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Abstract
We show, with an example, that the theorem on the characteriza-

tion of the domains admitting strategy-proof and non-dictatorial social
choice functions by Kalai and Muller (1977) does not hold when the
set of alternatives is infinite. We consider two ways of overcoming this
problem. The first identifies a set of domains admitting strategy-proof
and non-dictatorial social choice functions when the set of alternatives
is infinite. The second defines a class of social choice functions for
which the theorem is true with both finite and infinite sets of alterna-
tives.
Journal of Economic Literature Classification Number: D71.

1 Introduction

Kalai and Muller (1977) contains the first published characterization of both
the domains of preferences admitting non-dictatorial social welfare func-
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tions and those admitting strategy-proof and non-dictatorial social choice
functions.1 They showed that these domains coincide. However, these au-
thors did not say anything about whether their theorems hold for any set of
alternatives, finite or infinite.

On the contrary, Arrow (1963) explicitly addressed the issue concerning
the cardinality of the set of alternatives when considering the domain re-
strictions which would have made it possible to circumvent his impossibility
theorem. In particular, he redefined the notion of single-peaked preferences
in order to cover “the general case of any number of alternatives” (see p. 76).

In the same vein, we reconsider here Kalai and Muller’s characterization
results to analyze if they hold for any number of alternatives. While we
verify that the theorems concerning social welfare functions are true for both
finite and infinite sets of alternatives, we provide an example showing that
the theorem concerning social choice functions does not hold when the set of
alternatives in infinite.

We consider two ways of overcoming this problem. The first identifies
a set of domains admitting strategy-proof and non-dictatorial social choice
functions when the set of alternatives is infinite. The second defines a class
of social choice functions for which the theorem is true with both finite and
infinite sets of alternatives.

2 Notation and definitions

Let I be any initial finite segment of the natural numbers with at least
two elements and let |I|, the cardinality of I, be denoted by n. Elements of
I are called individuals.

Let A be a set such that |A| ≥ 3. Elements of A are called alternatives.
Let A be the set of all the non-empty subsets of A, called feasible sets.
Let P be the set of all the complete, transitive, and antisymmetric binary

relations on A, called preference orderings.
Given a preference ordering P ∈ P , let P−1 denote a preference ordering

such that, for all x, y ∈ A, xPy if and only if yP−1x.
Let Ω denote a nonempty subset of P . Elements of Ω are called admissible

preference orderings.

1Maskin (1976) proposed a similar characterization in his unpublished Ph.D. thesis.
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Let Ω denote the set of preference orderings such that, for each P ∈ Ω,
there exists an alternative x ∈ A such that xPy, for all y ∈ A.

Let Ω denote the set of preference orderings such that, for each P ∈ Ω,
there exists an alternative x ∈ A such that yPx, for all y ∈ A.

Given a feasible set X ∈ A, two admissible preference orderings P, P ′ ∈ Ω
are said to agree on X whenever, for all x, y ∈ X, xPy if and only if xP ′y.

Let Ωn denote the n-fold cartesian product of Ω. Elements of Ωn are
called preference profiles.

Given X ∈ A, two preference profiles P,P′ ∈ Ωn are said to agree on X
if, for all i ∈ I, Pi and P ′

i agree on X.
Given P ∈ Ωn and P ′

i ∈ Ω, P \P ′
i denotes the preference profile (P1, . . . ,

Pi−1, P
′
i , Pi+1, . . . , Pn).

A social welfare function (SWF) on Ω is a function w : Ωn → P .
w is Pareto Optimal (PO) if, for all P ∈ Ωn and for all x, y ∈ A, xPiy,

for all i ∈ I, implies xw(P)y.
w is Independent of Irrelevant Alternatives (IIA) if, for all P,P′ ∈ Ωn

and for all x, y ∈ A, P,P′ agree on {x, y} implies w(P) and w(P′) agree on
{x, y}.

w is dictatorial if there exists an individual d ∈ I such that, for all P ∈ Ωn

and for all x, y ∈ A, xPdy implies xw(P)y. w is Non-Dictatorial (ND) if it is
not dictatorial.

A social choice function (SCF) on Ω is a function f : Ωn ×A → A such
that, for all P ∈ Ωn and for all X ∈ A, f(P, X) ∈ X.2

f is Pareto Optimal (PO) if, for all P ∈ Ωn, for all X ∈ A, and for all
x, y ∈ X, xPiy, for all i ∈ I, implies f(P, X) 6= y.

f is Independent of Non-Optimal Alternatives (INOA) if, for all P ∈ Ωn

and for all X, Y ∈ A such that Y ⊆ X, f(P, X) ∈ Y implies f(P, X) =
f(P, Y ).3

f is manipulable by an individual i ∈ I at P ∈ Ωn and X ∈ A via
P ′

i ∈ Ω if f(P \ P ′
i , X)Pif(P, X). f is manipulable if it is manipulable by

2As pointed out by Blin and Satterthwaite (1978), this definition of a SCF, due to
Karni and Schmeidler (1976), is different from the definition proposed by Gibbard (1973)
and Satterthwaite (1975), according to which the only argument of a SCF is represented
by preference profiles.

3The notion of a INOA social choice function was introduced by Karni and Schmeidler
(1976).
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some individual i ∈ I at some P ∈ Ωn and X ∈ A via some P ′
i ∈ Ω. f is

Strategy-Proof (SP) if it is not manipulable.
f is dictatorial if there exists an individual d such that, for all P ∈ Ωn

and X ∈ A, f(P, X)Pdy, for all y ∈ X. f is Non-Dictatorial (ND) if it is not
dictatorial.

A SWF on Ω, w, is said to underlie a SCF on Ω, f , if, for all P ∈ Ωn and
for all X ∈ A, f(P, X)w(P)y, for all y ∈ X.

A SCF on Ω, f , is Rational (R) if there exists a SWF on Ω, w, which
underlies it.

Finally, consider the following set of definitions, crucial for Kalai and
Muller’s characterization results (see p. 462).

Let T = {(x, y) ∈ A×A : x 6= y}, TR = {(x, y) ∈ T : there exist no P, P ′

∈ Ω such that xPy and yP ′x}, and NTR = T \ TR.
A set S ⊆ T is closed under decisiveness implication if, for every two

pairs (x, y), (x, z) ∈ NTR, the following two conditions are satisfied.
DI1. If there exist P, P ′ ∈ Ω with xPyPz and yP ′zP ′x, then

DI1a. (x, y) ∈ S implies that (x, z) ∈ S,
DI1b. (z, x) ∈ S implies that (y, x) ∈ S.

DI2. If there exists P ∈ Ω with xPyPz, then
DI2a. (x, y) ∈ S and (y, z) ∈ S imply that (x, z) ∈ S,
DI2b. (z, x) ∈ S implies that (y, x) ∈ S or (z, y) ∈ S.
Ω is decomposable if there exists a set S such that TR ⊂ S ⊂ T 4, which

is closed under decisiveness implication.

3 Characterization theorems with infinite sets

of alternatives

Kalai and Muller, in their Theorems 1 and 2, dealt with the characterization
of the domains admitting SWF which are PO, IIA, and ND, while in their
Theorem 3 they provided a characterization of the domains admitting SCF
which are PO, INOA, SP, and ND.

In both cases, these authors did not specify for which sets of alternatives
their results are true. As regards the theorems on SWF, it can be easily
verified that the arguments on which their proofs rely hold both for finite

4The symbol ⊂ denotes strict set inclusion.
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and infinite sets of alternatives. We do not repropose here those arguments,
but simply restate Kalai and Muller’s theorems making this point explicit.

Theorem 1. Let |A| ≤ ∞. There exists a SWF on Ω, w′, which is PO, IIA,
and ND for n = 2, if and only if there exists a SWF on Ω, w′′, which is PO,
IIA, and ND for n > 2.

Theorem 2. Let |A| ≤ ∞. Ω is decomposable if and only if there exists a
SWF on Ω, w, which is PO, IIA, and ND for n ≥ 2.

Let us consider now Kalai and Muller’s Theorem 3 which concerns the
characterization of the domains admitting SCF which are PO, INOA, SP, and
ND. It establishes that these domains are the same allowing for the existence
of SWF which are PO, IIA, and ND. Nonetheless, the question related to
the cardinality of the set of alternatives is, in this case, more subtle. The
following example shows that, when the set of alternative is infinite, even if
Ω is decomposable and, consequently, there exists a SWF which is PO, IIA,
and ND, there may not exist any SCF which is PO, INOA, SP, and ND.

Example 1. Let |A| = ∞ and Ω = {P, P ′}, where P /∈ Ω and P ′ 6= P .
Then, Ω is decomposable and there exists no SCF on Ω, f , which is PO,
INOA, SP, and ND for n ≥ 2.

Proof. We first show that there exists a SWF on Ω, w, which is PO, IIA,
and ND for n = 2. Let w : Ω2 → P be a function such that w(P, P ) = P ,
w(P, P ′) = P , w(P ′, P ) = P , and w(P ′, P ′) = P ′. It is immediate to verify
that w is a SWF on Ω which is PO, IIA, and ND for n = 2. Then, Theorem
2 implies that Ω is decomposable. Suppose that there exists a SCF on Ω, f ,
which is PO, INOA, SP and ND for n ≥ 2. Let P be a preference profile such
that Pi = P , for all i ∈ I and let f(P, A) = x. Consider an alternative y ∈ A
such that yPix, for all i ∈ I. Then, f(P, A) 6= x, as f is PO, a contradiction.
This implies that there exists no SCF on Ω, f , which is PO, INOA, SP, and
ND for n ≥ 2.

The argument used in the proof of Example 1 can be used to prove the
following proposition.

Proposition 1. Let |A| = ∞. If there exists a SCF on Ω, f , which is PO,
INOA, SP, and ND for n ≥ 2, then Ω ⊂ Ω.

Example 1 and Proposition 1 follow from the requirement that f is PO.
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We consider now the implication of the requirement that f is INOA. The
following proposition shows that, for |A| ≤ ∞, INOA and R are equivalent.

Proposition 2. Let |A| ≤ ∞. A SCF on Ω, f , is INOA for n ≥ 2 if and
only if it is R for n ≥ 2.

Proof. Suppose that f is a SCF on Ω which is INOA for n ≥ 2. Let
w : Ωn → P be a function such that, for all P ∈ Ωn and for all x, y ∈ A,
xw(P)y if and only if f(P, {x, y}) = x. We already know from Karni and
Schmeidler (1976) (see Proposition 2, p. 490), that w is a SWF on Ω. Suppose
now that w does not underly f . Then, there exist P ∈ Ωn, X ∈ A, and
y ∈ X such that yw(P)x, where x = f(P, X). But, since f is INOA, we
have f(P, {x, y}) = x, a contradiction. This implies that f is R for n ≥ 2.
Suppose that f is a SCF on Ω which is R for n ≥ 2. Then, there exists a
SWF on Ω, w, which underlies it. Suppose that f is not INOA. Then, there
exist a preference profile P ∈ Ω and two feasible sets X, Y ∈ A such that
Y ⊆ X, f(P, X) ∈ Y and f(P, X) 6= f(P, Y ). Then, f(P, X), f(P, Y ) ∈ X,
and f(P, Y )w(P)f(P, X), a contradiction. This implies that f is INOA for
n ≥ 2.

This proposition implies the following corollary.

Corollary. Let |A| = ∞. If there exists a SCF on Ω, f , which is INOA for
n ≥ 2, then there exists a SWF on Ω, w, such that w(P) ∈ Ω, for all P ∈ Ωn.

Proof. Suppose that there exists a SCF on Ω, f , which is INOA for n ≥ 2.
Then, there exists a SWF on Ω, w, which underlies f as, by Proposition
2, f is R. Suppose that there exists a preference profile P ∈ Ωn such that
w(P) /∈ Ω. Then, there exists an alternative y ∈ A such that yw(P)f(P, A),
a contradiction.

Proposition 1 and the Corollary to Proposition 2 show that, when |A| =
∞, Ω ∈ Ω and the existence of a SWF, w, such that w(P) ∈ Ω, for all
P ∈ Ωn, are necessary conditions for the existence of a SCF on Ω, f , which
is PO, INOA, SP, and ND for n ≥ 2. Hence, they show that Kalai and
Muller’s Theorems 2 and 3 are, in a sense, asymmetric as the former holds
when |A| ≤ ∞ whereas the last holds only when |A| < ∞. It can therefore
be stated as follows.

Theorem 3. Let |A| < ∞. Ω is decomposable if and only if there exists a
SCF on Ω, f , which is PO, INOA, SP, and ND for n ≥ 2.
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In what follows, we consider two ways of extending Theorem 3 to the case
where |A| = ∞. The first identifies a set of domains admitting SCF which
are PO, INOA, SP, and ND when |A| = ∞. The second proposes a new
definition of a SCF which allows us to state Kalai and Muller’s Theorem 3
when |A| ≤ ∞, restoring the symmetry between the theorems on SWF and
SCF.

Let us first show that all the domains belonging to a subset of the set
of single-peaked domains as defined by Black (1948) admit SCF which are
PO, INOA, SP, and ND when |A| = ∞. To this end, we first provide the
following definitions.

Given a preference ordering Q ∈ P , a preference ordering P ∈ P is said
to be single-peaked à la Black (see Black (1948)) relative to Q if there is
an alternative x ∈ A such that xPy, for all y ∈ A, and, for all alternatives
y, z ∈ A, xQyQz implies yPz, and, zQyQx implies yPz.

Given a preference ordering Q ∈ P , a preference ordering P ∈ P is said
to be single-peaked à la Arrow (see Arrow (1963)) relative to Q if, for all
alternatives x, y, z ∈ A, xQyQz and xPy implies yPz, and, zQyQx and xPy
implies yPz.

The following proposition says that the set of the single-peaked prefer-
ences à la Black relative to a preference ordering is a subset of the set of the
single-peaked preferences à la Arrow relative to the same preference ordering.

Proposition 3. Given a preference ordering Q ∈ P , if a preference ordering
P is single-peaked à la Black relative to Q, then it is single-peaked à la Arrow
relative to Q.

Proof. Given a preference ordering Q ∈ P , let P be a preference ordering
which is single-peaked à la Black with respect to Q and let v be the alternative
such that vPy, for all y ∈ A. Moreover, let x, y, z ∈ A be three alternatives
such that xQyQz. Consider the following cases. (i) if x = v, then xPy
implies yPz as vQyQz implies yPz; (ii) if y = v, then xPy cannot occur as
vPx; (iii) if v = z, then xPy cannot occur as xQyQv implies yPx; (iv) if
vQxQyQz, then xPy implies yPz as vQyQz implies yPz, (v) if xQyQzQv,
then xPy cannot occur as xQyQv implies yPx. Let now x, y, z ∈ A be
three alternatives such that zQyQx. Then, xPy implies yPz by considering,
mutatis mutandis, the same cases above.

The converse of this proposition does not hold as, when Q /∈ Ω, Q is
a preference profile which is single-peaked à la Arrow but not à la Black
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with respect to itself. The same holds for Q−1 when Q /∈ Ω. The following
example shows that, when |A| = ∞, the converse of Proposition 3 does not
hold even in the case where Q ∈ Ω ∩ Ω.

Example 2. Let A be the closed interval on the real line [0, 1]. Let Q ∈ P
be a preference ordering such that if x, y ∈ [0, 1] and x > y, then xQy. Then,
there exists a preference ordering P which is single-peaked à la Arrow with
respect to Q and is not single-peaked à la Black with respect to Q.

Proof. Let P be a preference ordering such that if x, y ∈ [0, 1
2
) and x > y,

then xPy; if x ∈ [0, 1
2
) and y ∈ [1

2
, 1], then xPy; if x, y ∈ [1

2
, 1] and x > y,

then yPx. Then P is single-peaked à la Arrow with respect to Q but it is not
single-peaked à la Black with respect to Q as there is no alternative x ∈ A
such that xPy, for all y ∈ A.

Kalai and Muller, in their Example 2, proved that the set of preference
profiles which are single-peaked à la Arrow relative to a preference profile Q
is decomposable and therefore admits SWF which are PO, IIA, and ND, by
their Theorem 2. Then, they also claimed (see p. 468) that, as a consequence
of their Theorem 3, the same set of preferences admits SCF which are PO,
INOA, SP, and ND. Example 2 shows that, when |A| = ∞, this claim does
not hold even in the case where Q ∈ Ω ∩ Ω.

The following proposition restores the validity of Kalai and Muller’s claim
when |A| = ∞, restricting their Example 2 to the set of domains which con-
sists of preference orderings which are single-peaked à la Black with respect
to a preference ordering Q ∈ Ω ∩ Ω.

Proposition 4. Let |A| = ∞. Let ΩQ be the set of all preference orderings
à la Black relative to a preference ordering Q ∈ Ω ∩ Ω. Then, there exists a
SCF, f , on ΩQ which is PO, INOA, SP, and ND for n ≥ 2.

Proof. Let ΩQ be the set of all preference orderings à la Black relative to
a preference ordering Q ∈ Ω ∩ Ω. We first show that ΩQ is decomposable,
following an argument used by Kalai and Muller in the proof of their Example
2. Let S1 = {(x, y) ∈ T : xQy}. Then TR = ∅ as Q,Q−1 ∈ ΩQ. Moreover, it
follows immediately from the definition of S1 that TR ⊂ S1 ⊂ T . Consider
two pairs (x, y), (x, z) ∈ NTR. Suppose that (x, y) ∈ S1 and that there
exists P, P ′ ∈ ΩQ with xPyPz and yP ′zP ′x. Then, zQxQy cannot occur
as zP ′x, yP ′x, and P ′ is single-peaked à la Arrow, by Proposition 2, and,
xQzQy cannot occur as xPz, yPz, and P is single-peaked à la Arrow, by
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Proposition 2. But then, (x, z) ∈ S1 as xQyQz. Hence, S1 satisfies DI1a.
Suppose that (z, x) ∈ S1 and that there exists P, P ′ ∈ ΩQ with xPyPz and
yP ′zP ′x. Using, mutatis mutandis, the same argument above, (y, x) ∈ S1

as zQyQx. Hence, S1 satisfies DI1b. Suppose that (x, y) ∈ S1, (y, z) ∈ S1,
and that there exists P ∈ ΩQ with xPyPz. Then, (x, z) ∈ S1 as xQyQz.
Hence, S1 satisfies DI2a. Suppose that (z, x) ∈ S1 and that there exists
P ∈ ΩQ with xPyPz. Then, yQzQx cannot occur as yPz, xPz, and P
is single-peaked à la Arrow, by Proposition 2. Then, (z, y) ∈ S1 as either
zQyQx or zQxQy. Hence, S1 satisfies DI2b. This completes the proof that
ΩQ is decomposable as we have shown that S1 is closed under decisiveness
implication. We show now that there exists a SWF on ΩQ, w, which is PO,
IIA, and ND for n = 2, and which is such that w(P) ∈ Ω, for all P ∈ Ω2

Q.
Let S2 = {(x, y ∈ T : (y, x) /∈ S1}. Then, S1 = S2. Let w : Ω2

Q → P
be a function such that, for all P ∈ Ω2

Q and for all x, y ∈ A, xw(P)y if
xPiy, for i ∈ I, or, xP1y and (x, y) ∈ S1, or, xP2y and (x, y) ∈ S2. Then,
w is a SWF on ΩQ which is PO, IIA, and ND for n = 2, by the argument
used by Kalai and Muller in the proof of their Theorem 2. It remains to
show that w(P) ∈ Ω, for all P ∈ Ω2

Q. Given a preference profile P ∈ Ω2
Q,

let x and y be the alternatives such that xP1v, for all v ∈ A, and yP2v,
for all v ∈ A. Suppose there exists an alternative z such that zw(P)x and
zw(P)y. Consider the following cases. (i) If P1 = P2, then x = y, zP1x,
and zP2x, a contradiction; (ii) if P1 6= P2, Q = P1, and xw(P)y, then zP2x
and zQx, a contradiction; (iii) if P1 6= P2, Q = P2, and xw(P)y, then
zQy, a contradiction; (iv) if P1 6= P2, Q 6= P1, Q 6= P2, and xw(P)y, then
yP2zP2x and zQxQy, a contradiction. Therefore, there exists no alternative
z ∈ A such that zw(P)x and zw(P)y. Hence w(P) ∈ Ω, for all P ∈ Ω2

Q. We
complete now the proof following the argument proposed by Kalai and Muller
in their proof of Theorem 3. Given a preference profile P and a feasible set
X ∈ A, let f ′ be a SCF such that f ′(P, X)w(P)y, for all y ∈ X. Then, by the
argument used by Kalai and Muller, f ′ is a SCF on ΩQ which is PO, INOA,
SP, and ND for n = 2. Finally, let f ′′ : Ωn

Q×A → A be a function such that,
for each P ∈ Ωn

Q and for each X ∈ A, f ′′(P1, . . . , Pn, X) = f ′(P1, P2, X). It
is straightforward to verify that f ′′ is a SCF on ΩQ which is PO, INOA, SP,
and ND for n > 2. Then, there exists a SCF on ΩQ which is PO, INOA, SP,
and ND for n ≥ 2.

We consider now a second way of restoring the validity of Kalai and
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Muller’s Theorem 3 when |A| = ∞ which maintains the symmetry between
the theorems on SWF and SCF. To this end, we propose the following new
definition of a SCF.

Let F denote the set of all the nonempty and finite subsets of A. A SCF
on Ω is a function f ∗ : Ωn × F → A such that, for all P ∈ Ω and for all
X ∈ F , f ∗(P, X) ∈ X.

f ∗ will inherit, mutatis mutandis - i.e., when A is replaced by F - all
the properties previously introduced on f . Therefore, it is straightforward to
verify that all the arguments used in the proof of Kalai and Muller’s Theorem
3 for |A| < ∞ hold for f ∗ also when |A| = ∞.
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