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Abstract 
 
This paper develops a framework for decomposing inequality of opportunity into racial stratification and 
social class components. We derive novel dominance conditions that enable robust rankings of joint 
distributions of income and birth circumstances, and develop additional dominance criteria for restricted 
classes of indices reflecting either pro-poor or meritocratic perspectives. Our framework includes an 
estimation approach and statistical tests for these stochastic dominance conditions, ensuring practical 
application with survey data. Using Health and Retirement Study data, we analyze inequality of opportunity 
in earnings among aging U.S. populations between 2010-2020. While social class-based inequality 
decreased for certain classes of indices, the racial stratification component increased, driving overall rising 
inequality of opportunity.  
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1 Introduction

This paper is motivated by the recent development in stratification economics (see Chelwa,

Hamilton, and Stewart, 2022; Darity, 2022), the increased public interest in racial inequal-

ities, and the importance of stratification and identity in analyzing inequality of opportu-

nity. Its objective is to understand how racial stratification and social class at birth can

contribute to the inequality of opportunity. In doing so, this paper links the stratification

economics literature to the literature on inequality of opportunity (see Roemer, 1998; Bjerk,

2008; Ferreira and Gignoux, 2014; Lee and Seshadri, 2018). It presents two contributions

to the literature on the inequality of opportunity. First, to link the equality of opportu-

nity approach with the economics of stratification approach, it proposes a decomposition

of the inequality of opportunity into a racial stratification component and a social class at

birth component. Second, it develops new graphical tools and dominance conditions that

allow comparing distributions using the proposed equality of opportunity approach. The

dominance conditions we derive focus on three types of ethical principles. The first type

of dominance conditions establishes an ethical framework that links Temkin’s (1986) com-

plaint approach with Roemer’s (1998) inequality of opportunity definition, providing the

foundational principles that all inequality indices in our analysis must satisfy. The second

and third types of dominance conditions are based on two ethical principles we introduce

in the paper: the pro-poor and the meritocratic ethical principles. All these three domi-

nance conditions apply to the racial stratification component and the social class at birth

component.

In our approach, inequalities of opportunity arising from racial stratification and social

class at birth are weighted equally, as both represent circumstances beyond an individual’s

control. While their sources differ, their impact on opportunity is treated symmetrically

in our framework. This decomposition, however, serves an important purpose for policy
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planning, as it helps identify the relative contribution of each source to overall inequality

of opportunity and can guide targeted interventions. Moreover, understanding the role of

stratification is particularly crucial as it may have broader societal implications beyond

economic outcomes, potentially affecting social cohesion and the functioning of democratic

institutions.

Interest in issues related to stratification, such as disparities and the extent of discrimina-

tion, has long been present in economics. A rich literature on intergroup inequalities focuses

on choices and human capital investments to explain observed disparities. This research has

been particularly important in the United States, where one of the most striking features

is the persistence of large racial economic disparities (Bayer and Charles 2018; Chetty et

al. 2020; Derenoncourt and Montialoux, 2021). However, the emergence of stratification

economics as a distinct and rapidly growing field is more recent (e.g., Chelwa, Hamilton,

and Stewart, 2022; Darity, 2022). The foundational principles of stratification economics

were articulated in Darity’s (2005) seminal work, where he broadened the scope of inequality

studies. Darity (2005) proposed an approach that moves beyond conventional perspectives,

emphasizing the need to understand the sources of persistent inequalities between racial

groups. Stratification economics, therefore, assesses the global institutional factors that

may perpetuate disparities, focusing on measuring, understanding, and explaining racial

inequalities from this broader perspective (see also Chelwa, Hamilton, and Stewart, 2022;

Darity, 2022). Indeed, Darity, Hamilton, and Stewart (2015) argue that a racial group’s

political influence and social inclusion are crucial factors contributing to these disparities

and warrant careful scrutiny.

In explaining the persistence of racial disparities, Darity (2005) implicitly differenti-

ates between decisions for which individuals should be held accountable and those that

result from institutional contexts. The underlying assumption is that racial inequalities
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are inherently unfair unless one believes that members of marginalized groups consistently

make choices that leave them worse off than those in the dominant group. Consequently,

a fairness-based approach to these racial inequalities is both natural and necessary. In this

context, racial justice can be conceptualized as a scenario where all individuals, regardless

of racial identity, face equal probabilities of attaining any outcome across all dimensions of

human wellbeing.

This concept of racial justice aligns closely with Roemer’s (1998) equality of opportunity

model. Specifically, the idea of equal probabilities of achieving any outcome across all di-

mensions of human wellbeing parallels Roemer’s (1998) notion of accountable effort, which is

rooted in fairness. Roemer’s concept suggests that an individual’s social background and in-

stitutional constraints influence the capacity to exert the necessary effort to achieve desired

outcomes. He argues that the effort level for which a person is responsible should be free

from the effects of initial conditions and social constraints. Roemer (1998) further demon-

strates that if residual luck is randomly distributed, equality of opportunity requires that

the quantile function of outcomes, conditional on initial circumstances, be identical across

all combinations of initial circumstances. Conceptually, if racial identity is considered one of

these initial circumstances, Roemer’s (1998) equality of opportunity model and the concept

of racial justice become equivalent. This idea can also be extended to other identity markers,

such as ethnicity, language, religion, gender, sexual orientation, or any other characteris-

tic, depending on the institutional context. By distinguishing between outcome differences

due to individual responsibility and those arising from circumstances beyond one’s control

(circumstances at birth), Roemer’s (1998) model offers a powerful framework for analyzing

identity-based intergroup inequalities. This paper adopts this framework.

Given that we decompose the inequality of opportunity into a racial stratification com-

ponent and a social class at birth component, we need to adapt the inequality of opportunity
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framework. Thus, we propose a measurement framework that adjusts Temkin’s (1986) idea

of inequality as an aggregation of individuals’ complaints when an individual is compared

with equally deserving counterparts. Then, we adopt this notion of complaints and in-

corporate it into Roemer’s (1998) framework by comparing outcomes at the same level of

accountable effort.1 Roemer’s framework is well-suited for analyzing racial inequalities of

opportunity because its underlying political philosophy closely aligns with the principles

of stratification economics. By extending and adapting the inequality of opportunity ap-

proach to a stratification-based perspective, we can better capture the complexities of a

stratified economy, where circumstances at birth, including race and other identity markers,

determine whether individuals belong to dominant or marginalized groups. Our analysis,

therefore, distinguishes between the portions of inequality of opportunity attributable to

social class at birth and those arising from identity-based stratification.

Since Roemer’s (1998) inequality of opportunity condition relies on comparisons of quan-

tile functions conditional on initial circumstances, our estimation approach naturally em-

ploys quantile regressions for estimating these conditional quantile functions. Our method,

which involves estimating models of the conditional quantiles, is related to Pistolesi’s (2009)

approach but differs in two key aspects. First, Pistolesi (2009) employs a Cox proportional

hazard model to estimate the conditional cumulative distribution of outcomes. Second, we

formulate an inequality of opportunity measurement framework derived from the condi-

tional quantiles of earnings, as opposed to the standard earnings inequality indices used by

Pistolesi (2009).

Our estimation approach also parallels the work of Brunori, Palmisano, and Peragine

(2019) and Brunori, Ferreira, and Peragine (2021), who focus on identifying the circum-

stances that explain inequalities of opportunity. However, their estimation method differs
1
It is important to note that the framework we are proposing does not focus on individual outcomes

but rather on the conditional distribution of outcomes linked with an individual’s initial circumstances,

including her identity.
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from ours. They compare conditional cumulative distributions of outcomes using random

forest classification models, which are particularly suitable for contexts with binary cir-

cumstance variables. In contrast, our quantile regression modeling approach allows us to

leverage data that includes continuous and count circumstances variables, such as parent’s

education, parental earnings during childhood, or the individual’s age.

Our empirical application examines changes in inequality of opportunity in earnings

among aging populations in the United States, focusing on the influence of social class at

birth and racial stratification during the years 2010 and 2020. Francis and Weller (2021)

highlight critical factors such as employment discrimination, occupational segregation, and

wealth disparities that continue to drive economic inequalities as individuals approach re-

tirement. Similarly, Viceisza, Calhoun, and Lee (2023) show that while retirement wealth

has improved for Whites and individuals of other races between 1989 and 2016, these gains

have not been mirrored among Blacks and Hispanics. Building on these insights, our study

defines the marginalized group as Blacks and Hispanics and the dominant group as non-

Hispanic Whites and non-Hispanic individuals of other races. Our findings reveal an overall

increase in inequality of opportunity in earnings among aging individuals between 2010 and

2020. When we decompose this change, we find that inequality of opportunity due to social

class at birth decreases for certain indices, while inequality arising from racial stratification

consistently increases over the period. By distinguishing the contributions of social class

at birth and racial stratification, our study provides a more nuanced understanding of the

sources of inequality of opportunity.

The remainder of the paper runs as follows. Section 2 presents the measurement frame-

work. Section 3 offers the dominance conditions for identifying robust orderings of dis-

tributions in regards to inequality of opportunity, inequality of opportunity due to racial

stratification, and inequality of opportunity due to social class at birth. To apply these
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dominance conditions to survey data, Section 4 presents the estimation and statistical in-

ference approach. Section 5 offers an application of the measurement approach using US

data. Finally, Section 6 presents a brief conclusion and some directions for future research.

2 Measurement framework

The inequality of opportunity approach splits inequalities into two broad categories: in-

equalities due to individual’s responsible decisions (i.e., accountable effort) and inequalities

due to the birth lottery (i.e., initial circumstances at birth). Roemer (1998) shows that if one

assumes that the distribution of residual luck2 is independent of initial circumstances, then

equality of opportunity translates into a condition on the quantile function. More specif-

ically, Roemer’s condition stipulates that the quantile function of an outcome conditional

on a given vector of initial circumstances should be the same for all potential values for this

vector of initial circumstances. Also, Roemer (1998) explains that under this assumption on

residual luck, we can reduce these inequalities of opportunity by focusing on interventions

that shift the lower contour of the set of conditional quantile functions.

In this paper, we adopt Roemer’s view of inequality of opportunity and propose a new

measurement framework based on Temkin’s (1986) definition of inequality as the sum of

complaints and the concept of equally deserving individuals (Cowell and Ebert, 2004). We

think Temkin’s concept of equally deserving individuals fits nicely in an equality of op-

portunity framework if one is willing to consider that individuals with the same level of

accountable effort are equally deserving. From this perspective, we define the complaint as

resulting from differences in the reward associated with each level of accountable effort.

As in Temkin (1986), when assessing the extent of a complaint, we specify a reference

point. There are three possible reference points: (1) the average member, (2) the best-off

member, and (3) all other people who are better off. This paper uses the idea underlying
2
The residual luck is the portion of luck not determined by the birth lottery.
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the best-off equally deserving individual as a reference point because it is consistent with

Roemer’s view of reducing inequalities of opportunity.

A key feature of the inequality of opportunity framework is that inequality is assessed

not based on observed individual outcomes but on the conditional quantile function of

these outcomes given the individual’s initial conditions. Roemer (1998) demonstrates that

a suitable measure of accountable effort is the quantile rank of this conditional quantile

function. In this framework, the conditional quantile function maps each level of accountable

effort to a corresponding level of outcome. Thus, the conditional quantile function effectively

represents the opportunity set available to individuals with a specific combination of initial

circumstances.

2.1 Notation and definitions

To model this framework mathematically, we consider a society with a distribution of types

t ∈ T ∈ RJ+1 linked to individual initial circumstances, i.e., the aspects of the individual’s

environments that are beyond her control. These circumstances could include childhood and

family environment. We assume that this society is also composed of two identity groups,

a dominant group, D, and a marginalized group, M .3 The definition of the group identity,

g ∈ G ∶= {D,M}, is often determined by the society’s specific institutional context and

may be based on race, ethicity, language, religion, gender, sexual orientation or any other

identity markers. In addition to their identity group, individuals differ in social classes. We

define social class as encompassing all other circumstances at birth, denoted by x ∈X ⊆RJ .

These circumstances may include the year of birth of the individual, her region of birth, and

her parents’ characteristics during childhood (e.g., parent’s education, employment statuses,

earnings during childhood, and occupation).
3
In this paper, we keep the stratification of the economy into two groups for ease of exposition. All

methods and results presented in the paper can be generalized to multiple groups and even account for the

intersectionality of stratification.
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For each individual, we observe a social outcome. In this paper, we will be focus on

earnings, y, nevertheless, the analyst can consider any other social outcome such as educa-

tion (Ferreira and Gignoux, 2014) or health (Davillas and Jones, 2020). Following Roemer

(1998), we assume that earnings, y ∈ Y ∈ R+, has a production function �(⋅). The pro-

duction function, �(eR, x, g, `), depends on a measure of raw effort, eR, the individual’s

social class at birth, x, her identity group, g, and the residual luck, ` ∈ L (i.e., luck not

determined by the birth lottery). We also assume that �(⋅) is strictly monotone increasing

in the raw level of effort, eR. This raw effort variable may include, among other things,

years of schooling, type of training, labor supply, and savings and investment in private

pension plans. Roemer (1998) explains that an individual’s capacity to produce a given

level of raw effort may also depend on birth circumstances. For instance, a parent with a

higher education level can offer more support to her children in their learning activities. A

wealthier parent can also pay for private tutoring, which poor parents cannot afford. For

this reason, Roemer suggests that we should purge the impact of circumstances at birth

from the level of raw effort. To do so, he defines the concept of accountable effort, e, as

the individual’s rank in the distribution of raw effort of her type. Suppose an individual

is of type t = (x, g). In that case, her accountable effort is e = FER�X,G(eR�x, g), where

FER�X,G(eR�x, g) represents the cumulative distribution of raw effort conditional on X = x,

and G = g. Given that we cannot fully observe accountable effort, it is difficult to account

for it without additional assumptions. Nevertheless, suppose we assume that ` ⊥⊥X,G, i.e.,

residual luck is statistically independent of types. In that case, the strict increasing mono-

tonicity of �(⋅) in eR implies that an individual will have the same rank in FER�X,G(eR�x, g)
as in FY �X,G(y�x, g), the conditional cumulative distribution of earnings conditional to type

t = (x, g). This strict monotonicity assumption imposed on �(eR, x, g, `) is a key identi-

fication assumption of our model. This assumption allows us to overcome the need for a
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specific model of FER�X,G(eR � x, g) and, consequently, the need to define a measure of raw

effort because the ranks in the distribution of raw effort will be mapped to the distribution

of earnings. Thus, the only object that needs to be estimated is FY �X,G(y�x, g) and/or its

inverse function QY �X,G(e�x, g), the conditional quantile function. It is essential to mention

that while we are naturally inclined to consider an individual’s level of accountable effort

as the main focus in this framework, empirically, it is impossible to do so. Specifically,

we cannot identify an individual’s level of accountable effort separately because individual

i’s outcome, yi, is a function of two unobserved factors: the level of raw effort, eRi, and

the unobserved realization of residual luck, `i. These two unobserved factors cannot be

disentangled from each other because they are both unobserved. However, while we cannot

identify the individual’s level of accountable effort separately, we can estimate the mathe-

matical objects FY �X,G(y�x, g) and QY �X,G(e�x, g). This allows us to conduct an inequality

of opportunity analysis since Roemer (1998) argues that perfect equality of opportunity

requires the conditional quantile functions to be the same for all types at birth.

2.2 Inequality of opportunity as a complaint

Let us assume that the outcome of interest is earnings. Then in a canonical earnings

inequality measurement framework, the individual’s outcome (yi) is a function of the effort

level chosen by this individual (eRi), her social class at birth (xi), her group identity (gi) and

residual luck (`i) befalling her. From an inequality of opportunity framework perspective,

the analyst’s main object of interest is the opportunities offered to individuals. These

opportunities are reflected in the distribution of earnings conditional on initial conditions

(x, g), for all possible realization of residual luck, `. In order words, from an inequality of

opportunity perspective, the mathematical objects of interest are

FY �X,G(y�x, g) = � ∞
−∞ FY �X,G,L(y�x, g, `)dFL(`), (1)
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and

QY �X,G(e�x, g) = inf{y ∈R+�e ≤ FY �X,G(y�x, g)}. (2)

For each possible level of accountable effort, the complaint should be defined for each

combination of initial conditions (x, g). This complaint is defined as the relative difference

between the expected outcome at accountable effort level e conditional on the initial condi-

tions (x, g) and the reference expected outcome associated with the same level of accountable

effort e. In the context of this paper, the reference outcome function, ⇢(e), represents the

expected outcome had the opportunities been at the same level as those generating the 95th

percentile of expected outcomes at this level of accountable effort. This approach is rooted in

Temkin’s (1986) idea of using the best-off equally deserving individual as a reference point,

which aligns with Roemer’s (1998) view of reducing inequalities of opportunity. By using

the 95th percentile as a practical implementation of this concept, we ensure that our analysis

remains consistent with these theoretical foundations while being empirically feasible with

survey data.

Having defined the reference outcome function, ⇢(e), we use it in Figure 1 to illustrate

the concept of a complaint at a level of accountable effort e1. The higher curve represents

the reference outcome function ⇢(e). The lower curve represents the quantile function condi-

tional to (x, g). The absolute loss at a level of accountable effort e1 is ⇢(e1)−QY �X,G(e1�x, g).
This concept of absolute loss can be used to define (e, x, g), the complaint of a person of

type (x, g) at a level of accountable effort e, as the proportion of earnings lost due to

inequality of opportunities:

(e, x, g) =max�0, ⇢(e) −QY �X,G(e�x, g)
⇢(e) � . (3)

The overall complaint associated with the type (x, g) is a socially weighted sum of complaints

at all effort levels:

̃(x, g) = � 1

0
!(e)(e, x, g)de, (4)
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where !(e) is a social weight function for complaints at a given accountable effort level e,

we assume that !(e) ≥ 0 for all e ∈ [0,1] and that ∫ 1
0 !(e)de = 1 (for ̃(x, g) to be socially

weighted average). An example of such social weight function is the case in which !(e) = 1
for all e ∈ [0,1]. In this case, ̃(x, g) is the average complaint of type (x, g) or the average

proportion of earnings lost due to unequal opportunities for individuals of type (x, g). In

the empirical application in Section 5, the only mathematical objects that are estimated at

the individual level are the expected complaint function (e, xi, gi) (for all e ∈ [0,1]) and

the expected overall complaint E [̃(xi, gi)].
Let us define the effort-dependent inequality of opportunity index as an average of these

complaints over the distribution of types and effort

I(FY,X,G) = E[̃(x, g)] = �
g∈{D,M}

Pr[G = g]�
X

̃(x, g)dFX �G(x�g). (5)

One interesting property of the effort-dependent inequality of opportunity indices is that

they are subgroup-perfectly decomposable. This perfect decomposability means that if one

defines

Ig(FY,X,G) = E[̃(x, g)�G = g] = �
X

̃(x, g)dFX �G(x�g), (6)

as the effort-dependent inequality of opportunity index of group g, then the overall index is

the sum of subgroup indices weighted by their population shares:

I(FY,X,G) = �
g∈{D,M}

Pr[G = g]Ig(FY,X,G). (7)

Given that our main interest is to capture which part of the inequality of opportunity

is attributable to stratification and which part of inequality is associated with social class

at birth, we decompose the complaints of the marginalized group as follows:

(e, x,M) =max
�
�0,
�⇢(e) −QY �X,G(e�x,D)� + �QY �X,G(e�x,D) −QY �X,G(e�x,M)�

⇢(e)
�
� , (8)

where QY �X,G(e�x,D) is the earnings of a person from the dominant group at the same level

of accountable effort and the same initial conditions, except group identity. The overall
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complaint is decomposed into a stratification component and another due to the social

class at birth. Figure 2 illustrates this decomposition. The blue double-arrow segment

indicates the absolute loss due to stratification at accountable effort level e1. We define the

stratification complaint function for all effort levels e ∈ [0,1] as this loss in relative term,

i.e.


Strat(e, x,M) =max�0, QY �X,G(e�x,D) −QY �X,G(e�x,M)

⇢(e) � . (9)

The green double-arrow segment in Figure 2 indicates the absolute loss due to social class

at birth. The social class complaint function is defined for all effort levels as this loss in

relative terms, i.e.


Class(e, x,M) =max�0,min �⇢(e) −QY �X,G(e�x,D)

⇢(e) ,
⇢(e) −QY �X,G(e�x,G)

⇢(e) �� . (10)

In this context, we can define inequality of opportunity that is due to stratification as

I
Strat(FY,X,G) = Pr[G =M]�

X
� 1

0
!(e)Strat(e, x,M)dedFX �G(x�M). (11)

Similarly, we can define the inequality of opportunity that is due to social class at birth as:

I
Class(FY,X,G) = Pr[G =D]�

X
� 1

0
!(e)(e, x,D)dedFX �G(x�D)

+Pr[G =M]�
X
� 1

0
!(e)Class(e, x,M)dedFX �G(x�M). (12)

The subgroup decomposability of I(FY,X,G) and the linearity of (e, x, g) implies that

I(FY,X,G) = IStrat(FY,X,G) + IClass(FY,X,G). (13)

In other words, total inequality of opportunity in a population is the sum of inequality of

opportunity due to stratification and inequality of opportunity due to social class at birth.

If one imposes a specific form on the social weight function, using these indices allows for

a complete ordering of all joint distributions FY,X,G in terms of inequality of opportunity,

inequality of opportunity due to stratification, and inequality of opportunity due to social

classes.
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3 Identifying robust orderings in terms of inequality of oppor-
tunity

When using a specific index belonging to the class of effort-dependent inequality of oppor-

tunity indices, it is possible to have a complete ordering of distributions. However, this

ordering will be contingent on the specific mathematical form of the index, i.e., the struc-

ture imposed on the social weight function !(e). Nevertheless, it is always possible to test

whether some rankings are robust to all potential functional forms the analyst may impose

on the social weight function. This section aims to lay down the conditions for identifying

such robust orderings.

To identify robust orderings of inequality of opportunity the analyst can use a dominance

approach analogous to the one used in earnings inequality. Indeed, in the earnings inequality

literature, the non intersection of the Lorenz curves can be used to identify robust orderings

of earnings inequality. In such a case, the distribution with a Lorenz curve closer to the

45-degree line has the lowest inequality. This result holds for any inequality index.

In the inequality of opportunity framework of this paper, the object of interest is not

the individual’s earnings but the complaint function, (e, x, g) associated with given ini-

tial circumstances. For this reason, in what follows we define new curves based on these

complaint functions.

3.1 Inequality of opportunity orderings

First, we define the complaint incidence curve. For each level of accountable effort, this curve

represents the expected complaint in the population. The formal mathematical definition

of this curve is

CI(e,FY,X,G) = �
g∈{D,M}

Pr[G = g]�
X

(e, x, g)dFX �G(x�g). (14)
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Analogously, one can define the stratification and the social class complaint incidence curves

as:

CI
Strat(e,FY,X,G) = Pr[G =M]�

X

Strat(e, x,M)dFX �G(x�M), (15)

and

CI
Class(e,FY,X,G) = Pr[G =D]�

X
(e, x,D)dFX �G(x�D)

+Pr[G =M]�
X


Class(e, x,M)dFX �G(x�M). (16)

The curves described in 14, 15, and 16 provide a graphical representation of the distri-

bution of expected complaint for all accountable effort levels. In addition, these curves can

be used to identify robust rankings of inequality of opportunity.

Let us denote by ⌦ the set of all effort-dependent inequality of opportunity indices

defined by equation (5). This class of indices is formally defined as

⌦ ∶= �I(⋅) � !(e) ≥ 0 ∀e ∈ [0,1], and � 1

0
!(e)de = 1� . (17)

In our framework, robust rankings of inequality of opportunity are analogous to robust

rankings of earnings inequality. For earnings inequality, it is well known that a robust

ranking is identified when two Lorenz curves do not intersect. In our framework, we identify

robust rankings of inequality of opportunity for all indices I(⋅) ∈ ⌦ when complaint incidence

curves do not intersect.

Let �I(F 0
Y,X,G, F

1
Y,X,G) = I(F 1

Y,X,G) − I(F 0
Y,X,G) denotes the difference in inequality of

opportunity between distribution F
0
Y,X,G and F

1
Y,X,G.

Theorem 1. �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 for all indices I(⋅) ∈ ⌦ if and only if

CI(e,F 1
Y,X,G) −CI(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1].
If we define analogously �I

Strat(F 0
Y,X,G, F

1
Y,X,G) and �I

Class(F 0
Y,X,G, F

1
Y,X,G) and use CI

Strat

and CI
Class similar results hold. If the condition in Theorem 1 does not allow for a ranking

15



between two distributions, it is possible to consider subsets of indices. Thus an analyst

can impose an additional structure on the ethical principles and check if a robust ordering

exists for these subsets of the indices I(⋅) ∈ ⌦. In this paper, we propose to consider two

alternative normative views: a pro-poor normative view and a meritocratic normative view.

3.2 Pro-poor inequality of opportunity orderings

When an analyst has a pro-poor view of inequality of opportunity, she puts a higher weight

on complaints associated with low levels of accountable effort. Thus, pro-poorness implies a

non-increasing !(e) function. A well-known example of such a function is !(e) = ⌫(1 − e)⌫−1,
which represents the social weights of the rank-dependent social welfare function associated

with the extended class of Gini indices. The parameter ⌫ is an inequality aversion param-

eter in the Gini social welfare function. In our framework, since the ranking variable is

accountable effort, such a parameter would be a parameter of pro-poor inclination. An in-

finity of other potential mathematical functions would satisfy a pro-poor view of the social

weight function. Let us denote by ⌦P the set of all pro-poor effort-dependent inequality of

opportunity indices. This class of indices is formally defined as follows:

⌦P ∶= �I(⋅) ∈ ⌦ � d!(e)
de

≤ 0 ∀e ∈ [0,1], and !(1) = 0� . (18)

Drawing from the tools developed in the literature on progressive earnings taxation

and the literature on socioeconomic health inequality, we use the absolute concentration

curve (see Schechtman, Shelef, Yitzhaki, and Zitikis, 2008; Khaled, Makdissi, and Yazbeck,

2018).4 An absolute concentration curve is a graphical tool that can be used to identify

robust orderings of inequality of opportunities for all pro-poor effort-dependent inequality

of opportunity indices. In the context of this paper, we refer to these curves as the pro-

poor complaint concentration curves. The formal mathematical definition of the pro-poor
4
Khaled, Makdissi, and Yazbeck (2018) use the term generalized concentration curve instead of absolute

concentration curve.
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complaint concentration curves is as follows:

CCp(e,FY,X,G) = � e

0
CI(s,FY,X,G)ds, (19)

CC
Strat
p (e,FY,X,G) = � e

0
CI

Strat(s,FY,X,G)ds, (20)

and

CC
Class
p (e,FY,X,G) = � e

0
CI

Class(s,FY,X,G)ds. (21)

For a given level of accountable effort, e, the pro-poor complaint concentration curve repre-

sents the average complaint that would prevail in the population if only accountable effort

levels less than or equal to e were to generate complaints. When e = 1, the pro-poor com-

plaint concentration curve equals the average complaint level in the population.

The analyst can use these curves to identify robust rankings of distributions for all

pro-poor inequality of opportunity indices belonging to ⌦P .

Theorem 2. �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 for all indices I(⋅) ∈ ⌦P if and only if

CCp(e,F 1
Y,X,G) −CCp(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1].
We can derive similar results for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) and �I

Class(F 0
Y,X,G, F

1
Y,X,G) using

CC
Strat
p and CC

Class
p .

3.3 Meritocratic inequality of opportunity orderings

When an analyst has a meritocratic view of inequality of opportunity, she puts a higher

weight on complaints associated with high levels of accountable effort. The meritocratic

view implies a non-decreasing !(e) function. One example of such a function would be

!(e) = ↵e↵−1, where the parameter ↵ is a parameter of meritocratic inclination. Never-

theless, one may select another functional form as there is an infinity of functional forms
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for !(e) that would satisfy a meritocratic view. Let us denote by ⌦M the set of all mer-

itocratic effort-dependent inequality of opportunity indices defined by equation (5). The

mathematical definition of this class of indices is

⌦M ∶= �I(⋅) ∈ ⌦ � d!(e)
de

≥ 0 ∀e ∈ [0,1], and !(0) = 0� . (22)

How can we reconcile a meritocratic normative view with the well-known aversion to

inequality concept? To do so, one needs to remember that the complaint function, (e, x, g),
assigns a complaint with each possible level of accountable effort, e ∈ [0,1], a person could

have exerted given the initial circumstances (x, g). This complaint function captures in-

equality aversion. Thus, if one accepts the assumption that, from the individual’s perspec-

tive, making an effort is costly and that the cost of effort increases with the effort level, it

would be natural for some to put more weight on complaints associated with a higher level

of effort. This ethical principle, combined with the stratification component, is also linked

with an aversion to glass ceilings (see Bjerk, 2008).

Similarly to pro-poor complaint concentration curves, one can define the meritocratic

complaint concentration curves as follows:

CCm(e,FY,X,G) = � 1

e
CI(s,FY,X,G)ds, (23)

CC
Strat
m (e,FY,X,G) = � 1

e
CI

Strat(s,FY,X,G)ds, (24)

and

CC
Class
m (e,FY,X,G) = � 1

e
CI

Class(s,FY,X,G)ds. (25)

For a given level of accountable effort, e, the meritocratic complaint concentration curve

represents the average complaint that would prevail in the population if only accountable

effort levels greater than or equal to e were to generate complaints. When e = 0, the merito-
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cratic complaint concentration curve equals the average complaint level in the distribution.

In other terms, CCm(0, FY,X,G) = CCp(1, FY,X,G).
As in the case of the pro-poor complaint concentration curves, these curves can be used

to identify rankings that are robust to all meritocratic inequality of opportunity indices

belonging to ⌦M .

Theorem 3. �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 for all indices I(⋅) ∈ ⌦M if and only if

CCm(e,F 1
Y,X,G) −CCm(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1].
We can derive similar results for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) and �I

Class(F 0
Y,X,G, F

1
Y,X,G) using

CC
Strat
m and CC

Class
m .

4 Estimation and inference

In previous sections, we introduced new inequality of opportunity measurement tools and

dominance conditions for the robust ordering of inequality of opportunity and the impact

of stratification and social class at birth on this inequality of opportunity. However, we

assumed that the joint distributions, FY,X,G, were known to researchers, and we did not

discuss uncertainty. This section will provide details regarding this paper’s estimation and

inference approach. It is important to note that while the measurement framework, the

graphical tools, and the dominance conditions proposed in this paper are new, the estimation

and the inference methodology we use are already available in the econometric literature.

Assume that we have two data sets of n0 and n1 observations with n0D, n1D, n0M ,

and n1M observations from the dominant and marginalized groups. All graphical tools and

dominance conditions introduced in the previous two sections do not focus on the marginal

cumulative distribution of earnings y but instead on the conditional quantile function that

is associated with initial circumstances, QY �X,G(e�x, g). To estimate the graphical tools and

conduct the dominance tests for conditions provided in Theorems 1, 2, and 3, the analyst
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needs to estimate this conditional quantile function on a grid of accountable effort using

canonical quantile regressions (Koenker and Bassett, 1978). Schechtman, Shelef, Yitzhaki,

and Zitikis’s (2008) offer a framework matching this paper’s testing object of interest.

4.1 Estimation

In the first estimation step consists of estimating the quantile regressions for each group

g ∈ {D,M} on a grid of pre-specified accountable effort levels {e1, e2, . . . , eL}. Note that if

we chose a too small grid, we need to trim the two tails of the quantile function at some

values " > 0 and 1−". The trimming allows us to avoid issues associated with the estimation

of tail quantiles (Koenker, 2005, p. 148).

In the second estimation step, we use the estimated models and predict the value of the

conditional quantile function for each observation i, Q̂Y �X,G(e`, xi, gi), based on the same

grid of pre-specified accountable effort levels. For observations belonging to the marginalized

group (i.e. if gi = M), we also need a predicted value of the counterfactual conditional

quantile function for each observation, Q̂Y �X,G(e`, xi,D).
In the third step, we estimate the reference outcome function on the grid of pre-specified

accountable effort levels {e1, e2, . . . , eL}. We use the 95th percentile of all the conditional

quantile e`, conditional on the initial conditions, as the reference outcome. Formally,

⇢̂i(e`) = inf �y�Pr �Q̂Y �X,G(e`,X,G) ≤ y� ≥ 0.95� , ∀e` ∈ {e1, e2, . . . , eL}. (26)

Finally, the fourth step consists of predicting on the grid of pre-specified accountable

effort levels {e1, e2, . . . , eL} a value of the complaint function for each observation i:

̂(e`, xi, gi) = ⇢̂(e`) − Q̂Y �X,G(e`�xi, gi)
⇢̂(e`) , ∀e` ∈ {e1, e2, . . . , eL}. (27)

For observations belonging to the marginalized group (i.e., if gi = M), we also need to

estimate the predicted values of the complaint due to stratification and the complaint due
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to social class at birth:

̂
Strat(e`, xi, gi) = Q̂Y �X,G(e`�xi,D) − Q̂Y �X,G(e`�xi, gi)

⇢̂(e`) , ∀e` ∈ {e1, e2, . . . , eL}, (28)

and

̂
Class(e`, xi, gi) = ⇢̂(e`) − Q̂Y �X,G(e`�xi,D)

⇢̂(e`) , ∀e` ∈ {e1, e2, . . . , eL}. (29)

The set of complaint incidence curves can then be estimated on each point e` ∈ {e1, e2, . . . , eL}
using the values obtained in (27), (28), and (29):

�CI(e, F̂Y,X,G) = 1

N

N�
i=1 ̂(e,xi, gi), (30)

�CI
Strat(e, F̂Y,X,G) = 1

N

N�
i=1 ̂

Strat(e, xi, gi) [gi =M] , (31)

�CI
Class(e, F̂Y,X,G) = 1

N

N�
i=1 ̂(e, xi, gi) [gi =D]

+ 1

N

N�
i=1 ̂

Class(e, xi, gi) [gi =M] , (32)

We estimate the pro-poor and meritocratic complaint concentration curves by integrating

the expressions in equations (30), (31), and (32) using a Riemann sum approximation (see

Appendix B for details).

4.2 Testing for dominance conditions

This section adopts a testing procedure that builds on Schechtman, Shelef, Yitzhaki, and

Zitikis (2008) and Khaled, Makdissi, and Yazbeck (2018). This testing procedure uses a

directional version of a statistic akin to the Kolmogorov-Smirnov statistic. Let us denote

by C(e) one of the curves defined in the preceding sections. C(e) can be CI(e), CCp(e),
CCm(e), or one of their stratification or social class versions. Let C0(e) and C1(e) be the

curve of two populations, 0 and 1. Assume that we have two i.i.d samples, S0 and S1, of size

n0 and n1 from these two populations. We are interested in testing one of the dominance
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conditions in Theorems 1, 2, and 3. Formally, the null and alternative we are interested in

are:

H0 ∶ C1(e) −C0(e) ≤ 0,∀e ∈ [0,1]
H1 ∶ C1(e) −C0(e) > 0, for some e ∈ [0,1]

Note that if the chosen grid is too small, we should instead test for

H0 ∶ C1(e) −C0(e) ≤ 0,∀e ∈ [",1 − "]
H1 ∶ C1(e) −C0(e) > 0, for some e ∈ [",1 − "]

It is important to mention that in the above test, we are not trying to establish dom-

inance by imposing a null of non-dominance. Instead, we impose a null of dominance and

test if this null can be rejected. There are two reasons why we adopt this testing approach

which may seem counterintuitive. First, in a similar context, Davidson and Duclos (2013)

have shown that testing a null hypothesis of non-dominance requires strong evidence against

the null, which may be challenging to obtain. Second, since the conditions in Theorems 1,

2, and 3 only require weak dominance, we follow the usual practice from the empirical

literature on stochastic dominance and test for H
1
0 ∶ C1(e) − C0(e) ≤ 0,∀e ∈ [0,1] and for

H
2
0 ∶ C0(e) − C1(e) ≤ 0,∀e ∈ [0,1]. Table 1 displays the decision rules for the dominance

tests. For a level of significance ↵, we will consider that we have strong evidence in favor of

dominance if the p-values of one of the aforementioned nulls are larger or equal to ↵ while

the p-values of the other are strictly lower.

Let ⌧ = supe [C1(e) −C0(e)], it is straightforward to construct a KS type directional

test statistic ⌧̂ that is a non-parametric estimator of ⌧ :

⌧̂ =
�

n0n1

n0 + n1
sup
e
�Ĉ1(e) − Ĉ0(e)� (33)

The asymptotic distribution of ⌧̂ will be that of a functional of a two-dimensional Gaussian
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process that is very complicated to compute.5 To overcome this computational issue, we

build on Schechtman, Shelef, Yitzhaki, and Zitikis (2008) and Donald and Hsu (2014 and

2016) and use a selective recentering bootstrap approach. For a detailed description of the

bootstrap procedure, please refer to Appendix C.

5 Empirical illustration: Inequality of opportunity among the
aging population in the United States

To underscore the empirical applicability of our proposed measurement framework, we in-

vestigate changes in inequality of opportunity in earnings among aging populations in the

United States, focusing on the years 2010 and 2020. Our analysis centers on the roles of

social class at birth and racial stratification in shaping inequality of opportunity in earnings,

with particular attention to the experiences of marginalized groups, defined here as Blacks

and Hispanics, compared to the dominant group of non-Hispanic Whites and non-Hispanic

individuals of other races.

The importance of this focus is underscored by existing literature. For instance, Francis

and Weller (2021) highlight how employment discrimination, occupational segregation, and

wealth disparities persist as significant drivers of economic inequalities as individuals ap-

proach and transition into retirement. Moreover, Viceisza, Calhoun, and Lee (2023) demon-

strate that while retirement wealth has improved for Whites and individuals of other races

between 1989 and 2016, these gains have not been mirrored among Blacks and Hispanics.

This disparity points to persistent structural barriers that limit the accumulation of retire-

ment wealth for marginalized groups, making it crucial to examine how these inequalities

of opportunity evolve in later stages of life.

By focusing on individuals aged 50 and above, our empirical application captures a stage

of life where most decisions related to accountable effort have already been made, allowing us
5
Chernozhukov, Fernandez-Vál, and Melly (2013) refers to this issue as the Durbin problem.
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to observe the enduring impact of initial circumstances on inequality of opportunity. This

analysis not only tests the robustness of our methodological approach but also provides

insights into the socio-economic dynamics affecting aging populations in the United States,

particularly in the context of persistent racial and social class disparities.

5.1 Data and estimation strategy

The Health and Retirement Study (HRS) is a longitudinal panel study that surveys a

representative sample of Americans over the age of 50. Initiated in 1992, the HRS aims to

provide comprehensive data on the health, economic, and social factors influencing the lives

of older adults in the United States. Conducted by the University of Michigan’s Institute

for Social Research and funded by the National Institute on Aging (NIA) and the Social

Security Administration (SSA), the HRS collects data biennially from its participants.

The HRS sample is nationally representative, employing a multi-stage area probabil-

ity sampling method to ensure the inclusion of diverse subpopulations, including minority

groups. The survey gathers detailed information on income, wealth, earnings, and other

variables. Notably, the HRS also collects retrospective information on respondents’ early

life circumstances, such as parental education, which is crucial for analyzing inequality of

opportunity.

We utilize data from the years 2010, and 2020 included in the RAND HRS Longitudinal

File 2020 (V2), a user-friendly version of the HRS data curated and maintained by the

RAND Corporation. This file harmonizes the complex HRS data into a consistent and

easy-to-use format. The 2020 version (V2) includes data from multiple waves of the HRS,

up to and including the year 2020.

For our analysis, we use total household earnings as the outcome of interest. To adjust

for the equivalent income of couples, we apply the OECD equivalence scale and divide

by the square root of 2. To assess the initial conditions of each individual, we use race,
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Hispanic ethnicity, year of birth, region of birth, father’s education, and mother’s education

as circumstances at birth for our quantile regressions.

We define the marginalized and dominant groups using two variables from the Health

and Retirement Study (HRS). The first variable is race, with three categories: White, Black,

and Other. The second variable is Hispanic ethnicity, with two categories: Hispanic and

Not Hispanic. Based on these variables, we categorize observations into two groups: the

marginalized group, which includes individuals who are either Black or Hispanic, and the

dominant group, which includes non-Hispanic Whites and non-Hispanic individuals of other

races. Regions of birth are grouped into five categories:

• The Northeast, which includes the New England and Mid-Atlantic regions.

• The Midwest, which includes the two northern central regions.

• The South, which includes the South Atlantic and the two southern central regions.

• The West, which includes the Mountain and Pacific regions.

• Other, which includes the US/NA division and individuals not born in the US.

We only keep individuals who are 50 and above in the datasets. After cleaning for

missing values, we have 11,198 observations for 2010, and 7,083 observations for 2020.

These covariates are used to estimate our quantile regressions. We use a grid size of 0.01

with tail trimming at the 0.05 and 0.95 quantiles. We use 999 bootstrap replications for our

estimations and our dominance tests.

5.2 Average complaints for Black and Non-Black individuals

Figures 3 and 4 illustrate the average complaint incidences for marginalized and dominant

older individuals for the years 2010 and 2020, respectively. These incidence curves depict

the average complaint at various levels of accountable effort, representing the lost earnings

25



associated with conditions at birth for each accountable effort level an individual may choose

to exert during their life. This highlights the constraints on opportunities.

The left panels of these figures present the average complaints within the marginalized

group, which includes individuals who are either Black or Hispanic. The green area repre-

sents the loss linked to social class at birth, while the blue area represents the additional loss

attributable to racial stratification. Conversely, the right panels depict the average com-

plaints within the dominant group, which includes non-Hispanic Whites and non-Hispanic

individuals of other races. As racial stratification does not impact this group, the over-

all complaint is illustrated solely by the green area, corresponding to the average loss of

opportunities related to social class at birth for each level of accountable effort.

A preliminary examination of the figures indicates that visual assessment alone makes

it challenging to discern trends in average complaints over time. Nevertheless, a noticeable

trend emerges between 2010 and 2020 regarding the racial stratification component. Specif-

ically, the portion of the average complaint associated with racial stratification appears to

increase across almost the entire accountable effort spectrum, with the increase being more

pronounced at the upper end. This trend is particularly concerning, as it indicates not only

a general rise in inequality of opportunity due to racial stratification but also a heightened

barrier at the upper levels of effort, suggesting an increase in the “glass ceiling” effect. To

rigorously assess these temporal differences, we will formally test for variations between the

years using the dominance conditions proposed in Section 3.

5.3 Inequality of opportunity

In this section, we analyze the evolution of overall inequality of opportunity among older

individuals between the years 2010 and 2020. Figure 5 displays the pairwise comparisons

of complaint incidence curves, pro-poor complaint concentration curves, and meritocratic

complaint concentration curves for 2010 and 2020, while the first column in Table 2 provides
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the corresponding p-values for the associated statistical tests.

The upper panel in the figure illustrates that the complaint incidence curve for 2010

consistently lies below that of 2020 at accountable effort levels where the confidence bands

do not overlap. This visual observation is reinforced by the p-values, which indicate that

inequality of opportunity in 2010 is significantly lower than in 2020 for any inequality of

opportunity index within the general class ⌦, with results significant at the 0.05 level. The

left and right bottom panels illustrate respectively the pro-poor and meritocratic complaint

concentration curves comparisons. Although not very clear from a quick visual inspection,

both complaint concentration curves of 2010 consistently lie below that of 2020 in regions

where the confidence bands do not overlap. The p-values associated with these dominance

conditions reveal an increase of inequality of opportunity over this decade for indices within

the general classes ⌦P and ⌦M , with these results being significant at the 0.01 level.

Overall, our analysis reveals a marked deterioration in equality of opportunity among

older individuals during this period. To better understand the underlying factors driving

these trends, the next section decomposes inequality into its social class and stratification

components, allowing us to explore how these different dimensions contribute to the observed

changes, particularly as they may differently affect marginalized and dominant groups.

5.4 Inequality of opportunity decomposed

In this section, we delve into the decomposition of inequality of opportunity among older

individuals, focusing on the racial stratification and social class channels. Our analysis

leverages pairwise comparisons of stratification and social class complaint incidence curves

to shed light on the dynamics between the years 2010 and 2020.

Figure 6 presents the pairwise comparison of stratification complaint incidence curves

for 2010 and 2020, showing that the curve for 2010 consistently lies below that of 2020.

The corresponding p-values, detailed in the second column of Table 2, confirm this finding

27



at the 0.01 significance level, indicating a significant increase in inequality of opportunity

due to racial stratification over the decade. Given the strength of this result at the 0.01

significance level, higher-order dominance tests are not required.

This trend is particularly concerning in light of the persistent structural barriers high-

lighted in the literature, such as employment discrimination, occupational segregation,

and wealth disparities, which continue to exacerbate economic inequalities as individuals

near retirement (Francis and Weller, 2021). The limited gains in retirement wealth among

marginalized groups, as noted by Viceisza, Calhoun, and Lee (2023), likely contribute to

these widening disparities.

Next, Figure 7 displays the pairwise comparisons of social class complaint incidence

curves, pro-poor complaint concentration curves, and meritocratic complaint concentration

curves for 2010 and 2020. The complaint incidence curves intersect, and both p-values are

close to 0.05, indicating that caution is needed in interpretation. Since the statistical tests

do not establish dominance by rejecting non-dominance, it is advisable to rely on higher-

order dominance tests, in this context, the pro-poor and meritocratic tests, to gain clearer

insights.

The pro-poor complaint concentration curves do not show a clear result, a finding con-

firmed by the associated statistical tests. However, although not obvious from visual in-

spection, the p-values associated with the meritocratic dominance condition indicate that

the meritocratic complaint concentration curve for 2020 is below that of 2010 at the 0.05

level. This suggests an improvement in equality of opportunity related to social class from

a meritocratic perspective.

Given that the dominant group is primarily affected by the social class component, these

findings suggest that the impact of inequality of opportunity may be diminishing for this

group. However, the marginalized group, which is impacted by both stratification and social
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class components, presents a more complex picture. The opposing directions of movement

in these components necessitate further testing for this group.

Unfortunately, the size of the dataset does not allow for significant results for the

marginalized group when considered separately. However, our analysis reveals that overall

inequality of opportunity has increased over the period, while the component due to social

class at birth has decreased when focusing on meritocratic inequality of opportunity indices.

Since the dominant group is primarily affected by the social class component, it is likely

that the increase in inequality of opportunity is driven by the stratification component,

which predominantly impacts the marginalized group. This robust rise in the stratification

component is particularly concerning from an equity perspective, as it signals a growing

divide in opportunities linked to racial stratification.

These results underscore the multifaceted nature of inequality of opportunity and high-

light the distinct experiences of marginalized and dominant groups. While there may be

signs of improvement in the social class component for both groups, the marginalized group

may face increasing challenges due to the worsening stratification component. This high-

lights the need for targeted interventions to address these compounded inequalities and

promote a more equitable distribution of opportunities across all racial groups.

6 Conclusion

In this paper, we developed a framework for measuring inequality of opportunity that

combines Roemer’s (1998) definition with Temkin’s (1986) complaint-based approach. We

demonstrated how to decompose these inequalities into social class at birth and identity-

based stratification components, providing a robust measurement framework for stratifica-

tion economics. Our theoretical contribution includes identifying dominance conditions for

various indices, including pro-poor and meritocratic indices, and adapting existing econo-

29



metric methods to estimate and test these dominance conditions in our framework.

Applying this framework to the U.S. aging population between 2010 and 2020, we found

increasing inequality of opportunity driven primarily by racial stratification. While mer-

itocratic dominance tests suggest some improvement in class-based inequality, the inter-

section of complaint incidence curves indicates this improvement may not extend to non-

meritocratic indices. Moreover, our analysis reveals divergent trends between dominant

and marginalized groups: the former, affected primarily by social class, experienced mod-

est improvements, while the latter, impacted by both class and racial stratification, faced

mounting barriers to opportunity. These findings highlight the need for targeted policy

interventions that address both class-based and identity-based barriers to opportunity.

Our measurement framework extends naturally to contexts with different identity mark-

ers and multiple intersecting identities. This flexibility, combined with its ability to sepa-

rately identify class-based and identity-based sources of inequality, makes it a valuable tool

for analyzing disparities in opportunity across diverse social and economic settings.
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A Proof of theorems

Proof of Theorem 1. First note that equation (5) can be rewritten as

I(FY,X,G) = � 1

0
!(e) �

g∈{D,M}
Pr[G = g]�

X
(e, x, g)dFX �G(x�g)de. (34)

Combining equations (14) and (34) we get

I(FY,X,G) = � 1

0
!(e)CI(e,FY,X,G)de. (35)

Similarly, equations (11) and (12) can be rewritten as

I
Strat(FY,X,G) = � 1

0
!(e)CI

Strat(e,FY,X,G)de. (36)

I
Class(FY,X,G) = � 1

0
!(e)CI

Class(e,FY,X,G)de. (37)

Using equation (35), we can write

�I(F 0
Y,X,G, F

1
Y,X,G) = � 1

0
!(e) �CI(e,F 1

Y,X,G) −CI(e,F 0
Y,X,G)�de. (38)

Since !(e) ≥ 0 for all e ∈ [0,1], CI(e,F 1
Y,X,G) − CI(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1] implies

that �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0. Similar results hold for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 and

�I
Class(F 0

Y,X,G, F
1
Y,X,G) ≤ 0. This proves the sufficiency of the condition.

Having provided a sufficiency condition let us now prove for the necessity of the condi-

tion. In order to prove necessity, consider the following social weight function:

!(e) =
���������

0 0 ≤ ec
1�" ec ≤ e ≤ ec + "
0 e ≥ ec + "

(39)

The inequality of opportunity index I"(⋅) having the social weight function in (39) belongs

to ⌦. Now assume that for a arbitrary small " > 0, we have CI(e,F 1
Y,X,G)−CI(e,F 0

Y,X,G) ≤
0 ∀e ∈ [0, ec] ∪ [ec + ",1] and CI(e,F 1

Y,X,G) − CI(e,F 0
Y,X,G) > 0 ∀e ∈ [ec, ec + "]. In this

case, �I"(F 0
Y,X,G, F

1
Y,X,G) > 0. Similar results also hold for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 and

�I
Class(F 0

Y,X,G, F
1
Y,X,G) ≤ 0. This proves the necessity of the condition.
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Proof of Theorems 2 and 3. Integrating by parts equation (38) yields

�I(F 0
Y,X,G, F

1
Y,A,G) = !(e) �CCp(e,F 1

Y,X,G) −CCp(e,F 0
Y,X,G)��10

−� 1

0

d!(e)
de

�CCp(e,F 1
Y,X,G) −CCp(e,F 0

Y,X,G)�de. (40)

or

�I(F 0
Y,X,G, F

1
Y,X,G) = −!(e) �CCm(e,F 1

Y,X,G) −CCm(e,F 0
Y,X,G)��10

+� 1

0

d!(e)
de

�CCm(e,F 1
Y,X,G) −CCm(e,F 0

Y,X,G)�de. (41)

Since CCp(0, FY,X,G) = 0 and !(1) = 0 for all I(⋅) ∈ ⌦P , equation (40) can be rewritten as

�I(F 0
Y,X,G, F

1
Y,X,G) = −� 1

0

d!(e)
de

�CCp(e,F 1
Y,X,G) −CCp(e,F 0

Y,X,G)�de. (42)

Similarly, since CCm(1, F 1
Y,X,G) = 0 and !(0) = 0 for all I(⋅) ∈ ⌦M , equation (41) can be

rewritten as

�I(F 0
Y,X,G, F

1
Y,X,G) = � 1

0

d!(e)
de

�CCm(e,F 1
Y,X,G) −CCm(e,F 0

Y,X,G)�de. (43)

Let us start with equation (42). For indices I(⋅) ∈ ⌦P , d!(e)
de ≤ 0 for all e ∈ [0,1]. This

implies that if CCp(e,F 1
Y,X,G) −CCp(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1] then �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0.

Let us now turn to equation (43). For indices I(⋅) ∈ ⌦M , d!(e)
de ≥ 0 for all e ∈ [0,1]. This

implies that if CCp(e,F 1
Y,X,G) −CCp(e,F 0

Y,X,G) ≤ 0 ∀e ∈ [0,1] then �I(F 0
Y,X,G, F

1
Y,X,G) ≤ 0.

Similar results hold for �I
Strat(F 0

Y,X,G, F
1
Y,X,G) ≤ 0 and �I

Class(F 0
Y,X,G, F

1
Y,X,G) ≤ 0. This

proves the sufficiency of the conditions in Theorems 2 and 3.

Having provided a sufficiency condition let us now prove for the necessity of the con-

dition. In order to prove necessity of the conditions in Theorem 2, consider the following

social weight function:

!(e) =
�����������

2
2ec+" 0 ≤ ec

2(ec+"−e)
"(2ec+") ec ≤ e ≤ ec + "

0 e ≥ ec + "
(44)
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The inequality of opportunity index I"(⋅) having the social weight function in (44) belongs to

⌦P . Now assume that for a arbitrary small " > 0, we have CCp(e,F 1
Y,X,G)−CCp(e,F 0

Y,X,G) ≤
0 ∀e ∈ [0, ec] ∪ [ec + ",1] and CCp(e,F 1

Y,X,G) − CCp(e,F 0
Y,X,G) > 0 ∀e ∈ [ec, ec + "]. In this

case, �I"(F 0
Y,X,G, F

1
Y,X,G) > 0. Similar results also hold for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) ≤ 0 and

�I
Class(F 0

Y,X,G, F
1
Y,X,G) ≤ 0. This proves the necessity of the condition for Theorem 2.

In order to prove necessity of the conditions in Theorem 3, consider the following social

weight function:

!(e) =
�����������

0 0 ≤ ec
2(e−ec)
"(2ec+") ec ≤ e ≤ ec + "

2
2−2ec−" e ≥ ec + "

(45)

The inequality of opportunity index I"(⋅) having the social weight function in (45) be-

longs to ⌦P . Now assume that for a arbitrary small " > 0, we have CCm(e,F 1
Y,X,G) −

CCm(e,F 0
Y,X,G) ≤ 0 ∀e ∈ [0, ec] ∪ [ec + ",1] and CCm(e,F 1

Y,X,G) −CCm(e,F 0
Y,X,G) > 0 ∀e ∈

[ec, ec+"]. In this case, �I"(F 0
Y,X,G, F

1
Y,X,G) > 0. Similar results also hold for �I

Strat(F 0
Y,X,G, F

1
Y,X,G) ≤ 0

and �I
Class(F 0

Y,A,X,G, F
1
Y,X,G) ≤ 0. This proves the necessity of the condition for Theorem

3.

B Details on the Riemann sum approximations for the com-
plaint concentration curves

The Riemann sum approximations for the complaint concentration curves are:

�CCp(e, F̂Y,X,G) = 1

L

L�̀=1�CI(e`, F̂Y,X,G) [e` ≤ e] , (46)

�CC
Strat
p (e, F̂Y,X,G) = 1

L

L�̀=1�CI
Strat(e`, F̂Y,X,G) [e` ≤ e] , (47)

�CC
Class
p (e, F̂Y,X,G) = 1

L

L�̀=1�CI
Class(e`, F̂Y,X,G) [e` ≤ e] , (48)
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�CCm(e, F̂Y,X,G) = 1

L

L�̀=1�CI(e`, F̂Y,X,G) [e` ≥ e] , (49)

�CC
Strat
m (e, F̂Y,X,G) = 1

L

L�̀=1�CI
Strat(e`, F̂Y,X,G) [e` ≥ e] , (50)

and

�CC
Class
m (e, F̂Y,X,G) = 1

L

L�̀=1�CI
Class(e`, F̂Y,X,G) [e` ≥ e] . (51)

If the grid size is small and tail trimming is required, we should adjust equation (46) for

e = " using:

�CCp(", F̂Y,X,G) = " × �CI(", F̂Y,X,G). (52)

Equations (47) and (48) should be adjusted similarly. Additionally, equation (49) should be

adjusted for e = 1 − " using:

�CCm(1 − ", F̂Y,X,G) = " × �CI(1 − ", F̂Y,X,G). (53)

Equations (50) and (51) should be adjusted in a similar manner.

C Bootstrap algorithm

The bootstrap algorithm is constructed as follows. Assume that we have an i.i.d. sample of

size n0 from the random variable corresponding to first theoretical curve L0 and and and i.i.d.

sample of size n1 from the random variable corresponding to the second theoretical curve

C1. Denote those samples by S0 and S1 respectively. Let Ĉ0 and Ĉ1 be the nonparametric

estimators of C0 and C1 respectively, constructed from those two samples. Let

⌧̂ =
�

n0n1

n0 + n1
sup
e
�Ĉ1(e) − Ĉ0(e)�

1. Repeat for b = 1, . . . ,B
(a) Draw a sample of size n0 from S. Compute the nonparametric estimator Ĉ0b.
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(b) Draw a sample of size n1 from S. Compute the nonparametric estimator Ĉ1b.

(c) Compute

⌧̂b =
�

n0n1

n0 + n1
sup
e
�Ĉ1b(e) − Ĉ0b(e) − Ĉ1(e) + Ĉ0(e) + µ̂1,2(n)� ,

where µ̂1,2(n) = �Ĉ1(e) − Ĉ0(e)� {Ĉ1(e) − Ĉ0(e) < ↵(n)}. Donald and Hsu

(2014) explain that ↵(n) should be such that ↵(n) → 0 and
√
n↵(n) → ∞.

We use ↵(n) = −�log(log(n))
10
√
n

2. Using the sample ⌧̂1, . . . , ⌧̂B, compute the bootstrap p-value

1

B

B�
b=1
(⌧̂b > ⌧̂).
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Tables and Figures
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Table 1: Interpretation of dominance tests for a level of significance ↵

p-values Interpretation
p1 ≥ ↵ and p2 ≥ ↵ C1(e) = C0(e)
p1 < ↵ and p2 ≥ ↵ C0(e) ≤ C1(e),∀e ∈ [0,1]
p1 ≥ ↵ and p2 < ↵ C1(e) ≤ C0(e),∀e ∈ [0,1]
p1 < ↵ and p2 < ↵ C0(e) and C1(e) intersect

Table 2: Complaints dominance tests p-values

Year A | Year B Overall Stratification Social Class
∗∗ ∗ ∗ ∗

C2010(e) ≤ C2020(e) 0.5375 0.3363 0.0404
C2020(e) ≤ C2010(e) 0.0100 0.0000 0.0606

∗ ∗ ∗
PC2010(e) ≤ PC2020(e) 0.2883 - 0.2232
PC2020(e) ≤ PC2010(e) 0.0000 - 0.3073

∗ ∗ ∗ ∗∗
MC2010(e) ≤MC2020(e) 0.4294 - 0.0480
MC2020(e) ≤MC2010(e) 0.0000 - 0.6136

∗∗: Dominance at the 0.05 level∗ ∗ ∗: Dominance at the 0.01 level
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Figure 1: Complaint associated with an effort e1 for type (x, g)
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Figure 2: Decomposition of the complaint associated with an effort e1 of type (a, x,M)
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Figure 3: Complaint incidence by racial group, 2010
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Figure 4: Complaint incidence by racial group, 2020
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Figure 5: Complaint incidence curves
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Figure 6: Stratification incidence curves
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Figure 7: Social class complaint incidence curves
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