behavior of 

investment in batteries is more chaotic: as its optimal level steadily increases both for level-robust only and 

level-variability-robust investment decisions using theoretical trajectories, its level-robust capacities 

increase while its level-variability-robust capacities decrease using empirical trajectories.  

When hedging against both types of worst-case trajectories, peaking technologies and battery storage seem 

to behave as substitutes in the empirical case and complements in the theoretical case. This 

complementarity can be explained by the fact that, while higher capacities in battery storage allow the 

smoothing of highly variables renewable production when capacities increase, thermal peaking 

technologies remain necessary as the capacity factors of wind and solar units is quasi null in the level-

maximizing RD trajectory. Theoretical trajectories may thus result in slight over conservatism compared 

to empirical ones. Indeed, as level-robust only investment levels obtained using theoretical and empirical 

trajectories are quite close, this indicates level-maximizing trajectories have similar profiles while the 

theoretical variability-maximizing trajectory exhibits significantly higher variability than the empirical one. 

High storage capacities are thus necessary for high variability periods, yet the equilibrium of the electric 

system still requires significant thermal capacities for high residual demand periods.  

As shown in Table 3, the adapted mix, corresponding to level-variability robust investment decisions, 

systematically exhibit lower yearly fixed cost and annuities than the non-adapted mix, corresponding to 

the level-only robust decision. Similarly, the adapted mix always has higher variable costs, both in the case 

of the level-maximizing and variability-maximizing weeks, compared to the non-adapted one. However, 

the theoretical variability-maximizing week is always integer infeasible with the non-adapted mix, even 

when allowing curtailment of renewables and load shedding, which would result in a system blackout. Yet, 

the empirical variability-maximizing week remains feasible with the non-adapted mix and at least cost than 

with the adapted mix. Apart from the theoretical case, we observe a clear trade-off between high variable 

costs and low fixed costs mixes depending on targeted level of system flexibility.  
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> 1 GWe Adapted mix 

(TT) 

Non-adapted mix 

(TT) 

Adapted mix 

(ET) 

Non-adapted mix 

(ET) 

Yearly fixed costs & 

annuities (M€) 

5254 6907 6000 6583 

Variable costs (level-

maximizing week) (M€) 

112.96 61.02 76.90 60.18 

Variable costs (variability-

maximizing week) (M€) 

43.23 INF 45.81 34.78 

> 3 GWe     

Yearly fixed costs & 

annuities (M€) 

4965 7067 5779 6668 

Variable costs (level-

maximizing week) (M€) 

119.31 60.21 94.03 59.88 

Variable costs (variability-

maximizing week) (M€) 

101.46 INF 52.93 34.47 

> 5 GWe     

Yearly fixed costs & 

annuities (M€) 

4665 7213 5911 6370 

Variable costs (level-

maximizing week) (M€) 

134.25 59.75 84.54 70.52 

Variable costs (variability-

maximizing week) (M€) 

56.49 INF 49.17 40.48 

> 10 GWe     

Yearly fixed costs & 

annuities (M€) 

4660 7611 5940 7053 

Variable costs (level-

maximizing week) (M€) 

155.32 59.44 94.59 58.70 

Variable costs (variability-

maximizing week) (M€) 

54.18 INF 47.82 27.05 

 

Table 3: Cost decomposition of the electricity mix, with constraints on minimum installed 

capacities for renewables (INF= Infeasible dispatch) 

Yet, both adapted and non-adapted mixes exhibit a high share of CO2 emitting production capacities, 

which would result in highly polluting and expensive mixes depending on the price of carbon. After 

measuring that a higher CO2 price doesn’t significantly change the above results, we impose a restriction 

on the maximum number      of oil and gas power plants in the mix. This ceiling is defined such that 

the optimization problem is infeasible for any number of fossil plants strictly lower than  . In other 

words,   corresponds to the minimum number of oil and gas production units necessary to maintain the 

frequency of the electric system within acceptable bounds without using reserves. The resulting 

production mixes and cost decomposition are presented in Table 4 and Table 5 respectively 
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 > 3 GWe > 5 GWe 

 TT ET TT ET 

Combined cycle gas 

turbine 

0/9 0/4.05 0/9 0/4.5 

Gas turbine 0/0 0.9/0 0/1.2 0.9/0 

Nuclear 24/12.8 20.8/17.8 24/11.2 20.8/17.6 

Wind 0/0.3 5.56/1.53 0/0 5.74/0.9 

Utility-scale PV 3/2.7 0/1.47 5/5 0/4.1 

Commercial PV 0/0 0/0 0/0 0/0 

Residential PV 0/0 0/0 0/0 0/0 

Battery storage 13.76/20.4 19.51/23.8 13.51/18.8 18.78/12.8 

 

Table 4: Optimal investment level by technology, with constraints on minimum installed 

capacities for renewables and maximum on CO2 emitting power plants 

While CO2 emitting technologies completely disappear from the non-adapted mixes, both for theoretical 

and empirical trajectories, Table 4 exhibits much higher battery storage capacities for adapted mixes 

compared to Table 2, with an incompressible level of oil and gas plants only slightly lower than for 

unconstrained investment. With a minimum level of 3 GWe of renewable capacities, the TT adapted mix 

has 96 % higher battery storage capacities while roughly 16% lower oil and gas production capacities 

compared to Table 2, while these ratios to expand to 372% and 56% respectively for the ET adapted mix. 

A similar observations can be made when imposing a minimum of 5 GWe of renewables in the mix. The 

flexibility “loss” of not investing 1 GWe of oil or gas production unit in the system must be compensated 

by more than 6 GWe of battery storage to ensure an equivalent level of system flexibility. 

As observed in Table 5, this results into significantly higher yearly fixed costs and annuities for both 

adapted and non-adapted mixes. For a threshold of 3 GWe, TT and ET adapted mixes respectively exhibit 

15% and 24% higher yearly FOM costs and annuities compared to Table 3, while these ratios decrease to 

13% and 18% respectively for a threshold of 5 GWe of renewables. 
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> 3 GWe Adapted mix 

(theoretical) 

Non-adapted mix 

(theoretical) 

Adapted mix 

(empirical) 

Non-adapted mix 

(empirical) 

Yearly fixed costs & 

annuities (M€) 

5718 8675 7189 8401 

Variable costs (level-

maximizing week) (M€) 

103.30 25.17 55.20 38.83 

Variable costs (variability-

maximizing week) (M€) 

37.25 INF 29.66 INF 

> 5 GWe     

Yearly fixed costs & 

annuities (M€) 

5283 8802 7006 8409 

Variable costs (level-

maximizing week) (M€) 

129.54 25.15 55.52 33.98 

Variable costs (variability-

maximizing week) (M€) 

95.61 INF 30.24 INF 

 

Table 5: Cost decomposition of the electricity mix, with constraints on minimum installed 

capacities for renewables and maximum on CO2 emitting power plants 

 

Similar conclusions can be drawn when comparing minimum-maximum-level-robust to minimum-

maximum-level-robust and variability-robust decisions with empirical data. Investment results and costs 

figures are reported in Table 6 and 7 in Appendix. However, we made the assumption that there are no 

initial capacities. In the case preexisting capacities are not retired when new investments are made, 

increasing the share of renewables in the electric mix increases more than proportionally the total FOM 

costs and annuities of the system. As increasing decarbonization imposes increasingly avoiding CO2 

emitting technologies, the total costs of the system will increase more rapidly than the share of renewables 

because of increasing investments in storage for flexibility requirement. In the case the electric mix is not 

properly designed in terms of flexibility needs (non-adapted mix), the objective of minimizing CO2 

emissions while developing renewables may trigger infeasible situations resulting in system blackouts with 

extremely high costs for the society. 
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IV- Conclusion 

We presented in this paper an original approach based on philosophy of DRO and the tools of RO in 

order to derive worst-case trajectories of uncertain parameters, derived both in terms of level and 

variability. As a higher share of renewables in the electricity mix is associated with higher residual demand 

variability, it makes sense to hedge against situations that would require high flexibility from the system 

and push power plants to their technical limits.  

For each possible matrix of quantile values for the uncertain parameter defined in the trajectory ambiguity set, 

we derive its level-maximizing and variability-maximizing trajectories expressed in quantiles of its 

empirical distribution. For each value of this matrix, it is possible to derive a pair of trajectories and thus a 

joint distribution of worst-case trajectories associated to each possible value of the vector   described in 

Section 2. We leave the derivation of the worst-case theoretical probability distribution of the uncertain 

parameter based on this joint distribution for further research. Still, we prove how our simple framework 

can be used for refining utility investment decisions in the context of the transition of electric systems, 

allowing us to derive optimal solutions hedging against situations of extremely levels and variability of 

uncertain parameters at minimum cost. 
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Appendix: 

Appendix to III.1.: 

The presentation and formulation of variables, parameters and equations is largely borrowed from De 

Sisternes (2013), as it provides great readability to the model and facilitates the understanding of 

equations.  

III.1.1. Indices and sets 

   , where   is the set of electricity generation technologies 

   , where   is the subset of thermal generation technologies 

   , where   is the subset of wind power generation technologies 

   , where   is the subset of solar generation technologies 

   , where   is the subset of storage technologies 

   , where   is the set of geographical regions 

   , where   is the set of years 

   , where   is the set of seasons 

   , where   is the set of hours 

   , where   is the set of worst-case trajectories 

 

The sets used in the model can be classified into two types: sets and subsets related to production and 

storage technologies and sets related to various temporal and geographical scales.   corresponds to the set 

of available generation and storage technologies that can be built. It can be decomposed into subsets, each 

corresponding to varieties of technologies:   and   respectively denote wind and solar generation 

technologies , while   refers to the subset of thermal power units, including in our case combined cycle 

gas turbines (CCGT), fuel turbines, coal and nuclear technologies. 

  corresponds to the set of hours in a week as we model investment and dispatching decisions with an 

hourly time resolution. Our model thus combines multiple time scales in order to both account for long-

term and short-term constraints which determine investment and dispatching decisions. As we model 

cyclical stochastic processes, the distributions of parameters      and         are identical. Note that 

when referring to the distribution of      , we actually refer to the distributions of {      }
       

   

   . 
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III.1.2. Parameters 

     
   : residual demand for trajectory   in region  , year  , season   and hour   [MW] 

   
    : investment cost for technology   in year   [€/MWe]  

      : annuity paid for investment in technology   made in year   [€/MWe/year]  

   
      : annual fixed operation & management costs for technology   in year   [€/MWe] 

   
    : variable cost for technology   in year   [€/MW]  

   
       : start-up cost for technology   in year   [€] 

  
    : investment cost for a transmission line in year   [€/km] 

  
    : annuity paid for investment in a transmission line made in year   [€/km/year] 

  
        : annual fixed operation & management cost for transmission line in year   [€/MW] 

    : value of lost load [€/MW] 

   : initial capacity level for technology   in region   [MWe] 

    
 : initial transmission capacity between regions   and    [MW] 

  : maximum output level for production technology   [%] 

  : minimum stable power output level for technology   [%] 

  : maximum ramp-up capability for technology   [MW/h] 

  : maximum ramp-down capability for technology   [MW/h] 

  
 : minimum up-time for technology   [h] 

  
 : minimum down-time for technology   [h] 

  : CO2 emissions per unit output for technology   [ton/MW] 

  : round-trip efficiency for storage technology     [%] 

  : maximum state of charge for storage technology   [%] 

  : minimum state of charge for storage technology   [%] 

  
  : round-trip efficiency for electric vehicles [%] 

   : maximum state of charge for electric vehicles [%] 

   : minimum state of charge for electric vehicles [%] 

           : average distance driven between hours   and     [km] 

      : per kilometer electric consumption of electric vehicles [MW/km] 

      : total number of vehicles in region   and year    

   
  : share of electric vehicles in total vehicle fleet in region   and year   [%] 

    : distance between the centroids of regions   and    [km] 

  : limit on CO2 emissions for year   [Mtons] 
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   : price of CO2 carbon ton in year   [€/ton] 

    : discount rate [%] 

    : additional transmission capacity for each new transmission line [MW] 

    : slack parameter 

             : frequency primary control tuning parameter 

       : frequency deviation absolute limit 

 

As our model allows investment in transmission capacity, cost parameters can be divided between 

generation costs (investment costs expressed in annuities, maintenance costs, variable and start-up costs) 

and transmission network costs (investment costs expressed as annuities, maintenance costs). We make 

the assumption that the variable cost of transmitting electricity is equal to zero. Finally, we define the 

value of lost load (VOLL), which corresponds to the cost of one non-served unit of electricity demand. 

We introduce generation units technical constraints, including maximum and minimum stable power 

output (the latter applying when a unit is online, ie effectively feeding electricity into the network), 

ramping up and down limits and minimum up and down times, in addition to CO2 emission rate, for each 

technology. Specifically for storage technologies and electric vehicles (EV), we consider maximum and 

minimum state of charge limits, charging speed, round-trip efficiency (we choose      
      ), in 

addition to the average number of kilometers for each time interval of the day in order to approximate the 

electricity consumption requirements of an EV fleet.  

Finally, we introduce distance measures for each arc     , where its length is calculated as the distance in 

kilometers between the centroids of regions   and   . This provides an approximation for the length of 

new transmission lines to build for reinforcing transmission capacities along arc     . Yet, we may 

consider the resulting investment costs as upper bounds as centroid distance is likely to overestimate the 

length of new lines needed to link the two regions. 

 

III.1.3. Variables 

       : investment level in technology   in region   and year   [MWe] 

     
   : investment in new transmission lines between regions   and    in year   [MW] 

       : installed capacity of technology   in region   and year   [MWe] 

     : transmission capacity between regions   and    in year   [MW] 

         : output power of generation technology   plants in region  , year  , season   and hour of 

the week   [MW] 
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    : auxiliary variable for output power over minimum output of generation technology   

plants in region  , year  , season   and hour of the week   [MW] 

      
    : auxiliary variable for minimum output of generation technology   plants in region  , year 

 , season   and hour of the week   [MW] 

         : slack variable for generation constraints of generation technology   plants in region  , year 

 , season   and hour of the week   

         : volume of electricity transferred from region   to region    using arc       [MW] 

         : volume of curtailed electricity for wind generation technology   [MW] 

        : volume of non-served electricity [MW] 

      
    : electricity inflow from network to storage units of technology   [MW] 

      
    : electricity outflow to network from storage units of technology   [MW] 

         : state of charge of storage units of technology   [MW] 

     
   

   : electricity inflow from network to electric vehicles [MW] 

     
   

   : electricity outflow to network from electric vehicles [MW] 

     
     : state of charge of electric vehicles [MW] 

       {   }: commitment state of plants of generation technology   

       {   }: start-up decision of plants of generation technology   

       {   }: shut-down decision of plants of generation technology   

       {   }: charging/discharging state of storage units of technology   

     
   {   }: charging/discharging state of electric vehicles 

 

Our model is a MILP (Mixed Integer Linear Program), thus including both positive variables defined of 

  , integer and binary variables. For simplicity, we consider investment and installed levels as continuous 

variables, while investment in new transmission lines is an integer variable equal to the number of new 

lines built. Transmission capacity and output power are considered as continuous positive variables as 

well. 

In order to keep our model linear, we introduce two auxiliary variables for production in additional to the 

slack variable       .       
  is equal to the output power produced by technology   plant in addition to 

the minimum production level       
  . Put differently, the total output power of generation technology   

plants is equal to the sum of       
  and        

 . 

The volume of electricity transmitted from region   to region    is not a decision variable in the model, 

but is necessary in order to express flow balance and flow capacity constraints. The following variables 

correspond to the level of curtailed wind power and non-served electricity, storage units and EV stock 
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(state of charge) and flow. Finally, we introduce binary variables which correspond to the commitment 

state and start-up/shut-down decision of power plants, in order to account for the physical limitations of 

thermal and hydropower technologies and mechanical inertia. Finally, the two binary variables        and 

      
   translate the fact that storage units and EV cannot be storing and releasing electricity at the same 

moment, and can only execute one of those two actions. 

 

III.1.4. Structure of the centralized cost minimization optimization model 
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Note that the optimal level of investment must both satisfy equations (44) and (45) simultaneously. Therefore, 

there exist one single set of optimal investment solutions and several distinct set of solutions for the optimal 

dispatch. We note the vector of solutions for the optimal dispatching problem facing trajectory     as 

   (      
    

                
             

      
     

                 
). For sake of clarity, we 

drop the superscript    for decision variables in the model equations. 

The objective function (43) can be decomposed as the discounted sum of three components. The first 

one corresponds to the sum of annuities and fixed operations and maintenance (FOM) costs for 

cumulated investments in new generation capacities; the second one corresponds to short-term variable 

and start-up costs, in addition to CO2 costs for thermal technologies. Finally, the third part corresponds 

to the sum of annuities and FOM for cumulated new investments in transmission capacities. This third 

component is divided by two as new investments are made for arcs between each pair of regions. The 

parameter   is a tuning parameter corresponding to the approximate number of weeks for each season. 

We set it equal to   . 

Equations (44) corresponds to the primary frequency control constraint,  stating that frequency must 

remain in an interval      around its nominal value. We set it to equal to     mHz. (45) - (46) 

correspond to the flow balance and flow capacity constraints, where      
  is the net output power; (47) - 

(50) correspond to the dynamic of generation and transmission installed capacities and new investments. 

Equations (51) - (60) together formalize constraints on commitment state, start-up and shut-down 

decisions and maximum and minimum stable power, while keeping our framework linear. We combine 

the big-M method and the use of slack variables to express minimum production level constraints as a 

system of linear equations. For   big enough,       
      (     ) if        is equal to   and 

      
    otherwise. Similarly,       

                if        is equal to   and       
    

otherwise. Indeed, if         , as ,       
  cannot be negative, we have        (        )  

       so that       
  is null. We see that for         , we necessarily have          in order to avoid 

violation of constraint (60), so       
        . Finally, constraints (61) – (62) are used to express 

minimum up-time and down-time constraints on thermal units. 

Equations (63) – (67) respectively correspond to the power balance of storage units, state of charge upper 

and lower limits and upper bounds of electricity inflows and outflows. The use of √   simply accounts 

for the fact that a round trip efficiency of    is equivalent to an efficiency of storage charge and discharge 
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of √  . For an arbitrary inflow    , the amount of electricity stored is equal to √   , and the amount 

that is restored to the network is √  
 
     . As we assume that    is constant in time, the process is 

additive. Equation (63a) describes the power balance of batteries, while equations (63b) and (63c) 

respectively describe he power balances of reservoirs and hydraulic pumped storage stations.       

corresponds to the water inflow coming from precipitations, expressed in MW. Equations (68) – (72) 

translate the same set of constraints for EV, with equation (70) ensuring that for each period the state of 

charge is high enough so EV can drive the average number of kilometers driven in the following period. 

 

Appendix to III.2.1.: 

We present a simple method for estimating empirically observed (ie data-driven) level and volatility-

maximizing RD components trajectories. In order to respect the correlation of parameters between 

regions and RD components, we estimated these trajectories at the national level in order to identify in the 

data the weeks corresponding to the trajectories of interest. We chose       hours and estimate 

trajectories for each season. 

We start by normalizing the values observed for electricity load, noted      for given year  , season   and 

hour  . Taking reference year   , the normalized consumption     ̆ corresponds to the consumption that 

would have been observed in year   if the demographic, GDP and energy efficiency growth rates 

observed in the interval        are applied to     . For instance, assume            GW and take 

2018 as reference year. With a GDP growth rate of 2% and a 1% growth rate in energy efficiency gains, 

then we have        
̆        GW. The normalization is performed using the following sectorial 

decomposition formula, for     : 

    ̆  ∏ [∑   
 (

      

      
)

   

]

       

     

, where   is the set of electricity consuming sectors,   
  is the average load share of sector  ,      is the 

GDP growth rate (demographic growth rate for residential sector) of sector   in year   , and      is the 

energy efficiency gains growth rate. We implicitly perform a homothetic transform to each point of 

demand distribution. The normalized RD can thus be expressed as follows: 

    ̆      ̆  ∑         

   

 ∑         
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      and       correspond to the observed photovoltaic and wind generation units capacity factors. The 

RD level-maximizing week for each season is thus the vector of hours   
  (   

       
 ) that maximizes 

the above expression: 

  
         

 
    ̆ 

In order to estimate the volatility-maximizing week for each season, we start by scaling each component 

of RD such that they take values between 0 and 1. As       and       are not directly observed in the 

data, we obtain them by dividing the solar and wind power outputs by photovoltaic and wind plants 

installed capacities respectively. Electricity load is standardized by subtracting for all value     ̆ the 

minimum value from the distribution of      ̆ and dividing it by the range of the distribution. We note 

    ̆  the normalized demand. As we are interested in measuring variations of residual demand, this 

standardization is necessary so the differences in ranges of RD components are neutralized. However, the 

variability of RD trajectories is both a variable of RES installed capacities and the share of RES capacities 

in total electricity load. Thus, the selection of the most-volatile RD week in the data must be informed by 

the share of RES in the electricity mix that is targeted. Formally, we define the simulated RD as follows: 

    
    (   )        ̆  ∑       

   

 ∑       

   

  (     ̆  ∑      

   

 ∑      

   

) 

  corresponds to the volume of installed capacity that is targeted for RES. It is chosen equal for solar and 

wind generation technologies.   can be related to the share of RES in the electricity mix. For     for 

instance, the amount of installed capacity is approximately equal to 50% of electricity demand. For    , 

it is roughly equal to 33%. For a given value of  ,     
    (   ) is estimated for        , where   is 

calibrated using the peak load observed in the data. Noting the peak load   ,  we have   ⌊
  

 
⌋, such 

that       ̆    . This ensures that the values of   used for estimating     
    (   ) reflect the true 

range of electricity demand. Then, the total weekly variation of the simulated RD for given season and 

year is given by: 

   
        (   )  ∫ |    

    (   )̇ |   

 

 

 

Finally, it is possible to express the total weekly variation as a score by dividing it by the maximum weekly 

variation observed. Using French data from RTE on the electricity consumption, solar and wind power 

production on the period 2013-2018, we obtain the following graph for all weeks of spring: 
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Figure 8: Weekly RD variability score for spring weeks 

The red, orange, green and blue lines respectively correspond to RD weekly variability scores with RES 

installed capacities equal to 100%, 66%, 50% and 40% approximately. The striking feature of  Figure 8 is 

that while some weeks exhibit very high variability scores for 100% RES, the score drastically increases 

when the share of RES in the electricity mix increases as well (approx. week 62 for instance). On the 

contrary, some weekly RD patterns become increasingly problematic, in terms of flexibility requirement 

from the generation mix, when the RES share of approximately 40%. Thus, based on the RES penetration 

target, it is possible to select one (or several, with increased computational costs though) weeks based on 

this variability score. 

Appendix to III.2.2: 

 > 1 GWe > 3 GWe > 5 GWe 

 ET ET ET 

Combined cycle gas 

turbine 

10.8/9.45 10.35/9.45 11.7/11.25 

Gas turbine 1.5/2.7 1.5/2.1 0.9/1.5 

Nuclear 10.8/9.6 9.6/9.6 8/8 

Wind 0/0 0/0 0/0.03 

Utility-scale PV 1/1 3/3.04 5/4.97 

Commercial PV 0/0 0/0 0/0 

Residential PV 0/0 0/0 0/0 

Battery storage 6.32/7.34 12.74/12.9 13.08/13.2 

 

Table 6: Optimal investment level by technology, with constraints on minimum installed 

capacities for renewables and maximum on CO2 emitting power plants (Empirical trajectories, 

minimum-maximum-level robust vs. minimum-maximum-level-robust and variability-robust 
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> 1 GWe Adapted mix 

(empirical) 

Non-adapted mix 

(empirical) 

Yearly fixed costs & annuities (M€) 4246 4273 

Variable costs (level-maximizing week) 

(M€) 

137.1 122.6 

Variable costs (level-minimizing week) 

(M€) 

46.65 47.12 

Variable costs (variability-maximizing 

week) (M€) 

92.21 INF 

> 3 GWe   

Yearly fixed costs & annuities (M€) 4512 4548 

Variable costs (level-maximizing week) 

(M€) 

133.9 122.5 

Variable costs (level-minimizing week) 

(M€) 

45.64 45.38 

Variable costs (variability-maximizing 

week) (M€) 

88.6 INF 

> 5 GWe   

Yearly fixed costs & annuities (M€) 4216 4223 

Variable costs (level-maximizing week) 

(M€) 

185.34 132.18 

Variable costs (level-minimizing week) 

(M€) 

54.69 54.81 

Variable costs (variability-maximizing 

week) (M€) 

97.82 INF 

 

Table 7: Cost decomposition of the electricity mix, with constraints on minimum installed 

capacities for renewables and maximum on CO2 emitting power plants (Empirical trajectories, 

minimum-maximum-level robust vs. minimum-maximum-level-robust and variability-robust) 

 

 

 

 

 

 

 

 

Declarations: Not applicable 
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