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Abstract 

A systems analysis perspective is adopted to examine the critical properties of the 
Free/Libre/Open Source Software (FLOSS) mode of innovation, as reflected on the 
SourceForge platform (SF.net). This approach re-scales March’s (1991) framework and 
applies it to characterize the “innovation system” of a “distributed organization” of 
interacting agents in a virtual collaboration environment, rather than to innovation within a 
firm. March (1991) views the process of innovation at the organizational level as the 
coupling of sub-processes of exploration and exploitation. Correspondingly, the innovation 
system of the virtual collaboration environment represented by SF.net is an emergent 
property of two “coupled” processes: one involves  the interactions among agents searching 
the locale for information and knowledge resources to use in designing novel software 
products (i.e., exploration), and the other involves the mobilization of individuals’ 
capabilities for application in the software development projects that become established on 
the platform (i.e., exploitation). The micro-dynamics of this system are studied empirically 
by constructing transition probability matrices representing the movements of 222,835 
SF.net users among 7 different activity states, which range from “lurking” (not contributing 
or contributing to projects without becoming a member) to “laboring” (joining one or more 
projects as members), and to “launching” (founding one or more projects) within each 
successive 6-month interval. The estimated probabilities are found to form first-order 
Markov chains describing ergodic processes. This makes it possible the computation of the 
equilibrium distribution of agents among the states, thereby suppressing transient effects and 
revealing persisting patterns of project-joining and project-launching. The latter show the 
FLOSS innovation system on SF.net to be highly dissipative: a very large proportion of the 
registered “developers” fail to become even minimally active on the platform. There is 
nevertheless an active core of mobile project-joiners, and a (still smaller) core of project 
founders who persist in creating new projects. The structure of these groups’ interactions (as 
displayed within the 3-year period examined) is investigated in detail, and it is shown that it 
would be sufficient to sustain both the exploration and exploitation phases of the platform’s 
global dynamics.  
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1. Introduction: Motivation, Overview and Organization of the Study  

A systems analysis perspective is adopted in this study of the critical properties of the 
Free/Libre/Open Source Software (FLOSS) mode of innovation, as that manifests itself on the SourceForge 
platform (SF.net) – a collaborative development environment that provides infrastructure facilities to host 
open source software development projects. We assess the capabilities of the ensemble of agents in that 
virtual locale, employing March’s (1991) view of the process of innovation at the organizational level as the 
coupling of sub-processes of “exploration” and “exploitation.” The conceptual novelty of the present 
approach, however, scales up March’s well-known framework from the original context of a corporate 
entity, and applies it empirically to study the system of agents interaction on SF.net as a “distributed 
organization.” The “innovation system” that is an emergent property of such environments involves the 
search for information and knowledge resources (in human capabilities) pertaining to opportunities for the 
creation of novel software products (i.e., exploration), as well as for the mobilization and utilization of the 
software development resources that are accessible to the ensemble of projects situated already in this 
representative “virtual industrial district.” (exploitation). 

The result of the analysis is that the FLOSS model exhibits the tendency to increase both the 
involvement of developers in the projects (exploitation of existing knowledge basis) and new project creation 
(exploration of new trajectories). These results assure a certain degree of sustainability to the model in terms 
it innovative performance, but have to be looked at from the perspective of another property emerging from 
the analysis: dissipation. The overall process is in some respects highly dissipative, inasmuch as the 
emergence of a flow of viable new projects entails the mobilization of the attention and efforts of many 
agents. This should not be really surprising, because, like biological evolution, social and economic 
innovation are strongly dissipative processes.. 

 1.1 Motivation: the need for a “systems perspective” on the FLOSS mode of innovation 

When a FLOSS project releases its code under an open source license, this enables developers who 
have not worked on that software to examine it, modify it, discover the source of its performance defects, 
and repair them, and (under some conditions that depend upon the nature of the license1) redistribute both 
the original and the versions that carry their modifications. Other developers may then enter the production 
process, cooperating with the project’s founder and its members to further enlarge and enhance the reliability 
and functionality of the code basis. The cooperative process is open and “fluid”: non-members of the project 
may contribute by submitting bug reports, patches and requests for particular features; project members are 
free to leave, just as new developers can be added at each moment to the project’s team. Every developer 
decides how and how much to contribute. When authoritative structures of governance emerge, they 
typically formalize and render explicit the informal processes that were already at work in the network of 
collaborators (Mateos Garcia and Steinmueller, 2003). The multiplicity of projects, each having its own 
organizational history, generates a variety of “experiments” in different governance structures. 

Similarly, decentralized mechanisms are at work in the relationships among distinct projects. 
Precisely because the development process is undertaken on an open and voluntary basis, coordination is not 
assured. On the supply-side, projects may overlap in some of the features they provide for users and 
developers.2 On the demand side, projects may compete for resources – i.e. developers with specific 
competences or simply developers who are willing to report bugs, or able to submit “patches” that fix a 
problem. Moreover, new projects may be launched at every moment by anyone, and may then attract other 

                                                 
1 On the distinctions between different Open Source licenses see, among others, Lerner and Tirole (2005), and Giuri et 
al. (2002). 
2 Consider, for example, one of the most relevant projects on SF.net: phpMyAdmin (awarded with the “2006 
Community Choice Awards”). The homepage of the project describes it as “phpMyAdmin is a tool written in PHP 
intended to handle the administration of MySQL over the Web. Currently it can create and drop databases, 
create/drop/alter tables, delete/edit/add fields, execute any SQL statement, manage keys on fields.” But other SF.net 
projects have very similar features: remote mysql manager is described as “PHP code to manage a MySQL db over the 
web, Add/Drop databases and tables; Insert/Update/Delete records. Enter your own SQL query. No config files/scripts. 
Small and simple.” Similar duplicative software offerings can be found among other categories of projects hosted by 
SF.net. On a similar point see also Klincewicz (2005). 
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developers, forming a team around them; or they may remain individual undertakings that fulfill the specific 
needs of their founders. 

The foregoing description of the FLOSS development process from a “bird’s-eye perspective” 
makes it evident that to expose the capabilities of the FLOSS mode of innovation there is a need for 
“systems-level” analysis. At the macro level, the literature on “open source” software development has 
focused attention on the organizational attributes and performance achievements of projects belonging to the 
upper tail of the distributions of size (in numbers of contributing developers, lines of code) or activity 
(frequency of releases, email messaging rates).3  The larger ecology of FLOSS projects has been only 
recently been taken into account by considering projects belonging to the whole support of project size and 
productivity distributions (e.g. Lerner and Tirole, 2005; Comino et al., 2005; Giuri et al. 2006a). At the 
“micro” level, many scholars have tried to asses what motivates developers to participate in the activities of 
the FLOSS community (e.g. Shah, 2006; Bagozzi and Dholakia, 2006). The two levels are seldom linked, 
however, which tends to leave unstudied the ways in which the macro-properties of the system emerge from 
the interactions among developers at the micro-level. The present work moves a step in the direction of such 
a systemic assessment of the FLOSS mode of innovation. 

 1.2 Crucial innovation capabilities of the FLOSS mode of innovation 

In setting out this line of inquiry it is necessary to begin by asking what specific properties should be 
examined in order to judge the innovation capabilities of the FLOSS mode of development. The descriptive 
account already offered makes it clear that the “ecology of projects” we are dealing with can be conceived as 
a system composed by different elements interacting with one another. Thus, the innovation capabilities of 
the FLOSS development mode may be better understood by analogy to other systems of innovation that 
feature   self-organized interactions among a multiplicity of entities that form “production projects” around 
fairly narrowly specified goods. The literature on the economics of “industrial districts” is useful in this 
regard. Indeed, an explicit parallel between the Italian industrial district and the FLOSS “mode of 
production,” based on stylized descriptions of the two, has been drawn by Maggioni (2004).   

Like software FLOSS projects, specialized firms can be successful and grow in terms of numbers of 
employees, or fail, so that entrepreneurs can decide to abandon their enterprises and re-enter an inactive 
state, can apply to be hired by other existing firms, or start a completely new enterprise. A closer 
examination of the commonalities between the two systems would not be without interest, but here it is only 
necessary to extent it serves our purposes to use the resemblance between our ecology of software projects 
and the Silicon Valley-like localizations of industry as a way of indicating how the innovation capabilities of 
the aggregation of production activities in a virtual environment may be conceptualized from a systems-
analytical perspective.4   

A first point is that the capacity to grow and sustain innovation in industrial clusters is mainly 
identified with the ability of the locale to activate entrepreneurial innovation. The Silicon Valley experience, 
the recent history of Italy’s Northeastern region and other similar examples show that the vigor of 
“entrepreneurial spirits” constitutes one of the fundamental factors accounting for the spectacular industrial 
development and economic growth experienced by these regions (Saxenian, 1994; Becattini, 2001). 
According to Braunerhjelm and Feldman (2006: p. 7): “One prominent feature of cluster formation seems to 
be the importance of entrepreneurship as an endogenous process, and the emergence and sustainability of 
clusters seem to critically interact with entrepreneurial activities.” Why is the creation of new ventures so 
crucial? As Castilla et al. (2000: p.223) argue, “Part of the importance of these spin-offs is that most 
organizations resist changing their core technologies and structures […]. Thus, upgrading of a regional 
economy occurs especially through new organizations rather than through transformation of existing ones. 
[…] Any region whose institutions or networks resist spin-offs or new entrants may face stagnation.” 

                                                 
3 Among the pioneering studies that set this pattern, see, e.g. Mockus et al. 2000; Krishnamurthy, 2002; von Krogh, 
Spaeth and Lakhani, 2003; Lee and Cole, 2003.   
4 There are also striking parallels to be drawn between the open flows of information and mobility of developers among 
FLOSS projects in the collaboration environment created by SourceForge, and the detailed picture of the  circulation of 
information and of expertise carried by the movements of engineers and entrepreneurs among firms in a high-tech 
industrial district or “cluster”, as may be seen from Lécuyer’s (2005) richly documented account of “the making of 
Silicon Valley” in the era before the 1970’s. 
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Entrepreneurs are crucial for clusters and networks because they are the main drivers of experimentation and 
novelty. This perspective is also adopted by Olsson and Frey (2002: p. 70) in their representation of the 
entrepreneur: “We present a formal model where the body of contemporary technology is regarded as a set in 
a metric ‘technology space’. In this technology space, ideas are separated by ‘technological distance’ and the 
ideas contained in the technology set form an infinite, bounded, closed and connected set. The entrepreneur, 
who expands the technology set by convex, binary combinations of existing ideas, plays the key role in this 
setup.” Entrepreneurs are then conceived as actors expanding the boundaries of the established knowledge 
basis.  

From a system perspective, and especially when referring to self-organized systems, this last point 
has to be framed more broadly, so that the whole set of involved actors are considered. As Anderson (1999: 
p. 222) maintains: “When we observe complex aggregate structures, such as multinational corporations or 
the economic web of Silicon Valley, we need not search for complex building blocks. A defining feature of 
complexity is that self-organization is a natural consequence of interactions between simple agents”. In other 
words, founders of new ventures should not be considered as stand-alone actors, but need to be conceived as 
embedded in a social structure that connects all the agents into one emerging organization. In this context, 
the exploration that many founders undertake entering unknown regions of the technology landscape 
represents the exploration of that wider organization.  

The same process is discussed by March’s (1991) well-known article on exploration and exploitation 
in organizational learning, which identified a series of situations in which exploration, i.e. “things captured 
by terms such as search, variation, risk taking, experimentation, play, flexibility, discovery, innovation” 
(ibid.: p. 71), becomes the key factor in organizational learning and performance. One such case is 
represented by ecologies of projects (ibid: p.84): 

“Multiple, independent projects may have an advantage over a single, coordination effort 
[because the latter] can be expected to do better (on average) than those that are more 
loosely coupled, [but] they also probably can be expected to become more reliable, less 
likely to deviate significantly from their mean performance. The price of reliability, 
however, is a smaller chance of primacy among competitors.” 

In other words, one of the main reason why the high rate of formation of new ventures exhibited by certain 
regions and areas is correlated with more rapid growth is that those new ventures represent the mechanism 
through which the system explores promising parts of the technology-space and product market.  

The conclusion emerging from this brief review of the literature is that to evaluate the innovation 
capabilities of a system such as the FLOSS mode of innovation, it will be necessary to focus on the rate of 
new venture creation -- conceived of as a source of exploration for the whole system. But, as March points 
out, exploration is just one of the processes an organization or a system needs to undertake to sustain its 
growth. On the one hand, it has to be able to produce novelty, exploring the new ideas and developing new 
technologies. On the other hand, and at the same time, it has to be able to allocate the resources it has access 
to exploitation, i.e. “such things as refinement, choice, production, efficiency, selection, implementation, 
execution.” (March, 1991: p. 71). At the level of the industrial system this duality becomes visible when we 
consider the roles that different entities play in the technological advancement of an industry. In such a 
framework one can observe firms acting as explorers, i.e. searching “at the boundaries” of the established 
technological paradigm and thus representing the group of pioneers possibly inducing a paradigm shift, and 
firms moving further along the existing technological trajectory, i.e. exploiting the specificities of the 
established paradigm.5. Exploitation, in this case, means “investing” in the existing technology, while 
exploration takes the form of a shift towards a new set of perceptions, problems, trade-offs and solutions. 

Not being tied to antecedent organizational structures and cognitive schemes, new firms can 
internalize more efficiently and effectively the new perspectives embodied in a new paradigm. Even when 
start-ups do not represent the source of a paradigm shift of the whole system, they are likely to become the 
actors through which the change is realized.  This is a quite general point that has been emphasized in studies 
                                                 
5 “We shall define a ‘technological paradigm’ broadly in accordance with the epistemological definition as an ‘outlook’, 
a set of procedures, a definition of the ‘relevant’ problems and of the specific knowledge related to their solution. We 
shall argue also that each ‘technological paradigm’ defines its own concept of ‘progress’ based on its specific 
technological and economic trade-offs. Then, we will call a ‘technological trajectory’ the direction of advance within a 
technological paradigm.” Dosi, 1982, p. 148. 
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of the emergence of new industrial technologies. In this context Dosi (1982: p. 1) noted that even if “often in 
this century the production of major technological advances has been the result of organized R&D efforts as 
opposed to the ‘inventiveness’ of individuals….[T]his period of emergence of new technologies is actually 
characterized by newly emerging firms, even in cases when the major technological advances were 
originally produced in established firms and institutions. ”  

The relationship between exploitation and exploration is thus far more complex than it may appear 
to be at first sight. March (1991: p.71-72) explicitly suggests the problems a system faces when trying to 
balance exploration and exploitation: 

 "Adaptive systems that engage in exploration to the exclusion of exploitation are likely to 
find that they suffer the costs of experimentation without gaining many of its benefits. They 
exhibit too many undeveloped new ideas and too little distinctive competence. Conversely, 
systems that engage in exploitation to the exclusion of exploration are likely to find 
themselves trapped in suboptimal stable equilibria. As a result, maintaining an appropriate 
balance between exploration and exploitation is a primary factor in system survival and 
prosperity.…Finding an appropriate balance is made particularly difficult by the fact that the 
same issues occur at levels of a nested system – at the individual level, the organizational 
level, and the social system level.” 

Thus, on the one hand, both exploitation and exploration can be conceptualized as processes whose 
premises have to be renewed in each period of time and whose outcome is to a certain extent related to the 
invested resources; and, on the other hand, both processes have a nested structure, as they occur at the 
individual, the organizational and the system level, and those levels are mutually interdependent.   

1.3 Overview and organization of the study  

Examination of the empirical evidence relating to these two capabilities and their interactions can 
shed new light on the sustainability of the FLOSS development system as a mode of innovation. For the 
purposes of this study we are able to draw upon micro-level data pertaining to the activities undertaken 
during the period between the beginning of September 2000 and December 2002 by the entire cohort of 
222,835 individuals who had registered on SF.net during the 14 months from September 1, 2000 through 
October 26, 2001. Using a statistical approach based on Markov chain models of the movements of 
developers among seven defined “activity levels”, it is found that the FLOSS mode of innovation exhibits 
the tendency to increase both the involvement of developers in the existing projects and new projects 
creation. For reasons to be discussed in the following section, we take these two classes of activities as 
manifestations of organizational-level exploitation of existing technologies and exploration of new 
trajectories, respectively. 

 SF.net will thus be seen to be more than simply a site that attracts curious visitors or transient 
developers, and more than a platform that provides convenient facilities for those registrants who bring to it 
their project ideas, already written code, and already organized co-developers, all of which existed before 
they had any significant experience of interacting with others in that environment. Indeed, the environment 
generates a population of new projects launched by cohorts of registrants well after they arrived, and the size 
distribution attained by those projects resembles that of the projects that are in a sense brought to the 
platform by the newly arriving developers. 

 While our findings are consistent with a certain degree of sustainability in  innovative performance, 
they are qualified by an obtrusive feature of the micro-dynamics of the FLOSS development process on the 
SourceForge platform: dissipation. The system is highly dissipative in at least two respects: firstly, only a 
minor fraction of those who register on the platform ever become minimally active contributors to its 
projects, let alone project members; secondly, only a small proportion of the active core of developers 
emerge as founders of new projects. In addition, a very high proportion of the projects launched on the 
platform, some two-thirds in all, had just one single developer in their project group at the end of the period 
of observations.  

These results emerge from a study that is organized as follows. Section 2 re-phrases the research 
questions posed by the introduction in an explicit, operational form. It briefly takes note also of the relevant 
antecedent literature, highlighting some of the relevant conceptual frameworks and noting the respects in 
which the approach adopted here is able to escape from the limitations imposed on earlier empirical research. 
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In section 3 we provide a full account of the dataset employed in this study, its sources, accuracy and 
appropriateness for the research questions that we wish to pursue. The methodology of Markov chain 
analysis is described in section 4, where we describe the “activity” levels that are recognized in the seven 
“states” of the model for which transition probability estimates are computed from the micro-level 
observations of developers’ behaviors. This section also discusses the conditions for establishing whether the 
resulting transition probability matrix describes a stationary and ergodic process, because the properties of 
the latter will be used in the analysis to remove the transient disturbances and thereby expose the underlying 
dynamics of forces operating in the SF.net environment. The estimated transition probabilities are presented 
in Section 5, where the implications of these results are discussed first in regard to what they reveal about the 
dissipative nature of the FLOSS innovation system, and secondly in regard to the stationarity and ergodicity 
of the Markov chain.  

 
Section 6 begins the more detailed data analysis and discussion of the results obtained with our 

Markov model, focusing on project-joining and project-founding by the active population of the cohort of 
developers under examination. It presents a comparison of their initially observed distribution among the 
activity states and the corresponding limiting distribution to which the Markov chain describing the system 
converges.  Section 7 explores the effect of heterogeneities within sub-groups of the projects’ founders, 
showing how the propensity to launch new projects tends to be conditioned by the individual’s prior actions 
as a founder. Section 8 moves the analysis from the examination of Markov chains defined for current 
activity states to the investigation of expected “career histories” showing the number of cumulated projects 
founded and joined by each developer over the observed period. The conclusion of the paper in section 9 
summarizes the findings in terms of the light they shed on the emergent properties of the FLOSS mode of 
innovation as represented by the activity on the SF.net platform, and comments in particular on their broad 
implications for the question of the sustainability of the FLOSS system – rather than the issues of 
sustainability of particular projects. It briefly considers ways in which future research could transcend the 
limitations of this exploratory implementation of the Markovian approach to analyzing the population 
dynamics of ecologies of FLOSS developers and their projects. 
 

2. Research questions, empirical setting and methodology 

In order to articulate a suitable systems-level approach to assessing the “sustainability” of the 
FLOSS mode of innovation, the preceding introductory discussion drew upon the seminal ideas presented by 
March (1991) and other related contributions to the organizational science literature. The present study 
internalizes those contributions by adopting the following research strategies. First, the focus of analysis is 
placed on identifying and characterizing the performance of each of two different phases of the innovative 
process – exploration and exploitation, and on the balance achieved in the coupling between those two sub-
processes. Secondly, the framework of analysis for both sub-processes serves to explicitly connect the micro- 
and macro-structures of the system. Thirdly, the conceptualization of “exploration” at the system level is 
associated empirically with the mobilization of resources around novel enterprises, whereas the observable 
micro-level activity of resources at the disposal of already existing enterprises is associated to the phase of 
“exploitation”. Lastly, the resulting competition for resources between the two processes should be explicitly 
taken into account.  

 2.1 Operationalizing exploration, exploitation and the sustainability of innovation   

How are we to operationally define the concepts of exploration and exploitation in the context of 
FLOSS development, so that an empirical study can proceed in accord with the foregoing conceptual 
approach?  The systems perspective and the importance of explicitly connecting the micro- and macro-
structures of the system suggest that we should begin by focusing on the activities of the constituent agents 
or actors (the developers) and move upwards to the level of their common enterprises (the projects), from 
which perspective the developers appear as mobile resources for which the different projects must compete if 
they are to survive and grow. Applying the analogy of the industrial district, when developers join existing 
teams they can be thought of as resources the community devotes to the “exploitation” phase, moving 
forward the knowledge basis of the community along an already established trajectory. On the other hand,  
and again referring to the district analogy, when new ventures appear in the form of newly created FLOSS 
projects, these represent the allocation of developers’ resources to exploration “at the boundaries” of the 
knowledge basis already mastered by the ensemble of projects established in the virtual locale.   
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It is worth pointing out that the difference between FLOSS projects and firms reinforces this set of 
correspondences. Firms organize the relationship among a group of individuals and develop different 
products over time, but, by contrast, FLOSS projects self-organize around the implementation of one or 
another particular product idea that will be elaborated, extended and maintained by a fluid group of 
developers over the course of its life cycle. Within the framework as set out by March (1991), the activities 
of exploitation and exploration within an industry are seen as being carried on by each of the firms that 
constitute the industry, whereas, in almost all cases in the open source software world, developers willing to 
create an innovative product will launch a new project, and seek to mobilize a team of developers that will 
work to realize their idea.  

The first implication to which this leads is that system-level, or community-level exploitation 
activities can be regarded as those associated with the mobilization and application of resources in existing 
projects, because an established project usually is tied to the development of a specific existing software 
product. When moving to consider community-level exploration activities, however, the argument cannot 
proceed so directly, because as has been noted previously, new FLOSS projects on SF.net are not necessarily 
technologically new. Some projects closely resemble existing ones at the point at which they acquire a 
distinct organizational identity.  This occurs, for example, when new projects originate from the “forking” of 
existing projects, and the "spin-offs" start with basically the same code bases. It may be tempting to think of 
the exploration phase of software innovation as associated simply with the search for technical novelties in 
computer program architectures and the particular ways in which the latter are implemented in the code. 
Given such a view, the ubiquitous reuse of code, as well as of the phenomenon of “forking” in reaction to 
rejection of a proposed alteration in a project’s design, likely lead one to conclude that the FLOSS 
development mode is very limited in its innovative capabilities.6  But, it would be a mistake to limit the view 
new projects’ exploratory significance to their possible broadening of the technological design space, and 
hence dismiss a “forked” project as uninteresting because a substantial proportion of the new entity’s code-
base contains the code of the initial project. 

The potential for economically important software novelty may reside not in the technical 
modifications of the code per se, but in the latter having enabled the project to explore and possibly fill a 
new and growing market niche.7  Innovation is not co-extensive with the introduction of technical novelties, 
and the reapplication of existing product designs and production methods in new market contexts was 
recognized by Schumpeter as entrepreneurial acts of innovation. Furthermore, even when new FLOSS  
projects initially resemble existing ones closely in both technology design and product concept, they tend to 
involve a substantially different group of people, with different skill sets and different conceptualizations of 
their product’s future evolution. As Rosenkopf and Nerkar (2001) show, if organizations innovate through 
boundary-spanning, their exploration has a stronger impact on the evolution of the technology when the 
spanned boundary does not cross different technological domains but overcomes organizational boundaries. 
Knowledge coming from actors "outside the firm" is a source of diversity that can be exploited to escape the 
trap of “local search” and induce wider exploration even when the underlying technology is similar.  The 
                                                 
6 Klincewicz (2005) has concluded, on just such grounds, that the technological innovativeness of FLOSS projects is 
very low: “Decision making processes in many OSS projects are highly formalized, which additionally discourages new 
concepts. It is easier to fork the code, than convince project decision makers to implement certain ideas. An example 
could be Samba TNG (The Next Generation), forked from Samba (file sharing and printer server for Linux 
environment, able to communicate with Windows computers). When innovative architectural suggestions were opposed 
by Samba project leaders, their proponent had no other choice than to launch an independent project in 1999 (Weber 
2004: 169). After 6 years of development, Samba TNG remains a niche project, not included in known Linux 
distributions nor supported by commercial vendors.” (Ibid.:p.19). 
7 Recalling the example from the preceding footnote, in which Samba TNG, the “forked” version of the Samba project 
arose from the misalignment of the developers’ visions of the projects, the difference between the two projects, indeed 
the very meaning of a fork, originated in the disparate architectural concepts that people wished to implement within 
Samba, and which implied different trajectories of exploration in the functional/product space. In this regard, whether 
the new (forked) project proved successful or ended up as a comparative failure, as a dormant occupant of a narrow 
product niche is irrelevant when referring to the capability of new projects to represent community-level exploration. 
Exploration is an inherently risky business.  
9 The role of diversity in enhancing the payoffs from search activities has been treated also from the perspective of 
cognitive psychology, where the value of exposure to different problem- framing and solution skills is emphasized (e.g., 
recently by Page, 2007). An earlier, search-theoretic approach to R&D economics focused on the implications of the 
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same logic applies generally to new ventures whether they take the form of new firms or new communities 
assembled around FLOSS projects. In all these cases people with diverse experiences, cognitive frameworks 
and sets of potential solutions gather together and share their knowledge to form new combinations.9 The 
very fact of a project being organizationally new, connecting some previously non-interacting agents, tends 
to creates greater room for exploration even when the recombinant novelties emerge along an already 
established trajectory. Therefore, new projects, most plausibly are among the primary sites where new ideas 
actually will be implemented and elaborated.  In short, the second proposition at which we have arrived 
holds that if the system’s principal locus of “exploration” is to be found anywhere, then new project 
formation activity would be the obvious and best place to look for it. 

The preceding considerations suggest that our analysis of the innovation capabilities of the FLOSS 
system should be directed to answering the following research questions:   

1) On exploitation: Does the FLOSS system exhibit the tendency to increase the proportion of 
developers laboring in existing projects? 

2) On exploration: Does the FLOSS system exhibit the tendency to increase the proportion of 
developers launching new projects? 

3) On sustainability: What do the answers to the foregoing questions permit one to say about the 
sustainability of the FLOSS innovation mode that is displayed in the SourceForge ecology? 

  2.2 Empirical setting: the SourceForge environment     
To observe an actual ecology of FLOSS projects the present study draws upon data pertaining to the 

individuals and projects that were observed on SourceForge.net (SF.net, at http://sourceforge.net) during the 
period from September 2000 to December 2002. SF.net is an on-line platform managed by SourceForge Inc., 
where FLOSS developers can meet and coherently organize their activities on different projects. SF.net is 
just one of the possible platforms developers can use to coordinate their work, being FreshMeat and 
Savannah notable sites that also host community mode open source software projects. Indeed, SF.net does 
not host the very largest and emblematic projects engaged in what Dalle and David (2005) label “C-mode” 
(for community-mode) production of FLOSS, many of which, like the Linux kernel or Apache, maintain 
their own sites. Nevertheless, as of 10th January 2003, the date of the last observations used in this study10, 73 
development teams on SF.net – including well-known projects like Freenet, BZFlag, Python, and JBoss11 – 
had  membership counts in the range from 30 to 102. These share many of the challenges of coordination, 
contributor recruitment and governance encountered by the largest C-mode entities, and, in that regard (as 
well as in the comparative salience of their products) are readily distinguished from the mass of FLOSS 
projects that were led and staffed by one or two individuals.12 Moreover, SF.net is far and away the most 
densely populated in numbers of project groups and members: at May 9th, 2007, it hosts 147,905 projects and 
has 1,579,588 registered uses, against the 42,815 and 2,757 projects and the 383,282 and 50,267 registered 
users of FreshMeat and Savannah, respectively.  

                                                                                                                                                                  
positive relationship between the second moment of a variate’s distribution and the first moment of the corresponding 
extreme value distribution; this suggested external search as a means of increasing the variance of the underlying 
distribution of opportunities from which selections could be made for development research (see, e.g., David 1974).   
10 The whole set of available data span the period from the beginning of November 1999 to January the 10th, 2003. Our 
analysis focuses on the period from September 2000 to December 2002 because the specific variable we need are 
defined just in that interval.  
11 Notice that some projects host some features outside SF.net. For example, Python (at http://www.python.org/) and 
JBoss (at http://www.jboss.org/). 
12 The latter class of FLOSS projects are labeled I-mode (“independent”) by Dalle and David (2005), who point out that 
the disclosure of source code and terms of licensing, rather than their organization structures and development methods, 
differentiate these projects from their counterparts among the proprietary software companies. FLOSS projects at that 
end of the size range can be created ex post, simply by a decision to distribute pre-existing conventional copyright-
protected software packages under one or another of the licenses that comply with the “open source” definition.   
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Following the foundation of SF.net late in 1999, SourceForge Inc., collected and organized a data 
archive containing a chronological record of the activities of developers and projects hosted on the platform. 
On SF.net individuals can launch their own FLOSS projects, posting the relative code and benefiting from 
the tools the platform offers to manage the cooperative development of software (forums, mailing lists, code 
repositories, and so on). Other registered members can then join these founders and create ecology of teams 
working on FLOSS projects. Or they can simply remain “lurkers” and follow the activity of the hosted 
projects, only seldom sending some kind of contribution to the teams. As it is clear, SF.net constitutes an 
important microcosm of the FLOSS universe, in which a great variety of organizations are found to co-exist, 
some closely resembling one another, and others being very different in size, organizations structure, and 
purpose. Thus, it represents a perfect setting to undertake the system-level analysis described in the previous 
sections.  

The portion of the dataset on which we rely contains observations on the activities undertaken during 
the period between the beginning of September 2000 and December 2002 by a cohort of 222,835 individuals 
that registered on SF.net during the 14 months from September 1, 2000 through October 26, 2001. We 
computed the mean probability that each one of these developers moved from a passive “lurking” state to 
more active states. Two main “active” states are considered, each one proxying one of the two processes we 
are interested in: exploration and exploitation. In particular, we detect if the developer has joined any project 
team (so that she contributes to the exploitation process undertaken by the community) or has founded new 
projects (exploring “at the boundaries” of the knowledge basis already mastered by the community) in a 
certain period of time. Since the probability of movements between a lurking state, a “member” state, or a 
“founder” state can be conceived as a ‘transition probability’, the properties of these transitions can be 
studied applying the statistical apparatus developed for the analysis of Markov processes. In what follows the 
estimation of transition probability matrices and the properties of Markov chains will be employed both 
descriptively and as a means of exposing the persisting micro-level patterns of project-joining and project-
founding, and their relationship to the macro-level innovation capabilities of the FLOSS collaboration 
environment represented on SourceForge. 

 2.3 Role differentiation among developers: the background of related FLOSS community studies  

The aim of the present study is to describe the innovation-generating potential of the FLOSS mode 
of development as these are reflected in the coupled processes of project-founding and project-joining.  To 
our knowledge, this is the first attempt to infer system-level capabilities from the investigation of these two 
processes in the “open source” context.  Moreover, our study helps to shed some more light on the 
phenomenon of FLOSS project founding, a process that appears comparatively neglected in the empirical 
literature. Save for a few exceptions (e.g., Giuri et al. 2006b, and Rullani 2006b), investigations of the 
organization and conduct of community-based peer production have not focused on projects foundation and 
instead focused exclusively upon already established projects, which then makes it natural to concentrate 
attention upon the processes through which FLOSS developers having variegated motivations and skills 
become attracted to one or another  such “community,” and come to take up the variety of  tasks defined 
within those organizational entities. Few such studies have moved beyond snapshot views of the activities 
within projects, whereas the present analysis employs a statistical methodology that is explicitly dynamic in 
identifying distinct roles played by developers over the course of many months. . 

Furthermore, rather than imposing preconceptions about the sequence of role-changing steps that the 
typical FLOSS developer follows in the progressive occupancy of different project roles, the approach 
adopted here provides a framework that uses the available micro-level data on the population of developers 
on SF.net to characterize patterns in the expected rates and directions of their movement among specified 
“development activity states” over successive 6-month time periods. This contrasts with the more usual, 
project-centered empirical approach that presupposes a set of differentiated roles between which individuals 
migrate step-wise – moving from peripheral and infrequent actions to regular attachment to a project and 
thence towards forms of contribution and administrative responsibility successively more and more exacting 
in their experience and skill-requirements, and therefore closer to the supposed “core” of the team working 
on the project in question. The most widely known schema for this structure is the so-called “onion model” 
(Crowston and Howison, 2005), which represents agents in the stylized FLOSS production community as 
being positioned in successive layers radiating outward form a “core” of initiators, release managers, 
maintainers, “core developers”, co-developers, active users, specialized bug-patchers,  and lurkers at the 
edges of the project who follow the threads in the email forum discussions, watch the evolution of the codes 
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in particular sub-projects, and eventually begin to engage with the community on a more regular basis or 
simply remain passive. Much of the research devoted to measuring the relative numbers of the members 
occupying these differentiated roles has taken the form of careful and quite detailed case studies of specific 
projects (e.g. Mockus et al., 2000), while the early empirical efforts to implement the “onion model” were 
confined to static, cross-section analyses (e.g., Crowston and Howison 2005) that precluded observation of 
developers’ moving backwards and forwards between non-adjacent layers of the “onion”, or concurrently 
occupying the same role in more than one project, or taking quite different roles in each of several projects.  

A line of investigation that is more immediately related to the present study has been concerned 
explicitly with the sequential dynamics of FLOSS “project joining.” Pioneering research on this subject was 
carried out by von Krogh, Spaeth and Lakhani (2003) in a case study of Freenet, a project developing a peer-
to-peer system (which as was noted above is among the biggest projects hosted on SF.net in the period of 
analysis). By examining the chronological record of individuals’ appearances in email subscriber lists and 
forum records of bug reports and patch submissions, as well as of the tasks performed as members of the 
project, the authors identify an implicit “joining script” defined by the type, frequency and intensity of 
individual’s engagement; they then measure the distribution of durations that were required for contributors 
to make the passage from the periphery to the core of the project’s code development activities. Jensen and 
Scacchi (2005) also have studied processes of “recruitment and role migration,” focusing on the transitions 
from the role of end-user toward involvement in code development in a number of projects that were 
selected as separate case studies. In contrast to the notion that there is “a” joining script, they find a variety 
of paths, some of which do not conform to the conventional conceptualization of step-by-step progressions 
from periphery toward the project’s core. 

 In a still more recent case study focusing on GNOME,13 Herraiz et al. (2006) also ask whether the 
conventional dynamic interpretation of the onion model is a good representation of the joining process, and   
seek answers by estimating the distribution of transit times between developers’ first instances of performing 
characteristic tasks in the onion’s successive layers. Although it is typical for individuals in the GNOME 
community to have contacted the project by email before beginning to commit code14, conventional 
suppositions regarding the next step in the sequence are violated by most of the GNOME developers’ 
behaviors: for example, they often commit to the project’s CVS before sending their first bug report. In 
general, this study finds striking evidence of the existence of significant heterogeneity in the developers’ 
population with regard to the degree of directness and speed with which individuals move into core 
development work, and tries to put forward hypotheses on the possible variable that could accounting for the 
diversity.15 A different aspect of the internal micro-dynamics is studied by Christley and Madey (2007). The 
authors define roles on the basis of the activities undertaken by developers registered to SF.net, and examine 
temporal changes in the distribution of the occupants of positions associated with those tasks. They find that 
aside from very broadly defined categories such as “Software Developer” and “Handyperson”, the relative 
frequencies of specific task-positions exhibits high rates of decay, and conclude that FLOSS projects 
typically are too small to sustain permanent task-specialization. Rather than dealing with the problems posed 
by trying to find “stable” organizational task-associated roles that could be identified across a wide array of 
projects, the approach pursued here does not attempt to utilize the detailed information available in the 
SF.net archive about group members. Instead it focuses on analysis of a dataset that permits tracking the 
roles occupied by individuals in regard to project participation, project joining and project launching in 
successive time-intervals.  

 

 
 
                                                 
13 GNOME is a large, well known project developing components of a FLOSS desktop environment, which enjoys 
sponsorship from several companies through its foundation http://foundation.gnome.org.  
14 Every time a developer changes the code basis of a project, CVS commits are produced. Thus, their number gives an 
idea of developers’ rate of activity in the production of code and of their role into the project.  
15 The striking results reported by Herraiz et al (2006) is that almost two thirds of the entire small cadre of developers 
that was identified from the CVS as having moved within the shortest time-interval from joining the project into core 
development work with “commit” privileges were discovered to have been professional programmers sent to help the 
project by its sponsoring companies. On this issue the reader can see Dahlander and Wallin (2006). 
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3. The Data 

 3.1 Gathering data from SourceForge: the SFnetDataset 

The statistical analysis is this paper is based upon an edited dataset (referred to here as the 
SFnetDataset) covering the SourceForge cohort of 222,835 individuals who registered on SF.net during the 
14 months from September 1, 2000 through October 26, 2001. There are other datasets relating to SF.net. 
For example, the FlossMole project16  gathers together and gives coherency to different data sources 
(obtained primarily from such platforms as SF.net or Freshmeat) describing FLOSS projects and developers’ 
activities. Another recent initiative, undertaken by a group of researchers of the Notre Dame University, has 
released a series of monthly dumps of the SF.net data archives under a special license (see 
http://www.nd.edu/~oss/Data/data.html).  

 Several previous studies have drawn data from the SF.net site and its repositories to answer a 
variety of questions concerning the phenomena of open source software producers and production. The 
following list is not presented as inclusive, but suggests the richness and multi-dimensional nature of this 
information source. Krishnamurthy (2002), in a pioneering ecological study, examined a sample of project 
groups from the platform, using several indicators to select 100 “mature” projects to study their membership 
size and the activity levels reflected in their email forum discussions and commits to their respective CVS 
repositories. More recently, Madey et al. (2004) have mapped the network of developers’ collaborations as 
members of project groups, Fershtman and Gandal (2004) sought to identify the determinants of variations in 
projects’ average output of code per contributor-member, Lerner and Tirole (2005) examined the 
determinants of the choice of a specific open source license, while Lerner, Pathak and Tirole (2006) have 
drawn upon SourceForge and project web sites to create a dataset of large projects with which to study the 
contribution to FLOSS made by “developers” whose email address is a “.com” domain. Comino et al. (2005) 
have statistically identified factors determining SF.net projects’ attained stages of development. Still more 
recently, Giuri et al. (2006a) have exploited information from the SFnetDataset (the same archival data as is 
used here) in order to study the diversity of skills, experience and the division of labor among the members 
of SF.Net projects extant during 2000-2002; Robles and Gonzalez-Barahona (2006) have utilized time stamp 
and other information collected on first registration to discover the geographical distribution of the more than 
1,180,000 individuals who were listed as registered on SF.net in November 2005. 

 3.2 Accuracy of the data, dataset cleaning methods, and reliability in the present context 

As is the case with many valuable deposits, there are non-negligible “refining” costs entailed in 
exploiting the material extracted from SF.net. Some errors have been found in the procedures followed by 
SF.net maintainers in building summary statistics and storing the data (see Hunt and Johnson, 2002). 
Moreover, even when the collected numbers are corrected, instances of developers’ improper use of the 
facilities provided by SF.net somewhat degrade the accuracy of the resulting statistics (see Howison et al., 
2005). To prepare the SFnetDataset on which this study is based, the original material from the archive was 
first “cleaned” by application of a variety of ad hoc procedures, and a systematic algorithm for inferring 
founders’ identities from partial information has been implemented. Where automated procedures were not 
able to correct suspect data entries or identify a project founder, each problematic item was corrected by 
hand, comparing the available information with other sources of data (other records in the database, the 
SF.net website). In general, some assumptions about specific features of the operation of the SF.net data 
system were unavoidable, while some features of the data prevent the correction of some specific errors.17 
For example, when work on the dataset was first undertaken there was no way to unify different user_id's 
that actually belonged to the same individual. Fortunately, a subsequent estimate of the impact of this and of 
other problems has shown that the resulting residual errors constitute a small fraction of the large number of 
developers involved in most of the processes that are examined by the present study. Moreover, even when 
this percentage I is not insignificant, most of these imperfections are basically random with respect to the 
history of each individual, and thus their net effect in biasing the estimates should be negligible – although 
                                                 
16 FLOSSmole (formerly OSSmole, conveniently accessed at http://ossmole.sourceforge.net/) is a project developing 
tools for gathering data (metrics) about the development of free/libre/open source projects, archiving data donations 
from other research groups, and also publishing the resulting analyses about FLOSS projects. See Howison et al., 2005.  
17 A further discussion on the data can be found in Giuri et al. (2006a), that project being the original context in which 
the dataset was prepared. 
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they contribute to the noise in the data. A series of ad hoc controls on specific sub-samples and the close 
analysis of the aggregate results confirm that any remaining suspicious data can have at most a minor impact 
on the results.18 

A number of previous studies have pointed to a different class of “perils and pitfalls” of working 
with SF.net. Most cautions that have been issued along these lines relate not to errors in the data itself, but to 
mistakes in analysis arising from casual acceptance of the information without an adequate understanding of 
the way in which it had been generated, or collected. Howison and Crowston (2004) and Rainer and Gale 
(2005) both warn against accepting observations based on SF.net as representative of the FLOSS community 
at large, in particular noting the high number of one-person and/or inactive projects hosted by the platform 
and the absence of many of the largest projects, which have their own web-sites. As has been noted 
previously, however, this study treats SF.net and the behaviors of the individual registrants not as 
representatives or exemplars of the universe of distributed collective production communities, but on their 
own terms, as reflecting the experience of a quantitatively important (but nonetheless particular) 
collaborative development environment.  There is another “pitfall” to be borne in mind, which results from 
the platform’s “open-ness”: projects that have been largely developed externally to the SF.net environment, 
even those whose code is hosted elsewhere, may be posted on SF.net in order to give them greater visibility 
(Comino et al., 2005; Howison and Crowston, 2004). Where such is the case, a project that actually was 
important and very much alive (elsewhere), nonetheless, might appear on SF.net to be both small and 
dormant. This however means that the project’s relationship with the platform must be very weak, and the 
role of the project in the whole ecology is likely to be marginal. Our data detect precisely these 
characteristics. Thus, since we focus on the “window” that SF.net offers to look at FLOSS development, this 
problem is to a certain extent irrelevant in our analysis.19  

4. Markov chain analysis  

Given the nature of the SFnetDataset, we need a statistical framework that is able to capture 
parsimoniously the main features of the micro-level processes that are of interest, namely, resources 
mobilization and new projects foundation. The application of Markov chain analysis (see e.g., Amemiya 
1985, Hamilton 1994) is quite suitable for this purpose. In economics and managerial studies this is not a 
new approach, it has been applied widely in studying a variety of dynamical systems – including those 
governing industrial populations (e.g., Ezcurra et al., 2006), income distribution (e.g., McCall, 1971; 
Shorrocks, 1976), growth and regional inequality (e.g., Quah, 1993; Fingleton, 1997; Kremer et al., 2001), 
finance and accounting (e.g., Cyert et al., 1962; Konings and Roodhooft, 1997), and innovation (e.g., Cefis, 
2003). In applying this framework for our present purposes, the appropriate first step is the delineation of a 
manageably compact “state space” describing an exhaustive set of activity-states into which individuals 
observed in the SF.net environment during any interval of time can be classified.  

4.1 Defining the “activities” state space 

Individuals registering on SF.net participate in the activities of this “community” in several basic 
roles: they may “lurk” without interacting with others or with existing projects in any of the several ways 
that the infrastructure of the platform would record. Alternatively, they may send patches, bug reports or 
request specific features to one or more of the established project; enter one or more projects and be listed as 
                                                 
18 In some cases, we also “simulated” what would have happened if some of the most important estimates were different 
(e.g. we smoothed the skewed distributions of some rows) and find that the results are robust. As a final note on the 
limitation of the present analysis notice that we do not control for environmental changes that could have modified the 
conditions in which the individual histories of the users developed. When such changes were identifiable, their impact 
on the analysis was evaluated and always found negligible. For example, we found there were changes in the criteria 
that the SF.net staff applied in approving projects.  Although that could affect the estimated likelihood of founding a 
new project over time, we have analyzed the data in such a way as to minimize the influence of such a changes: the 
limiting distribution in section 7 is estimated using only the cohorts for which that change did not occur, and the 
subsequent analysis (section 8) of the different behavior of the two subset of developers C1 and C2 is undertaken for all 
cohorts, but compares populations that are equally affected by this phenomenon because they were formed by 
approximately the same proportion of individuals in each cohort. Additional ad hoc robustness checks, such as the 
study of the cycle of new projects foundation, similarly show that that the result are not sensitive to those changes. 
19 Note also that the assessment of this latter problem by Comino et al., 2005 concludes, similarly, that in the context of 
SF.net as a whole the absence of data on projects that have their own websites elsewhere is of limited importance.  



 - 12 -

“group members;” and initiate new projects. A scale of activities is implicit in this, ranging from inactive to 
increasingly “active” behaviors, and resources mobilization can be conceived broadly as a transition from the 
lowest to the highest levels of developers’ involvements into the community activity. As a practical matter, 
however, it is useful to recognize only three discrete levels in the “mobilization” of resource inputs: (i) 
contribution of bug reports, patches, and feature requests while remaining external to the projects, (ii) 
participation as internal members of projects, and (iii) the “founding” of new projects. 

Consequently, we distinguish and capture all of these activity/roles by assigning every registrant to 
one and only one among the following set of “activity-states” in each of every 30-day period of her or his 
experience in SF.net: 

0=non member and non founder20, inactive21;  
1=non member and non founder, active;  
2=member22 of 1 project and non founder of any project (both active and inactive);  
3=member of more than 1 projects and non founder of any project (both active and inactive);  
4=founder of 1 project and member of 1 project (both active and inactive);  
5=founder of 1 project and member of more than 1 projects (both active and inactive);  
6=founder of more than 1 project and member of more than 1 projects (both active and inactive).  
 

With the states s=1, 2, …, 6 belonging to space s thus defined, observations on the frequency of the 
movements of individuals from state i in “epoch” Tt to state j in the next temporally adjacent “epoch”, Tt+1 , 
can be used to calculate average state dependent transition probabilities, and the results may then be 
organized to form a transition probability matrix. Treating these estimated mean probabilities as constant, the 
system is a homogeneous Markov chain with transition matrix P(t) = P.  

4.2 Conditions for ergodicity of Markov chains, and their present relevance 

A Markov chain is called ergodic if the distribution of the system among its states at step r, p(r), 
converges to a limiting (or equilibrium) distribution, p, which is independent of the initial distribution p(0).23 
By analysis of the transition matrix P it is possible to establish whether a Markov chain satisfies the 
conditions for ergodicity, which is to say that the iterated transition process eventually will cause the system 
to shake free of any arbitrary initial distribution p(0). When that is the case, it is possible to calculate the 
limiting (ergodic) distribution of developers among activity states. 

In presenting this approach, it is important to emphasize that the limiting (ergodic) states we will 
exhibit are not interpreted here as long-run forecasts, because the length of the period covered by the SF.net 
archive that is under examination here is quite short, and far too brief to allow meaningful predictions for 
this evolving environment. On the contrary, the Markov chain apparatus is here used as a way to expose the 
persisting dynamic forces of the system, abstracting from the effects of transient influences that may have 
affected the initial distribution of the individuals. As Quah suggests with respect to his Markovian analysis 
of countries’ growth paths: “The steady-state distributions should not be read as forecasts of what will 

                                                 
20 The only “foundations” we take into account are those who generated projects whose founders are still part of at the 
end of the month in which they were launched. A part from this minimum requirement, inasmuch as the foregoing 
comparisons aggregate all founders and make no attempt to distinguish the successful from the unsuccessful projects 
that they have launched, there is no warrant here for concluding that there are no individual characteristics or qualities 
of founders that matter, or that would differentiate the successful leaders of new projects from the rest of the 
developers’ population.  
21 The developer is considered active if she did post at least one item classified as “patch”, “bug report” or “feature 
request” to the tracker system of SF.net of at least one project during the analyzed period. Otherwise, she or he is 
considered inactive. Notice that SF.net allows developers to post also other typologies of “artifacts”, for example 
“support requests”. We excluded this category because it did not represent the same level of contribution as bugs, 
patches and feature requests do. Moreover, following Christley and Madey (2005), also the small percentage of artifacts 
(around 3% of the overall number of artifacts) created ad hoc by some project administrators were excluded because 
their level of contribution could not be easily identified. 
22 As done for the foundation activity, an individual is here considered to be a member of a project if she or he enters 
that project in a certain period and is still part of it at the end of that period. 
23 If the Markov chain is ergodic, the probability of remaining in each state goes to a constant (which is the inverse of 
the mean recurrence time) at the limit, and the resulting limiting distribution is found as the solution of p = pP.  
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happen in the future - government policies might change; Important, unforeseen events might occur. Rather, 
these distributions should be interpreted simply as characterizations of tendencies in the post-War history 
that actually realized.” (Quah, 1993; p. 431). In our context, the simulated evolution of the SF.net 
community is just a means of grasping the interaction of the array of forces that have been at work. In other 
words, the Markov chain apparatus is employed as a sort of “centrifugal separation machinery”, allowing 
the observer to see the effects of the persisting internal dynamics of developers’ participation in SF.net. 

The questions that we seek to answer make it necessary to specify the time dimension of the states 
and the transition process by reference to fixed durations of developers’ experiences on the platform, i.e. the 
spans of time elapsed after each individual’s initial entry – which must be defined independently of the 
particular calendar dates on which she or he registered on SF.net. Further, for the purpose of studying 
transitions between any pair of “activity states,” we need to compare the positions of the members of a 
cohort of developers among the activity states in successive “epochs” of uniform duration. Therefore, for a 
given transition, we divide the experience of each developer between two epochs (A and B) that are of equal 
absolute length: TA, corresponding to the days observed on SF.net from x to y, and TB, the days observed 
from y+1 to z, where y - x = z – (y+1).  

To fix the values of x, y and z that bound the two epochs for the distributions of individuals among 
the “activity-states”, it is necessary to consider the temporal structure of the underlying phenomena to which 
those “summary” states refer. In particular, in order to obtain estimates of the transition probabilities that 
form a first-order, or current state-dependent chain, it is important that the duration of those epochs is not so 
brief that the probabilities of any specific transitions from any of the states will be influenced by the 
individual’s position among the states at some more remote, anterior point in time. In Appendix 1 we report 
the considerations that have led to the selection of “standard” observational epochs having durations of 180 
days, on the basis of time series analysis of monthly (30-day) observations of events of project-joining, and, 
similarly of project-founding, for the sub-set of individuals who registered on SF.net during the period from 
September 1, to October 30, 2000. Following this cohort over the ensuing 840 days provides a large enough 
number of 30-day periods (28) to extract the possible cycles by spectral analysis of the two series after 
filtering to remove the trends. 

 
Among the procedural details of this preliminary data analysis that should be mentioned here, the 

first derives from our ultimate concern to examine the behaviors of developers who were active in creating 
or joining projects: the observational sample of individuals in the time-series studies has been restricted to 
the sub-sample who founded or joined at least 1 project during their first 30-day period on the SF.net 
platform. Doing so serves to remove many passive or marginally active registrants from the series examined 
by spectral analysis and thereby render more readily apparent the periodicities of the behaviors of joiners and 
founders. Moreover, this creates a common stating point (the first project launched) for all the individuals, 
and sets the beginning of the series at the moment of the first foundation, thus employing the whole series 
time span to describe successive foundation activities. In the case of the time-series of project-launchings, 
the data from the first two of those 30-day intervals (from day 1 to day 60) were omitted – in order to reduce 
the influence of the “importation” of pre-existing projects in the first months of individuals’ experience of 
the SF.net platform and thereby better reveal such periodicities exist in the “indigenous” process of project-
founding on the platform. Other anomalies were detected in the case project joining, so that the first and the 
last period of the series were omitted from the analysis (see appendix 1 for a discussion on these points).  

  
The upshot of the preliminary data analysis reported in Appendix 1 is, first, that there are indeed 

periodicities in both kinds of events, and second, that these can be taken into account by defining 6-month 
long observational epochs. The latter are sufficiently extended to capture completion of most of the 
important periodic structure of events that drive transitions among the activity-states, yet not so long as to 
foreclose the opportunity to observe more than one typical cycle and thereby prevent examination of the 
temporal stationary of the estimated transition matrix.24  

                                                 
24 It should be clear that this analysis is undertaken solely for the purpose of minimizing the amount of noise (and 
possible bias) by imposing arbitrary periods when calculating the frequencies of transitions between pairs of states. 
There is no intention here of investigating whether it is appropriate to characterize either (or both) of these micro-level 
behaviors as continuous time Markov renewal processes (see Pyke, 1961; Cox, 1962). For applications of Markov chain 
theory and renewal models to micro-demographic data, see, for example, Sheps and Menken (1973).  
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5. A first look at the dynamics of the process 

 In calculating average probabilities of transitions between activity states defined for each pair of 
consecutive 6-month long epochs, the data from the 222,835 registrants during their first 90 days on SF.net 
were not employed. The same considerations that led to discarding the first 60 days of observations on these 
individuals activities for the purposes of the preliminary time series analysis (Appendix 1) apply here: this is 
intended to filter out the effects of “imported projects” and the associated project members among the newest 
cohorts on the platform.25    

   5.1 Estimation of the transition probability matrix 
 

 Thus, in estimating the transition probabilities we considered two intervals: epoch A, based on 
observations that span the 30-day months from the 4th to the 9th (so that x=90 and y=270):  epoch B, based 
on observations pertaining to 30-day intervals 10 to 15 (i.e. z=450). By considering all 222,835 individuals 
who registered on SF.net during the (approximately) 14 months from September 1, 2000 to October 26, 2001 
it was possible to retrieve from the database observations covering each individual’s behavior throughout a 
360-day time span. The distribution of the sample among the seven states at the close of period A is 
presented by Table 1, and for the purposes of this computation we refer to this as the population’s “initial 
distribution”. 
 

Table 1. The Initial (epoch A) distribution of the whole sample  
State  Frequency  Proportion  

0  192051  0.862  
1  2202  0.010  
2  21848  0.098  
3  3280  0.015  
4  1702  0.008  
5  1405  0.006  
6  347  0.002  

 
Entries for the transition probability matrix are obtained using the MLE estimator described by Amemiya 
(1985). The resulting matrix P describing the transition probabilities between the states attained at the end of 
in epoch A (rows) and epoch B (columns) is reported in Table 2 and depicted in Figure 1. The shading of the 
zones in the figure indicates equal probability bands, and the steepness of the gradient between a given band 
and the one adjacent is approximately represented by the width of the band in question. To assess the 
precision of each estimate we also computed the relative standard deviation theoretically, using the formula 
derived by Bode (1998) as reported in Bickenbach and Bode (2001): 
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where pij is the estimated transition probability, ni the number of observations in state i in epoch A. 
 
 We also computed the standard deviation empirically, using the bootstrapping technique. We 
resampled with replacement a number of observations equal to that of the original sample 500 times, we 
estimated the transition probabilities for each one of the 500 new samples, and then we computed the 
standard deviation of their distribution across these samples. The convergence between the results of the two 

                                                 
25 We extended by one more month the set of excluded periods because it is possible that delays in the formal 
organization and launch of projects formed substantially on the basis of “imported code” may extend beyond the initial 
two-month period following registration. The need to extensively restructure the architecture of the code of a project 
that had been previously developed by a closed process, in order to make it more suitable for further development by a 
decentralized, virtual community, was recognized in the well known case of Mozilla. That is only one of the possible 
circumstances that, along with decisions about governance and licensing, might contribute to extended delays between 
the individual registrations by a core of  project developers, and the date of the formal launching of their project. 



 - 15 -

techniques assures the reliability of our standard deviation estimations. Table 2 reports the standard deviation 
(in parenthesis) as obtained through the formula described above. 
  
 

 5.2 A  system property is revealed: resource dissipation  

 The matrix estimates described above reveal the strong inertia within each of states 0, 2 and 3, 
indicated by the high probabilities of persistence  from one 6-month period  to the next.  In particular, state 0 
(inactivity) almost resembles an absorbing state, as there is a 0.98 probability of remaining in state 0 for two 
successive periods. This is shown by the dark region positioned in the upper-left corner of the Figure 1.  By 
contrast, persistence at the higher levels of activity is much rarer: individuals reaching each of the three 
activity states above 3 (all of which involve launching projects) are very likely not to found any new projects 
in the following epoch. Instead, they tend to return to states “lower” than the one just attained: only 4.7% of 
those who reach state 4 (on average) will proceed to join another project in addition to the one they founded 
(state 3), and only 7.3% will launch at least one other project (states 4, 5 and 6) in the following 6-month 
epoch. 
 

Table 2. The transition matrix PAB for the whole sample of SF.Net registrants 

     Epoch B States 
State  0  1  2  3  4  5  6  # 

developers

0 0.9821 
(0.0003) 

0.0072 
(0.0002) 

0.0047 
(0.0002) 

0.0004 
(0.0000) 

0.0046 
(0.0002) 

0.0005 
(0.0001) 

0.0005 
(0.0000) 192051 

1 0.7134 
(0.0096) 

0.2153 
(0.0088) 

0.0395 
(0.0042) 

0.0023 
(0.0010) 

0.0232 
(0.0032) 

0.0050 
(0.0015) 

0.0014 
(0.0008) 2202 

2 0.0485 
(0.0015) 

0.0009 
(0.0002) 

0.8892 
(0.0021) 

0.0295 
(0.0011) 

0.0010 
(0.0002) 

0.0275 
(0.0011) 

0.0034 
(0.0004) 21848 

3 0.0116 
(0.0019) 

0.0000 
(0.0000) 

0.0753 
(0.0046) 

0.8424 
(0.0064) 

0.0003 
(0.0003) 

0.0646 
(0.0043) 

0.0058 
(0.0013) 3280 

4 0.0100 
(0.0024) 

0.0000 
(0.0000) 

0.8702 
(0.0081) 

0.0470 
(0.0051) 

0.0018 
(0.0010) 

0.0652 
(0.0060) 

0.0059 
(0.0019) 1702 

5 0.0021 
(0.0012) 

0.0000 
(0.0000) 

0.0498 
(0.0058) 

0.8206 
(0.0102) 

0.0000 
(0.0000) 

0.1060 
(0.0082) 

0.0214 
(0.0039) 1405 

E
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6 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0115 
(0.0057) 

0.8098 
(0.0211) 

0.0000 
(0.0000) 

0.1268 
(0.0179) 

0.0519 
(0.0119) 347 

 

Figure 1. Representation of the Transition Matrix PAB 
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An intuitively appealing inference is that project launching involves time-consuming commitments, 
and therefore is a current activity state that is only very rarely sustained from one 6-month interval to the 
next. A second consideration undoubtedly is reflected in the specific way lower activity states exert an 
attractive pull on recent project founders: because developers may remain officially recorded by 
SourceForge as members of a project they previously joined, even though they ceased contributing to it 
during the period when they were launching a project of their own, such individuals seem to subsequently 
drop back to the immediately lower activity states (i.e., from 5 to 4 or 4 to 3) just as an artificial consequence 
of the platform’s record-keeping procedures. But the phenomenon cannot be wholly ascribed to that cause, 
because the archives do record the delisting of developers from project groups. Indeed, between September 
2000 and January 2003 about 15,000 individuals were removed from the projects to which they had once 
belonged, and who were participant in 1400 projects lost their group membership status as a result of the 
deletion of the entire project from the SF.net platform. Even if it is true that these “exit” movements 
represent only about one sixth of the “entry” movements due to project joining, new project creation and 
project re-activation, they remain relevant for our interpretation of the observed pattern of transitions. 
Moreover, within the Markov process framework, what really matters is the relative concentration of 
particular transitions in the different rows of the matrix represented in Figure 1. A comparative small number 
of transitions actually may exert a strong influence on the dynamics of the process if they tend to cluster in 
the less populated rows. Given this, the observed degree of inertia in states 2 and 3, even though expected, is 
a non-trivial consequence of the developers’ “laws of motion” on SF.net. 

 
The local strength of state 0 as an “attractor”, as already noted, is another marked asymmetry in the 

dynamics revealed by the estimated transition matrix (Table 2 and Figure 1). Not only is the mean 
probability of exiting state 0 quite small (0.018), but the probability of becoming inactive (state 0) after a 
period of activity as “non-member” (state 1) is almost forty times larger (0.713). Evidently, even those 
developers that enter and maintain a state of minimal activity represent a distinct minority of those who visit 
this FLOSS collaboration environment: for the average registrant on SF.net the probability of a first 
emergence from state 0 in each successive month is 0.003. From this it follows that the likelihoods of 
progressing to project membership and/or project launching (states from 3 to 6) via state 1 (i.e. starting as an 
unattached “lurker”) must be very small.26 At such rates, within a 6-month interval only 1 in two thousand 
registrants could be expected to make a passage such as is envisaged by “the onion model” – from inactivity 
to peripheral activity and thence to project membership.27   

 
It is apparent that if the “onion model” has any substantive empirical relevance here, one must take it 

to pertain to the population of individuals who have some intention of becoming open source developers, 
whereas the great mass of individuals that register on SF.net should be regarded essentially as transient 
“spectators” rather than potential “players.”. Therefore, viewing the boundary of the “active” system 
(defined for any given 6-month period) to be located between states 0 and 1, only those developers that attain 
state 1 will be considered to belong to the region corresponding to the periphery of the onion model. Initial 
project-joining, then, is most reasonably reckoned as a transition from that minimal activity state. One may 
then see directly from Table 2 that the mean probability of entering a project group (state 2) having been “in 
the periphery” (state 1) during a previous 6-month interval is close to 0.0395, and although this really is quite 
low, it still almost 8 times greater than the calculable mean probability (0.0048) of accomplishing the first 
passage to group membership conditional on having not been part of any project on SF.net in a previous 6-
month interval.28 By contrast, once a developer has joined or founded a project, the probability of not 
returning to any of the activity states below 2 is very much higher, indeed, almost a certainty (0.960).  
                                                 
26 Since the 6-month probability (shown in Table 2) for remaining in initial state 0 is 0.9821, the corresponding monthly 
probability of persistence is calculated as the sixth-root, and the mean probability of emerging into activity is found to 
be 0.003, as reported in the text. This calculation assumes that the 6-month transition rates are generated by constant 
monthly probabilities.  
27  From Table 2 the probability of progressing directly to any of the states 2-6 from state 0 via state 1 is found for 6-
month transitions as (0.007) [1-(0.713+0.216)] = 0.0005, where 0.007 is the probability of going from state 0 to state 1, 
0.713 the probability of remaining in state 1, and 0.216 the probability of returning from 1 to state 0. 
28  The estimated mean probability of transiting from state 1 to 2 in a 6-month period is 0.0395 (from Table 2). The 
estimated mean probability of making a first passage to group membership from prior “inactive status” within a 6-
month period (0.0048) is arrived at by considering the interval formed by two consecutive 6-month periods and 
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The preceding results highlight an important characteristic of the dynamical system we are 

examining: the dissipative nature of the FLOSS mode of innovation.” The comparative ease with which 
FLOSS development projects can be launched combines with the mobilization of developers from the ranks 
of those who are at least active in this environment to couple exploration and exploitation processes in a 
highly dissipative system, i.e. a system that is generating outputs by “burning resources” at a high rate.29  

To make this point clearer, we may suppose that developers approaching the platform for the first 
time typically do so in order to examine the code of a particular program, perhaps with the intention of 
downloading and customizing some portion of it to suit some specific needs. In the long run, however, those 
who continue and participate in community activity explain their engagement in FLOSS development by 
citing a completely different set of motivations, such their enjoyment of programming or fixing bugs as 
“hobbyists” (Shah, 2006).30 One explanation for such behavior may be found in their interactions with the 
others in the community: as Rullani (2006b) reports, the more intensely developers are exposed to the social 
environment of a FLOSS project community, the greater is the number of new projects they may be expected 
to launch. Further, the small portion of developers who remain is comprised of those who are the most 
reactive to the stimuli generated during such interactions (Rullani, 2006a).   

Considerable resources are involved in creating and maintaining the sort of interaction environment 
in which such things are likely to happen, and this must not me minimized.  For those individuals to emerge 
in the project-founding activity-states, an enormously larger number – almost 65 times larger -- initially 
visited the platform, as the absolute figures in Table 2 reveal. When one puts aside potential resources 
represented by the mass of transient “sight-seers” from whom nothing is heard after they registered on the 
SF.net platform, one sees that the active population is a little less than an order of magnitude larger than the 
cadre of those who are launching projects. 

But, inasmuch as “innovative output” is something beyond the exploratory process of launching 
projects, and viable outputs entail also the exploitation phase of resource mobilization, development work, 
and the maintenance of maturing projects’ code, a more complete view of the system requires noticing a  
second striking feature of the process: the skewed size-distribution of the projects on SF.net. An aspect of 
this phenomenon was first noticed by Krishnamurthy (2002), who, having studied a sample of 100 “mature” 
SourceForge projects, reported that a surprisingly large proportion of them were far from vibrant 
“communities” of developers; rather, they more closely resembled “caves” inhabited by one or two rather 
dormant occupants.  Being able here to consider the entire population of projects on SF.net in January 2003, 
the situation is found to be much more extreme that suggested by Krishnamurthy’s small sample: of all 
projects that had at least one member, 67% had no more than one member. Thus it  appears that the ecology 
of FLOSS represented on this particular collaborative development environment is generating many new 
ventures that represent “exploration,” but of which only a small fraction succeed in actually mobilizing 
development resources. Another possibility is, of course, that the platform is simply an attractor for many 
pre-existing small software products that already are “mature” when re-released under an “open source” 
license, and, having little need to mobilize additional developers, consequently remain dormant with a single 
administrator/project member. 

 

                                                                                                                                                                  
summing the following probabilities, again taken from Table 2, for : (i) making a direct passage from 0 to 2 in the first 
of these (0.0047), and then in the second period adopting whichever of the behaviors  (i), or (ii) (0.0047)  conditional on 
having remained inactive during the first period (0.9821), plus (iii) entering state 1 from 0 in the first period (0.0072), 
and proceeding thence to state 2 (0.0395). The mean 6-month figure in the text is found as the geometric rate that 
corresponds to the mean probability of making a first passage within the year (0.0097).  
 
29 This allusion to the metaphor of a thermodynamic system hardly is new to the organizational science literature.  For 
example, Anderson (1999:p.222) writes: “Social entities always self-organize as long as their members contribute work; 
this is why informal structures emerge and persist in a way that is remarkably robust to changes in the formal 
organizational structure. Those with influence and/or authority turn the heat up or down on an organization by 
recruiting new sources of energy (e.g., members, suppliers, partners, and customers) …”(Emphasis added)  
30 For general discussion of the economics of FLOSS developers’ motivations, see,Lerner and Tirole (2004); for 
empirical evidence regarding changes in individual developers’expressed reasons for their involvement, see Glott 
(2004), Ghosh, Glott and Krieger (2004), and David and Shapiro (2007).  
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The two foregoing explanations are not mutually exclusive. Yet, were the latter of them to be the 
dominant cause of the observed concentration at the minimum project member size, that certainly would be a 
serious challenge to the view that what is taking place on SF.net represents “exploration” through the 
launching of new projects. Doubts arising on that score, however, can be quickly set aside by comparing the 
size distributions of two groups of projects: the first is the set of projects formed within months 1-3 of their 
founder-members’ respective dates of registration on platform, and the second, larger set is formed from the 
projects that had been launched during months 4-15 of the period commencing with the founder-member’s 
arrival (registration).  Within the first set, projects launched with the first 90 days of the founder’s presence 
on SF.net reasonably can be regarded as “migrant” projects, whereas the second group (formed 90 days or 
more after the founder registered) quite unambiguously are projects that should be viewed as “indigenously” 
generated. It turns out that in each of these two distributions (from months 1-3 vs. months 4-15) only one-
third of the projects with any members had more than a single member in January 2003, in this mapping the 
overall size distribution observed on SF.net in the same date.31    

 
Thus one may say that, SF.net is not just a site that attracts "sightseeing" developers, most of whom 

contribute no resources, and that it is more than a platform that provides convenient facilities for those 
registrants who bring to it their ideas (and possibly co-developers) for projects conceived before they had 
any significant experience of interacting with others in that environment. The environment generates a 
population of new projects launched by cohorts of registrants well after they arrived, and the size distribution 
attained by those projects reproduces that of the projects that are in a sense brought to the platform by the 
active core among the newly arriving developers. Nevertheless, recognition the smallness of the proportion 
of those registered who move into even minimal levels of “activity” suggests that in order to bring the micro-
level processes of project-launching and project-joining into clearer view, attention should now focus on that 
part of the population. The analysis of the following sections therefore leaves the mass of inactive registrants 
(those remaining in state 0) in the background, while continuing to work with Markov transition probability 
matrices estimated from data on individuals’ behaviors during their 4th through 15th months on the platform. 

 
 
 

6. Project-joining and project-founding: the main forces at work  
 

The preceding initial examination of the transition matrix for the system (Table 2) leads to the 
conclusion that, on average, developers tend to decrease their involvement in the SF.net environment. Those 
who are in state 0, 2 or 3 tend to maintain their level of participation, but those in states 1, 4, 5 and 6 are 
strongly attracted by lower activity states. When the dynamics induced by this process is unfolded, one might 
suppose that there would be a marked decrease in the percentage of developers observed to be launching new 
projects, and the overall picture would be found to be characterized by aggregate levels of activity lower than 
those initially observed. But the main mechanisms at work within the system are partially obscured by non-
persistent forces. The analysis in this section shows that when these transient effects are removed – by 
iterating the transition process until it shakes free of the influence of those conditions – then a different 
picture emerges.  

Consider first the steps needed to discern the persistent micro-dynamic processes that are at work 
within the system constituted by SF.net. In order to proceed from the transition probabilities described above 
to the distribution characterizing the “steady state” of the process requires showing the stationarity of the 
Markov chains formed by those estimated transition rates. Observation of SF.net suggests the occurrence of 
some “environmental” changes in the platform over time, so that stability of the developers’ “law of motion” 
is rather unlikely. Statistical analysis of the data confirms that the MLE estimates of the transition 
probabilities in Table 2 for the whole sample of 222,835 developers do not collectively describe a Markov 

                                                 
31 For example, Krisnamurthy (2002: Table 2) reports 22 percent of his sample of mature projects having 1 developer, 
only one-third of the corresponding proportion found by examining the entire SF.net project population at the beginning 
of 2003. Thirty-four percent of Krishnamurthy’s mature project sample fell into the 1-2 developer size range; whereas 
David and Shapiro (2007) find that of a total of 847 FLOSS developers who responded to broadcast web surveys in 
2002-03 and could be subsequently linked to projects of known membership sizes, the 49.8 percent were in projects in 
the 1-2 size range. The distribution of developers by project size naturally would show less concentration at the low end 
of the size range than that observed in the distribution of project sizes.  



 - 19 -

process that is strictly time-stationary within the full span of observation.32 Moreover, when stratifying 
developers in 90-day cohorts according to their “entry period”, it is found that most of the times two 
different cohorts thus formed not only have different initial distributions, they are also characterized by 
different transition probability matrices.33  

To partly mitigate the effect of the absence of stationarity in the process described by the transition 
matrix for the whole population of registrants in the SFnetDataset (Table 2), in what follows our analysis of 
the properties revealed by the iterated Markov chain will be based on re-estimating the transition probability 
matrix for the same consecutive 6-month epochs A and B using only the data pertaining to members of the 
last among the cohorts of registrants. The sample population that can be used for this purpose is thus  
reduced to the 79,983 individuals whose entry dates fell within the 120 day span extending from June 28th to 
October 26th, 2001. Table 3 presents the transition probability matrix obtained by the MLE method applied to 
this data, where it is denoted as (PAB)last.  

Finding the limiting distribution implied by these transition probabilities requires that one first 
establish that (PAB)last determines a regular Markov chain, or has an absorbing state. While one may see 
immediately from Table 3 that there are some zero elements in that matrix (as it was the case also for PAB 
shown in Table 2), it turns out that all the entries in the third power of the matrix are positive, so that (PAB)last 
is indeed a regular transition matrix and its associated Markov chain is regular. 

Table 3. The transition matrix (PAB)last for registrants from June 28th to October 26th, 2001. 

     Epoch B States 
States  0  1  2  3  4  5  6  # developers 

0 0.9845 
(0.0005) 

0.0063 
(0.0003) 

0.0037 
(0.0002) 

0.0004 
(0.0001) 

0.0041 
(0.0002) 

0.0004 
(0.0001) 

0.0006 
(0.0001) 70766 

1 0.7241 
(0.0157) 

0.2143 
(0.0144) 

0.0369 
(0.0066) 

0.0025 
(0.0017) 

0.0172 
(0.0046) 

0.0025 
(0.0017) 

0.0025 
(0.0017) 812 

2 0.0561 
(0.0029) 

0.0009 
(0.0004) 

0.8882 
(0.0039) 

0.0249 
(0.0019) 

0.0009 
(0.0004) 

0.0266 
(0.0020) 

0.0023 
(0.0006) 6458 

3 0.0139 
(0.0038) 

0.0000 
(0.0000) 

0.0897 
(0.0093) 

0.8301 
(0.0123) 

0.0011 
(0.0011) 

0.0577 
(0.0076) 

0.0075 
(0.0028) 936 
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4 0.0116 
(0.0047) 

0.0000 
(0.0000) 

0.8702 
(0.0148) 

0.0407 
(0.0087) 

0.0039 
(0.0027) 

0.0678 
(0.0111) 

0.0058 
(0.0033) 516 

                                                 
32 To illustrate this we can compare Pab (i.e. the matrix expressing developers’ movements from the first 180 days of 
their experience in SF.net, epoch A, to the second 180-day, epoch B) to Pbc, representing the movements of the same 
developers from the second (B) to the third 180-day epoch (C). If the “law of motion” is time invariant, the two 
matrixes should be the very similar. To see if this is the case, we use the Bickenbach and Bode’s (2001: p. 12) statistic 
aimed at testing whether the estimated transition probability pij significantly differs from a specified value pij

0 (the test 
is a modified version of the test by Anderson and Goodman’s, 1957: p. 97). We perform two different tests considering 
alternatively Pab or Pbc as the matrix containing the non-random elements pij

0. As said, the test is just an illustrative 
assessment of the difference, because we “fix” one matrix as non-random. However, the results are useful in showing 
what we already expected: Considering Pbc as the non-random matrix, the test-statistic χ2(34) is equal to 279.99, much 
larger the critical value for the 1% level of significance (56.06). Similar numbers are found when Pab is taken to be the 
non-random matrix: χ2(32)=244.34 and critical value for 1%=53.49. The distance between the values of the statistics 
and the critical values illustrate precisely the difficulties in assuming the “law of motion” behind P as stable.  
33 To test for equality of initial distributions we took two samples (two cohorts or one cohort and the whole sample) and 
create a dichotomous variable distinguishing between the two. Then we used a logistic regression model to estimate the 
effect of being in each state on the probability of belonging to a specific initial distribution. If at least one coefficient is 
significant this corresponds to a situation in which being in a specific state makes it more likely to belong to one initial 
distribution instead of the other, and thus corresponds to the situation in which the two distributions can be considered 
different. To test for the equality of the transition matrixes we used the test proposed by Bickenbach and Bode (2001: p. 
8). This test is an adaptation of the Anderson and Goodman’s (1957: p. 99) that can be used to check for homogeneity 
with respect to the entry period and other exogenous traits.  
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5 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0670 
(0.0122) 

0.7847 
(0.0201) 

0.0000 
(0.0000) 

0.1196 
(0.0159) 

0.0287 
(0.0082) 418 

6 0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.7922 
(0.0462) 

0.0000 
(0.0000) 

0.1299 
(0.0383) 

0.0779 
(0.0305) 77 

 
Since regular Markov chains are ergodic, one may readily solve for the unique limiting distribution 

of the population among all the states of the system (see Amemiya 1985, p. 421). The result from the 
transitions probability matrix in Table 3 is reported in Table 4, and graphed on a logarithmic scale in Figure 
2, where it is compare with the corresponding values of the initial distribution for the same cohort.  

Table 4 shows that in the limit, those who do not belong to any project represent about 80% of the 
population, while about 18% of the individuals become part of one or more projects. The remaining 1-2% 
fall into one state corresponding to new projects foundation. When one moves from the static view to a more 
dynamic picture by comparing these estimates of the limiting distribution with the initial distribution for the 
same sample,34 quite different properties of the system appear. The comparison reveals the tendency for the 
overall proportion of lurkers to contract, and for an increasing fraction of developers to occupy states 2 and 
3: those remaining in passive states become less prevalent, and the joining of existing projects becomes a 
more widely diffused behavior. Moreover, an enlarged proportion of developers wind up in one of the two 
states associated with the most active participation and new projects foundation (states 5 and 6).    

Table 4. Initial and limiting distributions: developers stratified by their state(s) in month 3 on SF.net. 

Distribution State 0 State 1 State 2 State 3 State 4 State 5 State 6 
Initial 0.885 0.010 0.081 0.012 0.007 0.005 0.001 

Limiting 0.792 0.007 0.118 0.070 0.004 0.009 0.002 
L – I -0.093 -0.004 0.037 0.058 -0.003 0.004 0.001 

Figure 2. Initial and limiting distributions for registrants from June 28th to October 26th, 2001. 

 
The difference really is striking. From Table 4 one might draw the conclusion that the “attractive 

power” of system’s inactive states, and especially of the state 0, would be in the limit all but overwhelming, 
and  most of the individuals not ending there – those in states 2 and 3 – would slightly increase their 

                                                 
34 Kremer, Onatski and Stock (2001) test some hypotheses on the ergodic distribution imposing a specific assumption 
on the “true” transition probabilities. They notice that “Without [this assumption], simple linear restrictions on π would 
be equivalent to complex nonlinear restrictions on the transition probabilities, so that one would expect very bad finite 
sample properties of the asymptotic test”, Kremer et al. (2001), p. 14. Quah (1993) computes the limiting distribution to 
discuss the law of motion of the underlying Markov process and performs some robustness checks to be sure of the 
results he unfolds. This second methodology is also appropriate here where the dissipation property discussed earlier 
generates the need to amplify small, even apparently non significant, signals. 
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proportion. Moreover, Table 4 also discloses that the number of developers who continue to enter existing 
projects rise markedly (the proportion in state 3 increases by 5.83 times), and limiting proportions of 
developers launching multiple projects (states 5 and 6) are approximately twice as large as they are in the 
initial distribution. In other words, absent other changes, there is an underlying tendency for greater 
“exploratory vigor” and “exploitation activity” to emerge, especially among those who become minimally 
active on the platform. These findings are robust to different specifications. The estimated matrix in Table 3 
may be compared to the matrix estimated from a still smaller sample of observations in a later entry cohort – 
namely that for the last two months in the available sequence (from August 27th to October 26th, 2001). In 
both cases the associated Markov chains converge to a unique distribution which exhibits the properties of 
the process that have just been described.   

These observations, combined with the necessity of highlighting the micro-dynamics FLOSS 
development activity against the background of the system’s dissipative nature, reveal that the FLOSS mode 
of innovation is able to generate a substantial amount of both exploration and exploitation. 
 

7. Exploring the heterogeneity of the sub-population of “project founders”  

Having examined the implications for the limiting rates of project participation and the consequent 
mobilization of development resources implied by the estimated transition probabilities in Figure 2, we now 
focus specifically on the micro-dynamics of project-founding.  

 7.1 The persistence of “exploratory spirits” 

The previous picture may be enriched by assessing how “persistent” or “durable” is the “exploratory 
spirit” among those who emerge in the founder’s role on SF.net. Consider only those developers registered 
from September 1, 2000, to October 26, 2001, who founded at least one project in the first 15 periods of their 
experience on the platform: when a developer in this sub-group is involved at least in a single project, the 
probability that he or she has founded that project is increasing slightly during the first three months, on 
average, but decreases thereafter. This fluctuation, however, has a range of only a few percentage points, so 
that probability can be reasonably viewed as stable in the neighborhood of 0.90. An implication following 
from this line of considerations is that exploration is not being undertaken at the expenses of exploitation, 
since founders tend to remain part of the projects they have launched – even though in the case of  
unsuccessful projects this simply means remaining listed as a member of a moribund project while re-
directing their energies elsewhere. 

 7.2 The timing of the realization of “exploratory spirits” 

By stratifying the sample according to the developers’ founding activity it is possible to further 
clarify the different expressions of this “exploratory spirit.” In particular, we may proceed by dividing the 
whole population into three sub-samples according to the period within which the developers launched their 
first projects: in the intervals [1 – 15], [4 – 15] and [1 – 3]. The last interval comprehends those periods we 
excluded in the first place precisely because we are now interested in investigating if the initial “urge” to 
found new projects (or to import form outside SF.net already existing projects) has any consequences on the 
dynamics of the possible subsequent new projects foundations. Moreover, this group can be used as a 
benchmark to evaluate how much “persistent” is the activity of those who launch projects in a later phase of 
their experience in SF.net and how much important is their role as “explorers”. 

Notice that, as was the practice in the previous sections when comparing these subsamples,  the  
cohorts from months 11 to 14 are the ones to be considered. This is because – as it has been shown – cohorts 
follow different “laws of motion” and are differently affected by changes in their environment on the 
platform. Aggregating all the developers would render it impossible to separate the effect of the different 
cohort compositions from the average “law of motion.” But, given that we are now concerned with 
subsamples of the already limited population of founders, to constrain our analysis to cohorts from months 
11 to 14 will seriously decreases the available number of observations and result in imprecise estimates, very 
sensitive to the possible errors in the data. To overcome the latter problem, we studied the inner structure of 
each sample. As Figure 3 shows, the cohort composition is basically the same for the two samples. Since we 
derive our conclusions from the comparison between the two groups of developers, every factor influencing 
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the different behavior of each cohort is affecting a very similar proportion of users in both the samples, so 
that its effect should not influence the results of the comparison. 

The negative side of this strategy is that we lose the specificities of the last cohorts, and instead look 
at a sort of “weighted average behavior” across all the cohorts. Given that we do not want to produce 
forecasts, but observe the emerging trends in the window of analysis, this loss seems something the analysis 
can bear. Moreover, the cohort composition appears to be even also inside each sample, being every cohort’s 
contribution between 6 and 9 per cent of the overall number of developers in the subsample. This assures 
that the incidence of each cohort in determining the observed behavior is the very close to that of the other 
cohorts in the sample. Thus, no cohorts are “privileged” and the outcome of the process can be thought of as 
representative of the whole population of SF.net captured by the sample. 

             Figure 3. cohorts composition for the two subsample of founders in [1 - 3] and [4 - 15] 

 
Aggregating all the developers in the population (sample A, n=222,835) and stratifying them as 

described, we form: subsample B (founders in period 1 – 15; n=15,825); subsample C1 (founders in period 4 
– 15; n=5,514); subsample C2 (founders in period 1 – 3; n=11,875). Notice that these groups are not 
mutually exclusive: developers founding projects in the first 90 days of their experience in SF.net and in the 
subsequent 6 months (about 1500 individuals) will be considered as part of C1 as well as of C2. By 
comparing these samples, it is possible to derive some insights regarding the “timing” of project founding 
and its relationship with repetitive, persistent exploration.  

 
Table 5. Initial and limiting distributions according to the period of project launching 

  

Sample Distrib. State 
0 

State 
1 

State 
2 

State 
3 

State 
4 

State 
5 

State 
6 

# 
devel. 

Iter. 
to eq.

Initial 0.862 0.010 0.098 0.015 0.008 0.006 0.002   
Limiting 0.727 0.007 0.141 0.107 0.004 0.013 0.002 222835 177 

A (whole 
population, 
n=222835) L - I -0.135 -0.003 0.043 0.092 -0.004 0.007 0.000   
           

Initial 0.074 0.004 0.584 0.119 0.108 0.089 0.022   
Limiting 0.004 0.000 0.310 0.573 0.004 0.097 0.011 15825 43 

B (founders in 
period 1 – 15, 
n=15825) L - I -0.070 -0.004 -0.274 0.454 -0.104 0.008 -0.011   
           

Initial 0.193 0.012 0.126 0.042 0.309 0.255 0.063   
Limiting 0.001 0.000 0.028 0.436 0.004 0.480 0.052 5514 47 

C1 (founders in 
period 4 – 15, 
n=5514) L - I -0.192 -0.012 -0.098 0.394 -0.305 0.225 -0.011   
           

Initial 0.009 0.000 0.756 0.153 0.000 0.068 0.013   
Limiting 0.140 0.004 0.326 0.460 0.003 0.059 0.008 11875 224 

C2 (founders in 
period 1 – 3, 
n=11875) L - I 0.131 0.004 -0.430 0.307 0.003 -0.009 -0.005   
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We begin by looking at the initial distributions of sub-sample C2 in Table 5. The group of 
developers founding at least 1 project in the first 90 days of their experience in SF.net is distributed in the 
following 6 months in a rather different way than the developers belonging to sample C1. Part of this 
difference is due to the definition of the subsamples: C1 is composed of developers founding projects from 
period 4 to period 15, and who therefore have greater opportunities to reach states 4, 5 and 6 in greater 
proportions. But, the table also reveals – in the high proportion of those developers moving to state 2 – that 
during periods from 4 to 9 a great proportion of C2-type developers do tend to remain part of the project they 
have founded (or, if they leave the one they have founded, just join another project). In other words, their 
“exploratory drive” seems largely confined to first projects they launched after arriving on the platform (and 
which may well have had it origins in an externally formed software package). On the contrary, a high 
proportion of C1-type developers founded projects in periods 4-9. In particular, state 4 -- which corresponds 
roughly to being a member only in the project founded by the individual in question -- shows that a 
consistent portion of C1-type developers launch their projects in periods 4-9 without having founded any 
project during the previous three “months”. This marks the difference between the two groups of developers.  

Consider now how these initial distributions evolve over time, and in particular focus on the speed at 
which each process converges to the equilibrium. In Table 5, and in all the subsequent tables, we report the 
number of iteration t needed for each row of the transition matrix P 

t to match the limiting distribution 
(allowing 0.0009 as maximum discrepancy for each element). This can be considered a rather rough measure 
of the convergence speed, but it is intuitively clear and easy to implement computationally. Another more 
sophisticated measure has been used to check for robustness, as Appendix 2 explains.  

When examining the number of iterations needed for the process to reach the equilibrium it is easy 
to see that developers belonging to sample C2 are much slower in reaching the limiting distribution than the 
C1-type developers.35 The interesting thing is that when C1 and C2-types are pooled together in sample B, 
the number of iterations needed to reach the limiting distribution is very close to, and even a bit smaller than, 
the corresponding number for the C1 sub-group. Even if those developers who founded a project in periods 
4-15 comprise half of those who founded a project in periods 1-3, they appear to be those who really are 
driving the process, and that would qualify C1-type developers for recognition as the cadre responsible for 
the continuity of the SF.net “exploratory spirits”.  

Further results in the same vein can be extracted from Table 5. Among C1-type developers, the limiting 
proportions states 0 and 1 shrink in relation to the initial distribution to a point that the disappearance of 
“lurkers” is almost complete. C2-type developers, however, tend to be driven in the opposite direction, with 
the proportion of lurkers starting at a level close to zero and becoming larger in the limiting distribution. 
Moreover, the greater tendency of this latter group of developers to join existing projects rather than creating 
new ones is confirmed by the enlarged proportion that tend to wind up in state 3 – at the expense of state 2. 
In addition, it may be observed that C1-type developers confirm their “vocation” in that the proportion 
settling in state 5, at the expense of state 4, reflects their tendency to not only belong to multiple projects but 
go on launching new ones.  

 

8. “SourceForge careers”: a retrospective view of project joining and project founding  

The analysis to this point has sought to describe current activity states and the distributions of the 
SF.net population among them. But career histories and their cumulative achievements also are of interest: 
individuals’ careers are relevant to their acquisition of experience and reputations, and sometimes to their 
futures, even in circumstances where “history does not matter” in the strong sense of dynamic processes 
being “path dependent.”36 In what follows, the focus is explicitly historical or, more properly speaking, 

                                                 
35 It has been found that the transition matrixes pertaining to sub-samples B and C1 both have a single transient state, 
namely state 1. This jeopardizes the ergodic properties of the associated Markov processes. Moreover the fine grain of 
the state definition determines few C2-type developers falling in state 1 and 4 in epoch A of the relative transition 
matrix, so that the relative estimates are basically “weak”. Eventually, again for sample C1, state 0 results in a very 
skewed distribution at the end of epoch A. Such “weak” result needs to be carefully judged and imply an additional set 
of checks for the robustness of the results. All these analysis are described in Appendix 3. 
36 See David (2001, 2007) on the formal conceptualization of path dependence in terms of non-ergodic dynamical 
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retrospective, in that the analysis focuses on the cumulative experiences of project joining and project 
launching among the developers on SF.net during these early years of the platform’s collective history.  
Although it would be possible to use the current activity transition matrices to generate a stochastic 
simulation of the distributions of individual careers that are implied by the constant activity-state dependent 
transition probabilities obtained from the analysis already described, we here opt to construct a simpler 
descriptive apparatus. This approach defines a new set of “states” in terms of “cumulative career 
achievement,” and estimates the corresponding transition probabilities for the resulting triangular matrices.37 

 8.1 Career dynamics: project-founding 

 Consider first developers’ distribution with respect to the cumulated number of founded projects in 
the whole time span of the transition matrix (from period 4th to 15th). Ideally, using one state for each 
possible number of founded projects would be the perfect representation of the process, able to account for 
all the steps along developers’ path towards a higher level of participation. However, when the number of 
founded projects is taken as the measure discriminating among the states we are going to build, aggregating 
those developers who found more than two projects is a necessary condition to assure that developers 
“falling” into the states relative to the highest number of founded projects are, both in terms of absolute 
number and as a percentage of the whole sample, enough to yield accurate probability estimates. This 
procedure also helps in setting the higher level of activity in terms that are not absolute, but with respect to 
the distribution of the foundation activity itself. This will turn out to be useful in subsequent comparisons. 

 Given this constraint, two definitions for the states are possible: 

State space 1: 
0=founder of 0 projects in periods 4-15;  
1=founder of 1 project (p. 4-15); 
2=founder of 2 projects (p. 4-15); 
3=founder of more than 2 projects (p. 4-15). 

State space 2: 
0=founder of 0 projects (p. 4-15);  
1=founder of at least 1 project (p. 4-15). 
 

 

State space 1 takes into account the foundation activity at a finer grain, while states space 2 is useful 
in isolating the passage from being a non-founder to becoming one. Accordingly, two different transition 
matrices have been constructed to describe developers’ movements in these career state spaces. In each 
matrix the initial state is assigned according to the number of projects developer i founds from period 4 to 
period 9, while her or his state in the next epoch is determined by the cumulated number of projects she or he 
has launched since the beginning of the process, i.e. from period 4 to period 15. Notice that these two periods 
are precisely epochs A and B used in section 3. Because this strategy inevitably produces triangular matrixes, 
it is likely to result in Markov chains that have an absorbing state at whatever is designated to be the highest 
recognized number of founded projects. Thus, limiting distributions are not relevant in this case. Instead, the 
focus here is on the properties of the process, including the speed with which the overwhelming proportion 
of initial cohorts of developers eventually reaches the absorbing state.  

A point to be noted at the outset is that however the state is defined, and whatever the initial 
population cohort considered, the Markov chain for processes of this kind generates results with common 
features in terms of the shapes of curves tracing the distributions among the states over time. In particular, 
state 0 and the absorbing state have an inverse monotonic behavior, whereas all the other states initially 
increase their proportion of developers and then slowly decrease it towards 0. But those commonalities aside, 
the results of the analysis are quite different in terms of the initial distributions, their subsequent values, the 
number of iterations at which the highest proportion of developers is reached in each of the states, and the 
total number of iterations needed to reach the equilibrium where all the developers are in the absorbing state. 
These properties of the evolving distributions are summarized in Table 6.  

 Comparing the number of iterations the four samples considered above require to reach the 
absorbing state, a first conclusion is that those who found a project in the periods between 4 and 15 “move 

                                                                                                                                                                  
systems – a condition that, as has been shown here, does not obtain in the case of the Markov chains describing the 
behavior of the developer population on SF.net.   
37 Triangularity of the transition matrix is implied by keeping cumulative track of events, which cannot reverse project 
joining and foundings: all progressions through the career achievement states must be unidirectionally upwards.  
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faster” than all the other groups. In the case of state space 1, the number of iterations (78) after which this 
group (C1) as a whole would have founded 3 or more projects is much smaller than the number needed for 
the whole population (749); and it is smaller than the number of iterations required by  group C2 (136). 
Moreover, the representative individual in group C1 seems to develop greater “career momentum”: when C1 
and C2 are pooled together in B, the iterations required to reach the absorbing state decrease from 136 to 86, 
thus moving much closer to 78. This finding parallels the results obtained in the previous section, namely 
that those who founded projects later turn out to be more likely to found new projects in the future within a 
shorter interval, and to “lead the ranks” of all the founders on the platform in this subsequent exploratory 
phase.38  

Table 6. Evolution of the distributions (number of projects founded): two alternative state spaces 

States State space Sample Property 
0 1 2 3 

Iterations 
to equil. 

 Init. Distribution 0.984 0.014 0.001 0.000  
1 Value of the max 0.984 0.069 0.044 1.000 749 
 

A (whole 
population, 
n=222835) Max at iteration 0 23-24 32-35 749  

        
 Init. Distribution 0.782 0.196 0.017 0.005  
 Value of the max 0.782 0.458 0.227 1.000 86 
 

B (founders in 
period 1 – 15, 

n=15825) Max at iteration 0 6 12 86  
        
 Init. Distribution 0.374 0.563 0.049 0.014  
 Value of the max 0.374 0.766 0.275 1.000 78 
 

C1 (founders in 
period 4 – 15, 

n=5514) Max at iteration 0 1 7 78  
        
 Init. Distribution 0.918 0.068 0.010 0.004  
 Value of the max 0.918 0.204 0.108 1.000 136 
 

C2 (founders in 
period 1 – 3, 

n=11875) Max at iteration 0 9 14 136  
        
 Init. Distribution 0.984 0.016    
2 Value of the max 0.984 1.000   733 
 

A (whole 
population, 
n=222835) Max at iteration 0 733    

        
 Init. Distribution 0.782 0.218    
 Value of the max 0.782 1.000   38 
 

B (founders in 
period 1 – 15, 

n=15825) Max at iteration 0 38    
        
 Init. Distribution 0.374 0.626    
 Value of the max 0.374 1.000   1 
 

C1 (founders in 
period 4 – 15, 

n=5514) Max at iteration 0 1    
        
 Init. Distribution 0.918 0.082    
 Value of the max 0.918 1.000   124 
 

C2 (founders in 
period 1 – 3, 

n=11875) Max at iteration 0 124    
 

 Compare now the result relative to the two state spaces, so that the properties of the passage 
becoming a founder and evolving to the role of “serial founder” (i.e. repeatedly launching new projects) 
become clear. Within state space 2, C2-type developers are more likely to subsequently be in the status of 
non-founders (state 0); but when they progress to founding new projects, they do so en mass. This can be 
seen from the difference between the 124 iterations needed to reach the equilibrium in state space 2, where 
every developer has founded at least one project, and the 136 iterations needed to bring every developer to 

                                                 
38 Notice that the results for C1 under the definition of state space 2 – in which only one iteration put the group in the 
absorbing state – is not informative, as it would appear to be merely a consequence of way that group C1 has been 
defined. 
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the level of having founded more than 2 projects.  That difference is much smaller than the one observed for 
C1-type developers (78 vis-à-vis 1). Moreover, as far as state space 1 is concerned, the maximum level of 
state 2 is reached earlier and with higher proportions of developers in the case of subsample C1. This is due 
to the specific definition of the subsample C1, which requires developers to have founded at least one project 
in the periods from 4 to the 15. But that “bias” is not off-set by a faster approach to the equilibrium: both 
sub-samples C1 and C2 reach the maximum of state 2 in one-tenth of the total number of iterations needed 
to arrive at the absorbing state. C2-type developers seems faster in climbing the stairs of “serial founding” 
than developers belonging to sample C1. 

In sum, the foregoing analysis confirms this simple characterization of the difference between the 
sub-samples C1 and C2: that the smaller sample of “late launchers” is the core of the “exploratory engine” 
of the community. However, it also characterizes their activity in a non-trivial way. These developers are 
more likely to start new projects thereafter, but at a lower rate than those very few “early launchers” who try 
to launch a new project for the second time. So, this turns out to be yet another story of the (few) early-
starting turtles who are able to overtake the hesitant hares.  

The lesson we learn from this is that those developers whose “exploratory spirit” appears to be 
crucial for the expansion of the knowledge basis of the SF.net community behave in peculiar manner within 
the platform environment. At the beginning they go through an initial phase of lurking. After a certain 
amount of time, they start exploring “piling up” new projects. From that moment on, their launching activity 
proceeds regularly, albeit at a slower average pace than developers with other histories and experiences. 

 8.2 Career dynamics: project-joining 

Consider now the evolution of the cumulated number of projects joined by the developers. In this 
case all developers belonging to 5 or more projects have to be aggregated to assure, on the one hand, a fine 
grain state space and, on the other hand, a high enough number of developers falling in the state with the 
maximum number of project participations to produce meaningful estimations. As before, this also 
guarantees that the maximum level of activity is set on the basis of the underlying distribution of projects 
joined rather than in absolute terms. This in turn allows the comparison between the results obtained for the 
following space and the previous ones defined with respect to individuals’ foundation activities. 

Given this, the two new states spaces are: 

 

State space 3: 
0=member of 0 projects in periods 4-15;  
1=member of 1 project (p. 4-15); 
2=member of 2 projects (p. 4-15); 
3=member of 3 projects (p. 4-15); 
4=member of 4 projects (p. 4-15); 
5=member of more than 4 projects (p. 1-15). 

State space 4: 
0= member of 0 projects (p. 4-15);  
1= member of at least 1 project (p. 4-15). 
 

 

The joining activity as defined by the two previous spaces will be compared to the process of new 
projects foundation using the same sample (A) and the same time periods (4-15). As a second step, the same 
spaces will be used to describe the evolution of the joining activity over the same periods but using another 
sample, M, composed by the population of 31,460 individuals who were members of at least one project 
within the periods from 1 to 15. The results will be compared to those of the subsample C1 described above. 
The comparison should not be influenced by the environmental changes occurred over the period of analysis 
because sample M has a cohort composition very similar to that of C1, and actually its representation in 
Figure 3 would lie for the most part in between the two lines relative to C1 and C2.  

The following table summarizes the dynamic properties emerging from the application of the two 
state spaces to samples A and M. First of all, one should notice that the process of project-joining is faster (in 
terms of number of iterations) in bringing the whole population A into its absorbing state than the process of 
project founding. This result must be carefully interpreted as the two absorbing states are in a sense 
incomparable: project founding is a subset of project joining, inasmuch as every founder, by definition, is 
recorded as having joined the launched projects. Thus, only a portion of those who move from state 0 to the 
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other states in Table 7 are also among those who make the same transition in Table 6, even if the population 
A is the same. Given this, the observed difference in the transversal rate of approach to the respective 
absorbing states is to be expected. What is more interesting here is that a wider difference in the mean speeds 
of the approach to the absorbing states might have been anticipated, while the number of iterations needed to 
reach the equilibrium in the case of the launching activity are only one-sixth greater than those needed in the 
“membership” case. In this respect, the two processes do not seem to structurally differ. 

Table 7. Evolution of the distributions (number of projects joined): two alternative state spaces. 

States State 
space Sample Property 

0 1 2 3 4 5 
Iterations 
to equil. 

Init. distribution 0.872 0.106 0.016 0.004 0.001 0.001  
Value of the max 0.872 0.114 0.051 0.031 0.026 1 631 3 

A (whole 
population, 
n=222835) Max at iteration 0 12 22-23 27-28 30-32 631  

          
Init. distribution 0.091 0.749 0.116 0.030 0.009 0.006  
Value of the max 0.091 0.749 0.216 0.121 0.097 1 117  

M (members 
in period 1-15, 

n=31,460) Max at iteration 0 0 7 12 15 117  
     

Init. distribution 0.872 0.128      

Value of the max 0.872 1     603 4 
A (whole 

population, 
n=222835) Max at iteration 0 603      

          
Init. distribution 0.091 0.909      
Value of the max 0.872 1     6  

M (members 
in period 1-15, 

n=31,460) Max at iteration 0 6      
 

Again with respect to the whole population A, another result along the same path is obtained by 
comparing the differences between the two states spaces in the case of “joining” and “launching” projects: 
the proportionate difference between the iteration counts needed to reach the equilibrium in the first case, 
(631-603)/603 = .046 is not so much greater than the corresponding difference in the second case, (749-
733)/733 = .022). What is highlighted here is the importance of the transition from non-activity to 
participation at some level of activity: once that occurs, developers are more or less on a par in ascending the 
respective scales of career achievement, both in terms of project-joining and project founding. Thus the two 
processes do not appear to be so different in these aspects of their dynamics. 

Moving now to the sample composed by individuals who joined a project in period 1 - 15, the most 
interesting parallelism between M and C1 is represented by the proportion between the number of iterations 
needed to reach the equilibrium in the two state spaces. When focusing on M it is possible to see that, while 
joining a first project requires just 6 iterations, acquiring multiple memberships is a much slower process,: it 
takes an almost 20 times longer period. This evolution resembles the one observed for sample C1, as a 
comparison between Tables 7 and 6 clearly shows. Thus, the projects foundation undertaken by those who 
seem to be the most active participants in the SF.net environment seems exhibit the same characteristics of 
the process driving potential members to join projects. 

The conclusion is that exploration and exploitation, conceived here as project creation and joining, 
seem to be equally sustained by the dynamics observed on the platform. More than that, if the joining 
activity is taken to be the benchmark for a minimum level of FLOSS developers’ participation, the results 
depicted above underscore the relative importance of the launching activity, and in particular of sample C1. 
In a world where dissipation is a prevalent tendency, the exploratory spirit of the SF.net virtual community is 
far from being inconsequential even though the recurrent project founders are a numerically small core 
within the mass.  

 

9. Conclusions, qualifications and opportunities for further development 
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This study has presented a series of empirical findings exposing the quantitative dimensions of two 
fundamental micro-level processes at work in the SourceForge.net environment: the mobilization of 
development resources reflected in “project joining” and the creation of novelty reflected in “project 
founding.” That pair of dynamic processes at the micro-level are fundamental components of any system of 
innovation, of which the FLOSS mode of production should be considered to represent a particular type, and 
the attributes of these processes may be said to characterize the basic conditions affecting the regime’s 
sustainability as a system of innovation.  A system in which innovators launch enterprises that fail to 
mobilize others to work on them, or one in which existing projects and developers migrate to a locale but no 
new undertakings are created there, must be renewed by external resource injections. Given the relative size 
and prominence of the SF.net platform in the universe of FLOSS activities, the findings based on its 
performance in these dimensions are not without interest for their bearing upon the question of the 
sustainability of this larger phenomenon, and the long-run development of the system of community peer-
based production of which FLOSS is seen by many contemporary commentators to be a paradigm.39 

The resources mobilization process and the developers’ exploratory spirit were analyzed by building 
a series of Markov chains from the observation of 222,835 developers’ activity on SF.net during 2001 and 
2002. This methodology has been chosen not with the aim of producing predictions, but rather as an 
instrument allowing us to look at the deeper dynamic patterns of motion among the various activity states 
that developers can occupy, abstracting from the transient influences of the initial conditions that surrounded 
their respective entrances on the platform. Studying the limiting distributions among the activity states that 
are generated by the transition probability matrices reveals that in the collaborative development 
environment represented by the SF.net platform, the system tends to raise frequency of project joining and 
project founding activities, including the founding of multiple projects. Moreover, examination of the quasi-
ergodic behavior of the project-founding process indicates that among the small group of developers that 
exhibit particularly pronounced “exploratory” spirits, the average propensity to create new projects remains 
relatively low during the initial phase of their experience on SF.net, but subsequently undergoes an increase 
that sustains regular creation of new projects, and even multiple project-launching activity. 

True, the “project founders” whose activities constitute the critical exploration side of the FLOSS 
innovation process, represent only a small portion of the developers who belong to project groups on SF.net. 
But explorers are always “few among the many”. Project launching is by no means different from all the 
other activities typical of a self-organizing system, where dissipation of the mobilized resources is a 
necessary condition to make the “fittest” emerge. In this instance the fact of their persistence in project 
launching activities, taken in conjunction with the ability to mobilize developers around exiting projects and 
thus to exploit the established technologies, should go some way to allaying doubts about the sustainability 
of the FLOSS mode of collective innovation – at least on these very basic grounds.  

Our analysis approaches both the new project generating and resource mobilization processes from 
the vantage point of the individual actors, rather than that of the projects. This is a significant limitation, 
reflected in the fact that this study has not dealt with the characteristics of the projects that attract members, 
or the pattern of circulation of developers among projects of differing sizes, purposes, or governance 
arrangements. From one viewpoint, “project joining” is the outcome of both individuals’ propensities for 
involvement in FLOSS development work of different kinds, of the relative strengths of motivations and 
preferences for participation in collective community undertakings and independent efforts, on one side.40 
Viewed from the other side, however, it reflects the relative abilities of different projects – and the collective 
capacity of the ensemble of projects that embrace the generic model of “the FLOSS way of working” – to 
mobilize the potential pool of development resources. The picture we have been able to present here is 
therefore quite one-sided, inasmuch as it has implicitly ascribed participation and project joining behaviors 
to the individuals, conditioning these on the anterior states they occupied; and, in so doing, has not 
                                                 
39 E.g., Weber (2004), and more recently Benkler (2006:chs. 2-4). On the question of the long-term success and 
viability of open source software as a mode of production, one should also consult the software engineering 
perspectives presented in the contributions to Feller et al. (2005), and particularly the concerns discussed by Brian 
Fitzgerald (2005) in Chapter 5 of that volume. See also the brief treatment in David (2006). 
40 The latter are the subject of an extensive empirical and speculative discussions in economics and related social 
sciences, concerning the nature of the motivations of participants in FLOSS development activity, creating a literature 
to which both authors have contributed, but into which we have quite deliberately avoiding entering on this occasion. A 
significant portion of it can be accessed readily from: http://opensource.mit.edu/.  
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considered the possible effects of time varying influences arising from the evolving distribution on the 
SF.net platform of projects having different characteristics, and consequently differential attractiveness – 
both vis-à-vis one another, and the external world of FLOSS projects.  

Similarly, the analysis of “project founding” has been restricted here to describing a propensity, and 
examining its association with the other dimensions of founders’ behaviors within this particular 
environment. There are, of course, many other aspects of experience that might shape the behavior of 
founders, and these have not been recognized explicitly in the present discussion, much less analyzed. The 
success of the individual’s previously launched projects in attracting members beyond the founding group 
surely is one factor whose influence on subsequent project-founding behaviors deserves closer study. Are 
founders impelled to start new projects by the failures of their previous efforts, or is the dominant effect that 
of encouragement by previous success – and the accompanying reputation for being able effectively to 
mobilize the support of others for launching a new venture?  In principle it would be feasible to expand the 
state space of our Markov chain to consider the dependence of the probability of founding a second project 
on the “success status” of the individual’s first project, and so on. At a minimum, extending the analysis in 
that direction also could address the question of whether or not those who founded projects after having been 
registered for several months on SF.net are more likely to create projects that successfully attract more than 
one or two members – compared with those individuals who launch a project when they arrive on the 
platform, or very shortly thereafter. 

Quite clearly the Markovian framework for studying FLOSS production communities is amenable to   
elaboration in ways that would enrich the analysis and provide greater insights into micro-level dynamics 
that have been dealt with here only in a partial, essentially descriptive fashion. Fortunately, the availability of 
the SF.net archives has opened the further possibility of enquiring into the stationarity of these processes, or, 
alternatively, the evolution of the innovation potentialities of this particular FLOSS ecology. It is to be hoped 
that the results of this exploratory study will encourage others to pursue and improve upon the beginning that 
has been made here.   
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Appendix 1: Setting the time constants of the Markov chain 

 Launching new projects 
Figure A1-1 shows the average number of projects founded in all the successive 30-day intervals within the 

period of observation by the 222,835 individuals in the sample. The peculiar importance of the period immediately 
following entry to SF.net is apparent.  

Figure A1-1. Average Number of founded projects per developer in each ‘month’  

 

 
  

  

 A simple explanation of this can be given by exploiting the metaphor of the district described in the text 
(section 1.2). Regions are not only areas where the autochthonous resources are mobilized, but also are potential 
attractors of already established enterprises. Existing firms can decide to relocate in those areas simply because they see 
the knowledge-spillover externalities and agglomeration economies to be advantageous. Similarly, platforms where 
FLOSS is developed can be attractors for already existing projects. Developers and team leaders can decide to move 
FLOSS projects they are working on to the platform in order to benefit from the agglomeration economies and the 
facilities offered by the platform itself. When this is the case, we observe developers entering SF.net and suddenly 
establishing a project. The project is not new in itself, but new to the platform. Indeed existing source code may simply 
be made visible and re-leased under an open source license. This practice is relatively diffuse. Figure A1-1 suggests that 
developers are likely to enter SF.net bringing with them the projects they were carrying on independently of SF.net. In 
this case, the foundation activity is not a proper one, and should not be considered in our analysis.  

Analyzing the behavior along all the 28 ‘months’ of their experience in SF.net of the sub-sample of 1289 
developers registered from September the 1st to October the 30th, 2000, who also founded a project in the first period 
does not change the results.41 The average number of founded projects per 30-day ‘month’ is reduced from 1.071 to 
0.049 in the first 60 days, and thereafter decreases only slightly, oscillating between 0.026 and 0.006. Thus, in order to 
detect the cycle, we need to focus on this last series dropping the first and second months. The Augmented Dickey-
Fuller unit-root test is performed on the resulting series and suggests it is non-stationary42. The series is then detrended. 
Since we have no reason to believe that the source of non-stationarity is a stochastic trend, nor to opt for a deterministic 
trend, we consider both cases and detrend the series using differences and also polynomial trend removal (see, among 
others, Baxter, King, 1999: Nelson, Plosser, 1982). Considering the commonalities between the series resulting from 
                                                 
41 To detect individuals’ propensities to found new projects, in determining the cycles of project-launching we compute 
how many projects each user has founded every 30 days regardless of the situation at the end of each ‘month’, i.e. we 
do not take into account whether the founded projects are still “alive” nor if the founder is still part of them at the end of 
the 30 days. This way, we are able to account for the periodicity of project foundation irrespective of the actual 
realization and possible success of the projects previously put forward. 
42 In all the following analysis we use the Augmented Dickey-Fuller unit-root test without constant and without trend. 
This specification has been preferred over the other possible choices because in this context, where spectral density is 
employed to detect the most important cycles, as being able to detect and clear all the possible trends is crucial. In order 
to increase our insight into the series’ behavior, however, the test also has been performed by introducing into the 
regression the first and the second lags, also by using different specifications (with the constant and with the constant 
and the trend). These results then have been compared to the main ones, in order to confirm or qualify our conclusions 
on the question of stationarity. The findings reported in the text reflects the outcome of this decision process. 
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first-differencing (DS1) and the series resulting from the removal of the polynomial trend of order 1 (POLY1) enables 
us to avoid the possible bias induced by the choice of a method that does not match the nature of the series. Both first 
difference and linear trend removal result in a stationary series, as shown by the Augmented Dickey-Fuller test, even if 
this result is less robust for the latter case. Eventually, the spectral analysis of both the detrended series is computed and 
the relative peaks are ranked in terms of their importance, as shown in Table A1-1. 

Table A1-1. Cycles of Project Foundings  
N peak  POLY1  Rank  Days  DS1  Rank  days  

1 0.30 1st 628 0.51 4th 365 
2 3.14 2nd 60 3.14 1st 60 
3 1.70 3rd 110 1.75 2nd 107 
4 1.15 4th 163  1.15 3rd 163 

 

The spectral densities reveal that there are 4 main cycles for both (de-trended) time series, and that they are 
more or less congruent between the two series. The frequencies show that the structure of cycles is not very coherent, so 
that we have to use some degree of approximation in evaluating what time period is the best for our purpose. Notice 
that in most cases the longer waves emerge only when the spectral density is drawn with a low level of smoothness. To 
see which of these results hold also for modifications of the time window, we also compute the spectral density of DS1 
and POLY1 for the last year (namely, from the 17th to the 28th month) and in both cases we obtain two cycles, one long 
about 170 days and another one spanning about 70 days. Similarly, we check the robustness of the results by computing 
the spectral density for the original time series, but keeping in mind our previous results on its stationarity. The results, 
mutatis mutandis, are very close to those obtained for DS1. 

 Participating in the projects 
A similar sub-sample and a similar analysis can be carried out in the case of project membership. In this case, 

the extremes of the series appear to behave differently from the whole series, as Figure A1-2 suggests. In the last of the 
observed 30-day periods (the 28th ‘month’) the increase is due to the different composition of the sample. Those who 
registered in month 2 cannot be observed in their 28th period, and thus the average “jumps” to the higher value of the 
first cohort. In the first period, the explanation of the lower average number of founded projects can be found in the 
transformation from continuous to discrete time: while during other periods each individual’s behavior is observed for 
30 days, in her or his first period on SF.net the number of days of observation depends on the moment of her or his 
registration on SF.net with respect to the date used as the limit for the monthly interval. Thus, if the monthly interval 
spans from September the 1st to October the 1st, 2000, and the individual registers on September the 29th, her or his first 
period spans just 2 days. Hence, the lower average number of projects being founded. To avoid the biases induced by 
this problem, in the following we cut the extreme values of the series and restrict the analysis to periods 2-27. 

Figure A1-2. Average number of project joinings per developer in each ‘month’. 

 
Developers registered from September the 1st to October the 30th, 2000, conditional 
on being a project member in the first 30-day ‘month’ their registration on SF.net. 
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Applying the same procedure undertaken before, we first study the stationarity of the series. The Augmented 
Dickey-Fuller test suggests that the series is non stationary. We thus compute DS1 and POLY1. Both the series are 
stationary at the 5% level but results vary a lot between different specifications. Moreover the spectral density of DS1 
appears to be heavily influenced by a flat trend. Thus, we detrend the original series both twice-differencing it (and 
obtaining DS2) and fitting a polynomial of order 2 (whose residuals are called POLY2). Both series are stationary at 
1% level, even if the a certain level of instability is still observed for POLY2. The space of the relative spectral 
densities and their peaks is drawn in Table A1-2. 

Table A1-2. Cycles of Project-Joinings 

N peak  POLY2  Rank  days  DS2  Rank  days  
1 0.40 1st 471 - - - 
2 0.98 2nd 192 1.13 3rd 167 
3 2.00 3rd 94 1.96 2nd 96 
4 3.00 4th 62 2.97 1st 63 

 

It is easy to see that Table A1-2 resembles Table A1-1 when short cycles are considered: cycles close to 60 and 
90/110 days are shared by both series in both tables. Also the 160-day cycle enters the picture for most of the series. For 
longer cycles, however, the variability is higher, but this is expected given the short length of the time window at our 
disposal. Similar results are obtained when considering just the last year, from the 17th to the 28th month. In this case 
DS2 shows basically one wave around 70 days, while POLY2 placed the most important frequencies from 60 to 110 
days. Given the lack of clear-cut results on stationarity, we also compute the spectral density for DS1 and POLY1. In 
DS1 the relative importance of the longer waves increases, as expected, and the 160-day cycle stretches up to 200-250 
days, according to the level of smoothness used to compute the spectral density. The other results reported in the table 
are by and large confirmed. 

 Remarks 
Bearing in mind that the window to observe the registrants only spans the months from September 2000 to 

December 2002, i.e. 28 months, adopting a long period for the transition matrix (say, one year) would seriously limit 
this analysis. The longer the period we choose, however, the more the cycles we are able to account for in the transition 
matrix. Given this constraint, choosing time spans of 6 months seems to be the compromise best suited to the 
circumstances.  The 180-day window for events on the basis of which the individuals’ activity states can be determined 
should amply allow for influences of antecedent short cycles, given the fact that it embraces the 60-day cycle, the 
90/110-day cycles, and even the 160-day cycle – with small biases with respect to their lengths. Moreover, this choice 
is consistent with the fact that the shorter cycles are precisely those which are shared by all the analyzed series. Thus, 
periods of 6 months seem to be adequate to generate a first order Markov process.  

 

Appendix 2: Asymptotic half-life of convergence 
The analysis presented in the text is carried out considering the number of iteration needed for each considered 

Markov process to reach the limiting distribution. In the literature it is often considered another measure of the speed of 
the process, called asymptotic half-life of convergence (Shorrocks, 1978). In the present framework, this measure 
represents the number of 6-month periods needed to reduce by half the norm of the difference between the limiting and 
the initial distributions. The formula by which the asymptotic half-life of convergence is computed is: 

2log
)2log(

λ
−=h  

where |λ2| is computed ordering the modules of the eigen values associated to the transition matrix and 
considering the second largest one.  

Table A2-1 compares the asymptotic half-life of convergence and the iterations needed for the Markov process 
of each sample to reach the limiting distribution. As it is possible to see from the table, the proportion between the two 
measures is almost constant and equal to one tenth. Thus, since all the results we have described in the text are based on 
the proportion between the numbers of iterations of different samples, they still hold even when only the asymptotic 
half-life of convergence is considered. Notice that the constant proportion implies that for every subsample the 
dynamics at which the process converges is always the same: there is a quick adjustment towards the limiting 
distribution at the beginning and then a “fine tuning phase” which takes a much longer time to be completed. 
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Table A2-1. Asymptotic half-life of convergence and number of iteration to the limiting distribution 

Asymptotic 
half-life of 

convergence 
(h) 

Iterations to 
equilibrium 

(T) 

Proportion 

⎟
⎠
⎞

⎜
⎝
⎛

T
h  Sample # developers 

17.40 178 0.098 Whole population 222,835 

14.96 148 0.101 Cohorts from 11 to 14 79,983 

4.41 43 0.103 Founders [ 1 – 15] 15,825 

22.89 224 0.102 Founders [1 – 3] 11,875 

4.96 47 0.106 Founders [4 – 15] 5,514 

73.47 750 0.098 Whole population; cumulative, state space 1 222,835 

6.76 87 0.078 Founders [ 1 – 15]; cumulative, state space 1 15,825 

12.36 137 0.090 Founders [ 1 – 3]; cumulative, state space 1 11,875 

6.76 79 0.086 Founders [ 4 – 15]; cumulative, state space 1 5,514 

10.01 117 0.085 Members; cumulative, state space 1 31,460 

73.47 734 0.100 Whole population; cumulative, state space 2 222,835 

3.81 39 0.098 Founders [ 1 – 15]; cumulative, state space 2 15,825 

12.36 125 0.099 Founders [ 1 – 3]; cumulative, state space 2 11,875 

0.47 6 0.078 Members; cumulative, state space 2 31,460 

 

Appendix 3: Treatment of the anomalies encountered during transition matrix estimation 

 Effects of the presence of a transient state 
When a transition matrix leads to the emergence of a transient state, the existence of a limiting distribution is 

not assured. In the present case, state 1 turns out to be transient when transition probabilities are estimated from samples 
B and C1.  

The easiest and fastest way to check if this process is able to reach equilibrium is simply to calculate the 
powers of the matrixes. The 43rd and the 47th power of those matrixes, respectively, are composed of identical rows (all 
equal to the limiting distributions shown in table 5) and they remain constant for all successive powers. This may be 
seen directly from the fact that, for those powers (P 

t •  P ) = P 

t., which assures the existence of a limiting distribution 
independent of the initial one.  

This latter statement can be confirmed by considering that for an initial distribution i, where i1+…+ in=1 (i.e. 
we express the distribution in proportions), and a transition matrix whose tth power P 

t has all identical rows, the 
distribution of the process at time t is l=i•P 

t.  

Thus, lj=i1•pt
1j+i2•pt

2j+…+in•pt
nj and since pt

1j=pt
2j=…=pt

nj=pt
j, then lj=pt

j(i1+i2+…+in ).  

Given the definition of i, this implies lj=pt
j for every jth column of Pt and entry of l.  

In other words, the jth entry of the limiting distribution is obtained by summing the same proportion (indicated 
by the jth column of the matrix) for all elements of the initial distribution, so that in the limit the proportion of 
individuals in each state is totally independent of the initial distribution and depends only on the transition probabilities. 

 Simulations “around” weak estimates  
The estimates relating to subsample C2 show exhibit two different sets of anomalies. On the one hand in epoch 

A states 1 and 4 attract only very few developers, so that the estimates for the relative transition probabilities are 
unreliable. This result is due to the fact that the fine-grain definition of states is coupled with a subsample composed 
only by those who found a project in the periods from 4 to 15, and they are small in number. Another side effect of the 
limited number of developers populating these states is that the resulting estimates tend to become extremely skewed. 
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In order to cope with this problem, we estimated the relative transition matrix and computed the associated limiting 
distribution excluding both states, one at a time and together. Further we ran a series of simulations in which the 
distribution of state 1 and of state 4 were smoothed, thereby redistributing some of the mass centered in states (1;0) and 
(4;2), respectively, to the other states more evenly.  

In some cases the results are qualitatively the same as those described in the text, in some others they move 
even further along the path we depicted. For example, state 1 seems to have a limited influence on the behavior of the 
whole process. When running the simulations described above with respect to this state, the resulting limiting 
distributions are not very sensitive to the changes in state 1’s transition probabilities, even when the state is excluded in 
toto from the state space. On the contrary, state 4 exerts a much stronger influence on the dynamics of the Markov 
chain, so that when it is left out of the space, it limits even further the progression of C2-type developers towards the 
most active states of the distribution. This strengthens our results.  

A similar problem has been found with respect to state 0 and the same sample C2. Users in state 0 in epoch A 
tend to cluster in the cell (0;0), creating a skewed distribution. Moreover, in order to be in this cell, developers had to 
found at least one project in period 1-3 and then to drop back to the non-active state for the remainder of their registered 
stay on SF.net. This situation is very peculiar, and needed to be handled with care because it could simply be the result 
of some of the biases affecting the data described in the beginning of the empirical analysis. We therefore have 
undertaken two kinds of studies to assess the seriousness of the problem.  

First, we double-checked the history of a sample of developers in cell (0;0) of the transition matrix under 
analysis. Some of the observations were in fact generated by problems in the data. For example, a relatively small 
percentage of those who have multiple user_id’s seem to abandon the old user_id after their first failure of a newly 
founded project. But none of the problems that have been detected, once accounted for, generate relevant differences in 
the estimates. Moreover,   further inspection of a sample of these developers has shown that there are some individuals 
who simply decide not to undertake any other activity after having abandoned the project they initially founded, or 
having seen it shut down by the SF.net staff after few months of activity. Thus, the results are robust to this particular 
problem in tracking the identity of individuals. .  

Secondly, state 0 generates a highly skewed distribution -- so much so that it almost resembles an absorbing 
state. Even though the data generating this distribution have been double-checked, in order to be perfectly sure of the 
soundness of the empirical results we run some simulations smoothing the distribution of the transition probabilities 
associated with an initial state equal to 0. The result is that the emerging limiting distribution leads to the same 
conclusions described in the text. It is worth noticing, however, that differences emerged during this exercise with 
respect to states 5 and 0. While in the analysis described in the text the percentage of developers in state 5 decreases 
from 6.8% to 5.9% in equilibrium, when 20% of the developers in cell (0;0) of the transition matrix are distributed 
evenly in the other states, state 5 is represented by 6.9% of the population in the resulting limiting distribution, showing 
an increase in the number of developers founding one new project and being member of more than one existing project. 
Correspondingly, in equilibrium the fraction of developers placed in state 0 is increased by 0.131 in the context 
described in the text, whereas the increase is only by 0.015 when running the simulation.  


