KU LEUVEN

Bankruptcy & Business Groups: Empirical Evidence

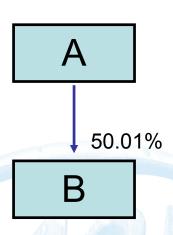
Nico Dewaelheyns
University of Leuven
Faculty of Economics & Business

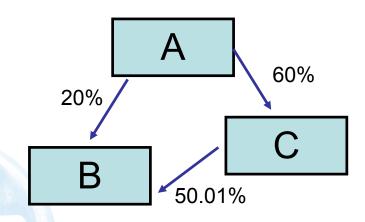
Business Groups in Continental Europe

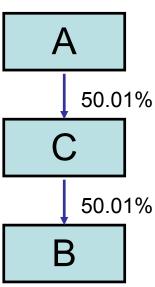
- Large number of companies are economically interlinked due to common ownership
- ⇒ Berle & Means' (1932) assumption of dispersed ownership does not hold in Continental Europe
- Internal capital markets within groups: shift risks and resources throughout the group: major implications for debt policy, credit risk, tax optimization, etc.

Ownership in Europe

- High levels of ownership and control by founding families/ insiders
- Complex ownership mechanisms: pyramids, holding companies, cross holdings, dual class stock, etc.
- Allows for the control of companies with relatively low use of financial resources

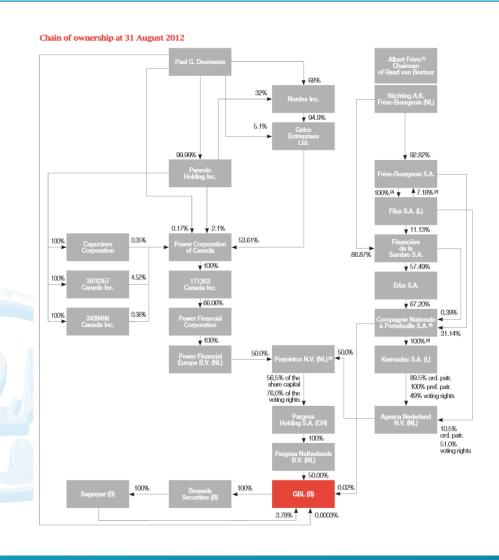



Direct and indirect ownership


Direct control

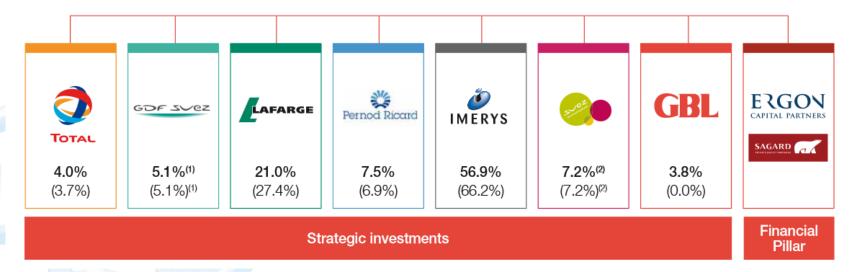
Indirect control with majority of cash flow rights

Indirect control without majority of cash flow rights



Percentage of company B's cash flow rights held by company A:

$$20\% + 60\% \times 50.01\% = 50\%$$


Complex ownership: GBL

Complex ownership: GBL

GBL's organisation chart at 31 December 2012 % of share capital (% of voting rights)

GBL

Business Groups in Continental Europe

Panel A: Ownership status of largest 1,000 firms

Ownership types (%)	Germany	France	UK	Italy	Total
Multiple blocks	4.4	2.0	0.3	2.0	2.1
Family	38.6	43.8	21.0	53.1	39.0
Other	2.1	3.2	2.8	2.2	2.6
State	13.5	10.1	2.0	12.7	9.5
Widely held	9.9	8.9	27.4	5.6	13.0
Widely held parent	31.5	32.1	46.4	24.4	33.7
Total number of firms with ownership data	923	970	980	954	3,827
Unclassified firms	77	30	20	46	173
Panel B: Listed firms					
Ownership types (%)	Germany	France	UK	Italy	Total
Multiple blocks	4.5	0.8	0.4	3.8	1.8
Family	34.3	48.5	7.7	66.3	29.8
Other	1.5	8.3	1.5	0.0	2.8
State	12.7	8.3	0.4	18.8	7.1
Widely held	21.6	20.5	85.3	2.5	46.9
Widely held parent	25.4	13.6	4.8	8.7	11.7
Total number of firms	134	132	272	80	618

<u>Source:</u> Franks, J., C. Mayer, P. Volpin & H.F. Wagner (2012), The Life Cycle of Familiy Ownership: International Evidence, *Review of Financial Studies*, Vol. 25, No. 6, pp. 1675-1712.

Business Groups in Continental Europe

- Business group ≠ conglomerate
 - conglomerate headquarters raises capital centrally and allocates across divisions
 - business group members on all levels have direct access to external capital markets
 - ⇒ different agency problems w.r.t. creditors
 - ⇒ importance of groups' behaviour towards distressed subsidiaries

Financing Distressed Group Companies

Financing options:

- Increase internal debt
- Explicit intra-group guarantees for external debt
- Implicit guarantees: reputation

Group behavior:

- Limited liability could be exploited (cf. Bianco and Nicodano, 2002)
- Group can keep members afloat, even if severe losses occur
 - Strategic reasons
 - "Socialism" within the group (Scharfstein and Stein, 2000)

Empirical evidence on group behavior & financial health

- Debt source mix (internal vs. bank debt)
 European Financial Management (2010)
- Leverage adjustment speed
 Applied Financial Economics (2012)
- Cash holdings
 Journal of Business Research (2014)
- Probability of distress
 Journal of Business Finance & Accounting (2006)
- Length of reorganization-type bankruptcy procedure
 International Review of Law and Economics (2009)

Data

- Belgian mid-sized and large companies
 (complete financial accounts: total assets > 3.125 million EUR; operating revenue > 6.25 million EUR; > 50 full-time equivalent employees)
- Group sample: subsidiaries of mid-sized and large consolidated groups
 - (consolidation criteria: total assets > 14.6 million EUR; operating revenue > 29.2 million EUR; > 250 full-time equivalent employees)
- Stand-alone sample: companies without major incorporated blockholders
- Variables of interest defined at both individual company level and group level

Dewaelheyns N. and C. Van Hulle (2010), 'Internal Capital Markets and Capital Structure: Bank versus Internal Debt', European Financial Management, Vol. 16, No. 3, pp. 345–373.

- Is there group-wide optimization in debt composition?
- Internal debt: advantages
 - Owner-provided: reduced monitoring costs
 - Very flexible (renegotiation)
 - Low moral hazard
 - Number of loan contracts reduced
- Subsidiary level bank debt: advantages
 - Limited liability:
 - Reduction of bankruptcy costs
 - Limits contagion effect of subsidiary difficulties
 - Collateralized loans

Debt type	Stand-alone median	Group member median		
BANK	0.1961	0.1176		
(non-zero)	(80.6%)	(70.1%)		
	5.525***			
INT		0.1345		
(non-zero)		(84.6%)		
GBANK		0.3244		
(non-zero)		(97.2%)		

Variable		Median	
	Highest 50%	Lowest 50%	
	GLEV	GLEV	
BANK	0.2019	0.0336	(8.818)***
INT	0.0897	0.2434	(7.273)***
		Mean	
	Highest 50%	Lowest 50%	
	GLEV	GLEV	
BANK	0.2672	0.1580	(8.001)*** (8.726)***
INT	0.1826	0.3172	(8.726)***

	BANK	INT
ROA	-0.4676***	-0.5014***
11071	(0.163)	(0.088)
TANG	0.2828***	
7	(0.034)	_
SIZE	0.0327***	0.0098
	(0.007)	(0.008)
AGE	-0.0154	-0.0237**
	(0.012)	(0.009)
LEV	0.3674***	0.3217***
	(0.095)	(0.042)
BANK		-0.1037
57 11 11 1	_	(0.112)
INT	-0.7911***	
	(0.281)	_
GSIZE	0.0028	0.0323***
	(0.013)	(0.007)
GAGE		0.0222***
0,102	_	(0.008)
GLEV	-0.0113	-0.3952***
	(0.130)	(0.062)
Intercept	-0.0318	-0.2758**
The cope	(0.129)	(0.112)
Industry & time	Yes	Yes
dummies	165	165
Adj. R ²	0.2210	0.2185

- Pecking order of intra-group over bank debt
- Internal debt concentration mostly driven by group factors (depth of the internal capital market)
- Company level factors remain important for bank debt concentration
- Direct bank borrowing is most important for stronger subsidiaries (i.e. larger, more collateralable assets) of weaker groups
- Consistent with group-wide capital structure optimization

Dewaelheyns N. and C. Van Hulle (2012), 'Capital Structure Adjustments in Private Business Group Companies', Applied Financial Economics, Vol. 25, No. 3, pp. 1275–1288.

- Capital structure literature:
 - Evolution towards dynamics
 - Pecking-order vs. trade-off theory
- Capital structure adjustment decisions:
 - (Distance to) optimal level of leverage
 - Transaction costs
- Transaction costs differ across company types:
 - Public vs. private companies (Brav, 2009)
 - Group-affiliated vs. stand-alone companies

- Optimal leverage level:
 - internal leverage: owner-provided; low to zero assymetric information problems; easy renegotiation (Hoshi et al., 1990)
 - intra-group guarantees (Chang & Hong, 2000)
 - reputation effect (Schiantarelli & Sembenelli, 2000)
 - intra-group cost optimization at different levels within the group (Bianco & Nicodano, 2006) or in the use of debt type (Dewaelheyns & Van Hulle, 2009)
 - ⇒ increase optimal level of leverage

- Many of the arguments concerning the level of leverage can be applied to the leverage adjustment process
 - internal leverage: low adjustment costs
 - intra-group guarantees & reputation effect: facilitate access to external financing
 - group affiliates are less likely to be credit rationed (cf. Ghatak & Kali, 2001)
 - ⇒ Low adjustment costs
 - ⇒ More frequent capital structure adjustments

Methodology: cf. Hovakimian et al., 2001; Korajczyk & Levy, 2003

- First stage:
 - estimate the optimal level of leverage (LEV*)
 - fixed effect panel data regression
 - control variables linked to trade-off theory: company size, tangibility, growth opportunities, risk (earnings volatility)
- Second stage:
 - estimate the probability of a substantial change in leverage (>5% of assets;
 cf. Hovakimian et al., 2001; Leary & Roberts, 2005)
 - multinomial logistic regression
 - distance to optimal level of leverage (LEV* LEV)_{t-1}
 - control variables linked to pecking order theory: profitability, changes in growth opportunities
 - leverage adjustments in the previous period

- Significant differences in leverage levels, leverage adjustments and their determinants
 - Group affiliates have higher target leverage levels
 - Group affiliates adjust leverage more frequently and to a larger extent
- Flexibility of group leverage not limited to use of internal debt
 - External leverage is adjusted much more frequently than in standalone companies
- Financial health of the group matters

Table 5. Determinants of external leverage increase/decrease

	Combined sample	2	Group sample		
	Leverage decrease	Leverage increase	Leverage decrease	Leverage increase	
	(1)	(1')	(2)	(2')	
$\overline{EXTLEV^* - EXTLEV_{t-1}}$	-0.593***	1.382***	-1.095***	0.665*	
$PROFIT_{t-1}$	(0.181) 1.932***	(0.262) -1.824**	(0.241) -0.115	(0.399) -1.436	
$\Delta GROWTH_{t-1}$	(0.722) 0.175	(0.737) -0.410	(0.889) 0.182	(0.877) -0.389	
GROUP	(0.182) 0.440***	(0.226) 0.864***	(0.259)	(0.283)	
BADGROUP	(0.092) -0.014 (0.202)	(0.097) -0.964*** (0.388)	0.037 (0.213)	-0.954*** (0.373)	
Intercept	(0.202) -1.261*** (0.115)	-1.196*** (0.115)	-0.835*** (0.156)	-0.462*** (0.155)	
Time dummies	Yes	Yes	Yes	Yes	
Industry dummies Wald model χ^2 test	Yes 259.3	Yes 32***	Yes 107	Yes 32***	
McFadden R^2	0.026 0.017		017		
Firm years	5410		2535		
Dep = 0 (no change)		28	1514		
Dep = 1 (decrease) Dep = 2 (increase)	1140 575 843 446				

Cash Holdings

Locorotondo, R., Dewaelheyns, N. and C. Van Hulle (2014), 'Cash Holdings and Business Group Membership', Journal of Business Research, Vol. 67, pp. 316–323.

- Company cash holdings:
 - Precautionary motive (buffer)
 - Transaction motive
- Both motives should be less important for business group members: buffer provided by financing advantages of belonging to a group + intra-group trade

Cash Holdings

Results:

- Affiliates hold less cash
- Negative effect of group financial distress on affiliates' cash holdings
- Cash levels of vital subsidiaries belonging to groups in distress are not affected by group financial distress
 - Large subsidiaries
 - Core-activity subsidiaries
 - Subsidiaries that received formal group guarantees

Cash Holdings

Table 4 Antecedents of cash holdings: extended analysis.

Variables		GROUPDISTRESS1					
			(1)		(2)		(3)
GROUPDISTRESS*CORE		-0.597 [0.41]			-		
GROUPDISTRESS*(1-CORE)		-0.614 ^a [0.15]		-			
GROUPDISTRESS*LARGE		-		-0.0666 [0.15]		-	
GROUPDISTRESS*(1-LARGE)		-		-1.035 ^a		-	
GROUPDISTRESS * GUARANTEE		-		-		-0.427 [0.32]	
GROUPDISTRESS*(1-GUARANTEE)		-		-		-0.687^{a}
GROUPSIZE	- 0.0436 [0.05]	-0.0517 [0.05]	-0.0417 [0.05]	-0.0182 [0.05]	-0.0283 [0.05]	- 0.0188 [0.05]	
GROUPAGE	- 0.0479 [0.05]	- 0.0463 [0.05]	-0.0506 [0.05]	-0.0546 [0.05]	-0.0513 [0.05]	- 0.0526 [0.05]	
INTERCEPT	-0.295 [1.02]	-0.160 [1.00]	-0.303 [1.01]	-0.669 [1.01]	-0.531 [1.09]	- 0.680 [1.01]	
Observations	5128	5128	5128	5128	5128	5128	
Ind. & time dummies	Y Y	Y Y	Y	Y	Y Y	Y Y	
Parent clustering R ² adi.	Y 0.272	y 0.278	Y 0.272	Y 0.268	y 0.271	y 0.268	

Notes: The dependent variable is the natural logarithm of the cash to net assets ratio. Independent variables as defined in Table 1. Standard errors between brackets.

a Denotes significance at the 1% level.

b Denotes significance at the 5% level.

^c Denotes significance at the 10% level.

Bankruptcy Prediction

Dewaelheyns, N. and C. Van Hulle (2006), 'Corporate Failure Prediction Modeling – Distorted by Business Groups' Internal Capital Markets?', Journal of Business Finance and Accounting, Vol. 33, Nos. 5&6, pp. 909 – 931.

- Given the existence of internal capital markets, some of the classic variables in default prediction models (leverage, liquidity, profitability, etc.) may reflect incomplete information
- Biased estimates of probability of distress
- ⇒ Improve model performance by incorporating group information

Bankruptcy Prediction

Basic and Group-Adjusted Prediction Models (Full Sample)

	t-1				t-3			
	A	A'	A''	В	B'	B''		
NCOM	0.1104		-2.771*	**	2 2 2 2 ***	-3.039**		
NCOM		_			19)	(17.714)		
			(7.381))	8***	-4.643**		
UCO		_	-0.854^{*}	* _	(8)	(7.021)		
			(5.677		6***	-0.547**		
COLOR			(5.677)	•	00)	(5.897)		
GSIZE		_	_	-0.4	07*** 3***	_		
				(13.1	$(26) \frac{00}{3^*}$			
GROA		_	_	-18.9	0011	_		
GROA		_	_		- /	-0.275***		
				(5.5	,	-0.273 (21.081)		
GLEV		_	_	7.4	89***	(21.001)		
				(17.4	(11)	_		
CLIO				•	,	3.883***		
GLIQ		_	_	-1.1		(14.634)		
				(3.0	129)	(17.057)		
T		0.045	(3. <i>029</i>)	`^ 4	oo´			
Intercept	-0.047	0.493	0.492	0.189	0.617	0.519		
ρ^2	0.548	0.567	0.659	0.201	0.257	0.274		
CP _{in sample}	83.3	83.0	88.6	69.9	74.2	72.5		
CP _{quasi-jackknife}	83.0	82.7	87.3	69.0	72.9	71.6		
Vuong Tests		z-statist	ic			z-statistic		
Model A' vs. Mo	odel A	2.997*	**	Model B' vs. M	odel B	6.199***		
Model A" vs. Me	odel A	11.321*	**	Model B" vs. M	lodel B	6.447***		
Model A" vs. Me	$\operatorname{odel} \operatorname{A}'$	10.547*	**	Model B" vs. M	lodel B'	2.015**		

Notes

Stepwise logistic regressions (likelihood ratio optimizing); variables as defined in Table 2; IA = industry adjusted ratio.

Bankruptcy Prediction

Model Performance Comparison

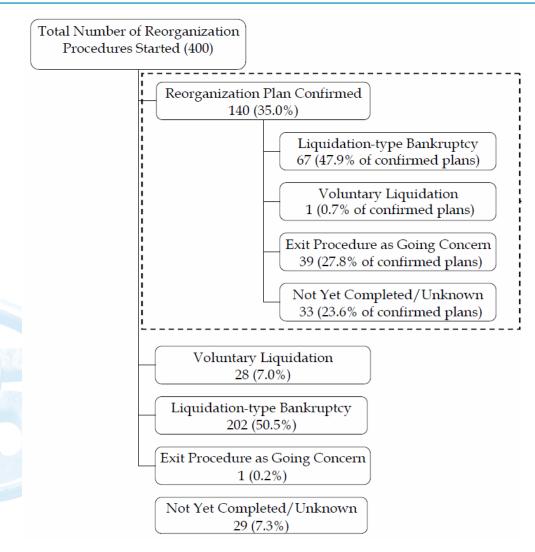
	t-1	Δ	t-3	Δ
ρ^2 – Basic	0.548		0.201	
ρ^2 – Simple Adj.	0.567	+0.019	0.257	+0.056
ρ^2 – Group Adj.	0.659	+0.092	0.274	+0.017
ρ^2 – Basic + Group Adj.	0.717	+0.058	0.310	+0.036
		+0.169		+0.109

- Model fit improves substantially by adding group information
- Groups tend to support poorly performing subsidiaries, unless the overall health of the group is poor
- Not all subsidiaries are supported equally: core-activity vs. non-core-activity

Dewaelheyns, N. and C. Van Hulle (2009), 'Filtering Speed in a Continental European Reorganization Procedure', International Review of Law and Economics, Vol. 29, No. 4, pp. 375–387.

The 1997 Belgian Bankruptcy Law:

- Textbook example of the reform of a 19th century (1853) liquidation-only system to a US-inspired dual chapter system
- (Re)establishment of a formal reorganization procedure (gerechtelijk akkoord/concordat judiciaire)



- Dual chapter systems imply filtering:
 - economically viable companies to reorganization
 - too highly distressed companies to liquidation
- Criticism on Chapter 11-type procedures:
 - protect unviable companies from creditors and market forces for long periods of time
 - coalition building behavior of major creditors to extract rents
 - mechanism to stall for time while trying to sell assets
 - succes rates in the US are low for smaller cases

- Model the length of time spent in a procedure in a bankbased, creditor oriented economy (hazard models)
- All corporations (NV/SA) that file for reorganization during the first 6 years of the procedure's existance
- Link case data with detailed accounting and ownership information: examine the impact of business group membership, financial health scores, etc.
- Main focus on unsuccesful cases: if filtering works, the system should be able to quickly terminate reorganization of unviable companies

Business group membership and procedure length:

- Creditors may have more incentives to cooperate (+)
- Groups can use their network to find buyers for the assets (-)
- Groups want to minimize reputation damage (-)

- Limited pre-entry screening
- Success rates very low
- Average time spent in unsuccesful procedures quite long

Hazard models:

- no significant relationships between most company characteristics
 & time spent in procedure
- companies with worst financial situation stay in longest (continuation bias)
- cases in which creditors are likely to benefit from liquidation or are members of a business group (regardless of group health) are terminated more quickly

Reorganization procedure used as mechanism to sell assets or negotiate merger rather than preserve companies as going concerns

KU LEUVEN

Future Research

- Business group behavior towards distressed subsidiaries during the crisis and recession
- Impact of bankruptcy reform (Wet op de Continuiteit van de Ondernemingen/Loi relative à la Continuité des Entreprises, 2009)

