
“Peeling the Onion”: Analyzing Core and Periphery in

the Firefox Community with Text-mining Methods

Héla Masmoudi1, Quentin Peigné1, Claude de Loupy3,4, Matthijs den Besten2 and
Jean-Michel Dalle1,*

1. Université Pierre et Marie Curie, Paris, France.
2. Ecole Polytechnique, Paris France

3. Syllabs, Paris, France
4. University of Paris 10, MoDyCo Laboratory, Paris, France

* Corresponding author

Abstract

According to the largely accepted “onion-model” of the organization of open source

software development, an open source project relies on a core of developers

assisted by a larger periphery of users. Following this characterization of the division

of labor between a core and a periphery, and with the help of text-mining methods,

we study the treatment of bugs in the Firefox community through the discussions

and actions recorded in Mozilla’s issue tracking system Bugzilla. We mostly focus

on the interactions between core and periphery, and suggest that these processes

appear more diverse and subtle than initially thought, including late and/or

stigmergic entry by members of the periphery, while they also generally appear to

be affected by a “sense of community” exhibited by members of the core.

Keywords

Open-Source, FLOSS, firefox, bugs, text-mining, core, periphery, onion model

 1

1. Introduction and brief survey of the literature

Free/Libre Open Source Software (FLOSS) development is an open process.

Nevertheless, this openness does not imply that associated processes are

democratic or that effort is shared evenly among the community. On the contrary,

Crowston and Howison (2006) posit that “projects are mostly quite hierarchical”

based on a social network analysis of bug-fixing interactions within a large variety of

open source projects. In a study of the Linux Kernel, Lee and Cole (2003) find that

decision power resides with a small core of developers while less critical tasks are

typically delegated to a larger supporting periphery, while a study of Apache and

Mozilla leads Mockus et al. (2002) to suggest that typically “a group larger by an

order of magnitude than the core will repair defects, and a yet larger group (by

another order of magnitude) will report problems.” In an attempt to come up with a

general description of the social organization of FLOSS projects, Crowston and

Howison (2005) formulate the “onion model” of software development. According to

this model a small group of core developers is surrounded by several layers of

peripheral helpers ranging from occasional problem solvers close to the core to

mainstream users whose contribution is limited to the occasional submission of

crash reports. Rullani (2009) makes a valiant attempt to figure out what the

periphery’s role could be and reconcile the “passivist” view of Raymond (1998) that

the main contribution of the periphery is to be the collection of “eyeballs” that will

make that “all bugs are shallow” with the more “activist” view of Lakhani (2006) who

argues that peripheral “interference” is crucial for the health of an open source

project. This latter view is also supported by Von Krogh et al. (2003) who further

 2

focus on the “joining scripts” i.e. the typical activities and sequences of activities in

which developers engage when they move from periphery to core.

We believe that this literature calls for deeper empirical investigations about the

division of labor and about the interaction between core and periphery, in order to

enhance our understanding of FLOSS and related online communities. In this

respect, we explore in this paper the role of the core and the periphery in the case of

the community associated with Mozilla’s Firefox Internet browser. We analyze

activities related to Firefox of participants in Mozilla’s Bugzilla bug tracking system.

With the help of computational linguistics tools, we expose patterns of interaction

among people whose core or periphery status we identify on the basis of a technical

“privilege” internally managed by the community. We find several pieces of evidence

that suggest more diverse and more subtle patterns of interaction between core and

periphery.

Section 2 describes the methodology used to treat bug-tracking data. Section 3

provides a broad characterization of the core and peripheral activities based on bug

threads. Section 4 then presents a finer-grained analysis of core and peripheral

actions using what we suggest to call “praxic alphabets”, which we use to identify

sequences of actions specific to the core or to the periphery, as well as interactions

between core and periphery. Section 5 concludes.

 3

2. Selection and preparation of the bug report database

Previous research has identified bug reports as a primary way through which the

community communicates with developers (Mockus et al., 2002). Furthermore,

assuming that the organization of the community is reflected in the tools with which

it coordinates its activities (Lanzara and Morner, 2005), traces of this structure

should be visible in the community’s bug tracking system. In the case of Firefox,

the issue tracker is the Bugzilla bug tracking system hosted by the Mozilla

foundation. There are however two complicating issues that we need to control for.

First, the bug tracking system at Mozilla also maintains information that relates to

other, possibly unrelated, projects also hosted by Mozilla and, second, given that

anyone can submit bug reports and that Firefox is well known, the whole corpus of

bug reports is likely to contain a lot of noise – noise that is filtered out at some level

and never reaches most developers. To deal with both of these issues, we focus

only on the subset of bug-reports that have had an effect on the code base: we

focus on bugs whose numbers are identified in comments to revisions to code

belonging to the Firefox branch, or Firebird or Phoenix branch (as Firefox was

formally known) in a version of Mozilla’s CVS code archive dating from 2007.

Assuming that this heuristic procedure of identification is correct (but see Ayari et al.

2009), we expect that the bugs in our corpus cover bugs whose fixing contributed to

the further development of Firefox. in the decade before 2007, our main corpus still

contains information on over 37 000 bugs.

Bugzilla then marks new bug-reports differently depending on the status of the bug-

 4

reporter. By default, a new bug-report is marked as “UNCONFIRMED”, while only a

limited number of people who possess the “CanConfirm” privilege have their bug-

reports immediately accepted as “NEW”. Others have to wait until one of these

privileged people has vetted the “UNCONFIRMED” bug-report and confirmed it as

properly “NEW”. Hence, we use the “CanConfirm” privilege as a proxy for the status

of bug-reporters and other participants in the bug resolution process.1 Based on the

email addresses with which participants identify themselves in Bugzilla, we thus

consider as member of the core a) contributors who have at least one bug report

reported by them marked as “NEW” and b) for all bugs whose number is higher to

the number of the first bug that they have reported as “NEW”. Conversely, we

consider as member of the periphery a) all contributors who have reported

“UNCONFIRMED” bugs until the number of the bug that they first report as “NEW”,

when it exists and b) all contributors who have never reported a “NEW” bug.

Bugzilla then traces a rich set of information allowing us to trace the resolution of

bugs. In particular, each bug-report generates a discussion thread and all the

messages exchanged between participants in the bug resolution are recorded. In

addition, there are a number of metadata fields indicating, for instance, the

perceived severity and priority of a bug, which subsystem the bug relates to, or else

to whom, if anyone, the bug is assigned. There is also a list of attachments –

proposed patches and contextual elements such as screenshots –for each bug, and

1 Further research could compare the assignment according to a CanConfirm privilege to

an assignment derived from social network analysis (SNA), similar to the comparison
between SNA and developer lists carried out by Crowston et al. (2006).

 5

a complete log of all changes that are made to metadata fields in the bug report.

To analyze this rich dataset, we combined two sets of methods inspired by

computational linguistics. Indeed, as far as we know, apart from the interesting work

of (Ripoche and Sansonnet, 2006), text-mining techniques have not really been

used on such data archives. The first set of methods, described in more detail in

Section 3, focuses on messages exchanged in the bug thread. By statistically

looking at the words that people use, we discern differences in discourse and

representation between core and periphery. Our second set of methods, described

more detail in Section 4, is, we think, an original way to include in the analysis the

many different actions of contributors related to a bug report, including all actions

associated with metadata. Focusing on a subset of actions, we encode each action

in a predefined “praxic alphabet” and analyze the strings of letters that this process

yields.

3. Characterizing core and periphery with bug threads

A. Frequency of bug threads

Using the global corpus described above, we find that a proportion of 20-25% of the

bugs are initiated by outsiders. Of the 6197 distinct email addresses that are

associated with the opening of one or more of the bug reports in our corpus, 1713

are marked as core and 5118 as periphery while 634 switch from one to the other.

 6

We also assign to the periphery all participants who never submit a bug report, i.e.

12219 email addresses, of which 6821 acted only once ever. Most of the peripheral

contributors report only one bug (3851); 620 report two bugs and 386 report more

than two. The numbers of bugs reported by core developers is more evenly

distributed and averages about 16 reports. Considering all actions taken and

comments contributed to the bugs reports, about 85% can be traced back to

members of the core. Furthermore, lengthier interactions tend to be associated with

a lower involvement from the core (N): see Figure 1.

We then plot the frequency of threads with given proportions of core vs. Peripheral

involvement, measured by the percentage of actions in the bug thread from core

and peripheral members of the community. Figure 2a shows that the frequency of

threads decreases linearly in log scale with the proportion of peripheral actions for a

 7

large part of the spectrum. That is to say, exponentially more problems are solved

with a linear increase in the proportion of core developers.

 8

 9 9

We interpret this finding as suggesting an increased frequency of group discussions

between core members i.e. between individuals who “know” each other or at least

know that they share similar privileges, which we could characterize as a “wedding

table” effect, discussions being typically more frequent at tables where more people

knew each other ex ante compared to discussions at tables with “outsiders”. This

interpretation is supported by the fact that a similar pattern holds when restricting

the analysis to messages only, while it does not hold for other kind of actions such

as the submission of patches or addition of an email address to the CC list of a bug,

as reported by Figures 2b and 2c respectively.

B. Entry and words used

We now turn to the textual content analysis of bug threads. Among the various tools

available to perform this kind of analysis, we have selected Lexico2, which is

particularly helpful in estimating the likelihood of occurrences of words and other

items and comparing these frequency-estimates among different parts of the corpus

(Lamalle et al. 2003). A crucial metric in this type of analysis is called specificity.

This metric is an indicator of how specific certain terms are to the parts of the corpus

in which they occur. The sign of the metric indicates whether terms are over- or

under-employed in specific parts (Lebart and Salem 1994).

2 http://www.cavi.univ-paris3.fr/Ilpga/ilpga/tal/lexicoWWW/index.htm

 10

Because of computational limits, we specifically look at two subsets of the bug-

reports: the first, “cvs-sub”, consists of 2000 bugs with bug id between 54452 and

730953; the second, “cvs-mile”, consists of the 694 bugs associated with a target

milestone specifying a version of Firefox (or its previous incarnations Firebird and

Phoenix).

Reports in both of these corpus were tagged and subsequently partitioned with the

help of tags identifying:

1) whether the event recorded was originated from the core or the periphery;

2) each contributor who participated in the bug resolution in order of

appearance from the first to the 25th (letters a-y) and subsequent contributors

(letter z);

A first result, related to Figure 1 and presented in Fig. 3, concerns the identity of

people involved in the discussion. People who enter later in the discussion are less

likely to come from the core than earlier on.

3 Note that these are 2000 consecutive bugs that were traced in the comments of the

CVS log; the fact that the difference in bug id leaves space for about 20000 bugs
suggests that 90% of bug reports on Mozilla’s bugzilla are either resolved without affecting
the code base or deal with code that is not related to Firefox.

 11

Tables 1 and 2 then present words most specific to comments from the core and the

periphery, respectively. In particular, the relative importance of words like “We” and

“I” can be interpreted, again, as being indicative of a sense of community among

core contributors compared to a more atomistic periphery (Rullani, 2009). There is

also a clear distinction between core members dealing with technical issues and

using corresponding terms, on the one hand, and peripheral members who

approach the black box of Firefox from the outside. Noteworthy as well is the relative

importance of “Windows” and “NT” among the periphery. The words “#CATTACH”

and “#DUPLICATE” in the tables are short hand for the standard expressions

“Created an attachment” and “This bug has been marked as a duplicate”,

respectively. Core members would seem to be more involved in these activities

too.4

4 However, other investigations based on a slightly stricter definition of core membership in

which people who had recently obtained the CanConfirm privilege were still marked as

 12

periphery we actually found the identification of duplicates to be a significant activity for
periphery members, which suggests that this marking of duplicates might also be part of a
“joining script” (Masmoudi et al., 2009).

 13

 14 14

4. Characterizing core and periphery with praxic alphabets

In this section, we look at how actions relate to each other. In order to do so, we first

define a subset of actions of particular interest and encode these actions in an

alphabet. We then code bug reports and their resolution paths into character strings

made up of this praxic alphabet. Having thus transformed the corpus, we are able to

apply standard text analysis techniques on the data. We focus here to the frequency

of the occurrence of actions and pairs of actions – to what in computational

linguistics is known as unigrams and bi-grams.

We consider seven types of events or actions in our analysis:

1) C – the creation of an attachment other than a patch, such as a screenshot;

2) D – the identification of a duplicate of a bug;

3) G – the assignment of a person to take the lead in the bug resolution

process;

4) P – the creation of a patch, i.e. a suggested change in the code base;

5) R – a change in the priority assigned to the bug;

6) V – a change in the severity assigned to the bug;

7) X – the declaration of the bug as resolved.

These seven types have been chosen as characteristic of actions in bug resolution

that seem crucial: C and D correspond to the provision of contextual information that

helps understand better the nature of the bug after it has been reported (Dalle et al.

2008); G, R, and V relate to the process of triage – a process in which the bug is

 15

assessed and matched to the available resources within the community (Villa,

2003); P and X concern bug-resolution in itself.

Using this alphabetic coding, Tables 3 and 4 present the importance of a given

action among core or peripheral users and the proportion of core and periphery for a

given action, respectively. Actions related to management (e.g. nominating

assignees, triaging bugs by their priority level, and declaring bugs as solved) are

predominantly realized by core members of the community, while the periphery

appears responsible for the provision of contextual elements and for the

identification of duplicates.

 16

Table 5 now shows the probability for a given action (in rows) to be followed by

another action (in columns). Each of these probabilities is compared to what would

have been the expected frequency of the next action had the occurrence of both

actions been independent events. Probabilities that deviate from at least 20% of this

norm are reported in blue if above the norm and in light gray if below. The high

values of probabilities in the diagonal suggest that a repetition of actions is likely

during the bug resolution process. Only X deviates from this pattern, which seems

reasonable considering that some other actions are probably necessary before a

bug that has been declared “resolved” could be declared “resolved” again. Nor is “G”

extremely likely to repeat itself, just slightly above average, from which we can infer

that people who have been assigned a bug rarely pass the bug, or at least not

immediately. Last, the exceptionally high probability of D to followed by another D

suggests some kind of cascading effect in which the discovery of one duplicate

leads to the discovery of even more duplicates. Another compatible explanation for

this sequence, however, is that this is the only kind of activity that is being carried

out after a bug has been resolved. The high probability of X to be followed by D

reinforces the latter interpretation.

 17

Another phenomenon worth interpreting has to do with the higher probability of RC,

VC and VG couples. RC and VC indicate that there is a feedback loop from triage

to provision of context. That is, changes of severity or priority tend to be met with

and demand for and provision of attachments to illustrate the problem. The high

probability of VG on the other hand is likely to be a reflection of the successful

completion of the process of triaging at the end of which the person who is most

likely to be able to resolve the bug is assigned to carry out that task.

The interactions presented above do not take the originator of the actions into

account. In order to do so, we adjust our alphabet and transform into lower case all

praxic letters (actions) that originate from a member of the periphery while we leave

the actions originating from a core member in upper case. In a similar vein to Table

5, Table 6 presents the matrix of interactions with this enhanced alphabet. Strikingly,

actions from the core are mostly followed by other actions from the core and the

sequences of actions that are over-represented in comparison to their expected

 18

level follow closely the general sequences of actions described above. Similarly, but

no less strikingly, actions from the periphery are generally followed by other actions

from the periphery, while they are also globally follow the patterns established in

Table 5.

 19

On the other hand, there are actions from the periphery that are more likely to

trigger the attention from the core, most of which correspond however to bigrams

(sequences of actions) that are generally frequent. However, a sequence like cG,

the provision of contextual elements followed by the assignment of a person to the

bug, was typically found by looking directly at bug threads as happening early,

among the first actions in a thread, which is consistent with an “eyeballs” view of the

periphery.

 20

Compare now Table 5 with Table 7: while Table 5 shows the general probabilities of

bigrams while Table 7 shows the conditional probabilities that actions follow each

other when considering only the set of bigrams where the first action originated from

a different “constituency” (core or periphery) than the second. The pattern revealed

by this table roughly matches the general pattern of table 5. Vp interactions however

stand out5. This Vp sequence is found in slightly over 50 bug report traces. A patch

is submitted by a member of the periphery after severity was changed by a member

of the core. We interpret this finding, based also on cursory analysis of bug threads,

as suggesting that a change in severity can be a “signal” (be it a decrease or an

increase since both are present in our corpus) which could “open the door” to the

submission of a patch by the periphery. This might be linked both to an informal

joining script, where members of the periphery would virtual dip their toes in the

water by choosing to propose solutions to bugs where a severity signal has been

sent6, and/or to the stigmergic theory of coordination in online communities (Dalle &

David, 2007) (Den Besten et al., 2008) which holds that coordination obtains as a

consequence of signals being sent and followed by actions orienting the allocations

of efforts within the community.

5 And Rv, but there are only two occurrences of Rv in our data.

6 We indeed found several occurrences where peripheral members who showed this type

of behaviour were in the process of been given the CanConfirm privilege.

 21

Conclusion

Focusing on the Firefox community, and using several methodologies derived from

computational linguistics, we have suggested in this article that the interactions

between the core and the periphery of an online community could be richer and

more subtle and diverse than initially thought. In particular, and in addition to

supplementary evidence of the existence of “joining scripts”, we have shown

preliminary evidence of late entry of the periphery in the bug resolutions processes,

 22

which could be connected to the identification of duplicates, of the possible

existence of signals which could act as entry doors for the periphery, such as a

modification of the severity of a bug by a member of the core, and generally of a

sense of community exhibited by the core both in the form of its use of the pronoun

“we/We”, compared to members of the periphery using the pronoun “I”, which is

probably connected to what we have suggested to call a wedding table effect

according to which the frequency of discussions between developers is severely

affected by the status of these developers, discussions, and thus bug solving

processes, being considerably more frequent with more members of the core. Far

from drawing too strong conclusions from these insights on the Firefox community,

we mostly believe that these approaches and methodologies offer a potential

avenue for future empirical research on FLOSS and other online communities.

References

[Ayari et al., 2007] Ayari, K., Meshkinfam, P., Antoniol, G., and Penta, M. D.

(2007). Threats on building models from CVS and Bugzilla repositories: the Mozilla

case study. In Proceedings of the 2007 conference of the center for advanced

studies on Collaborative research, pages 215–228, Richmond Hill, Ontario, Canada.

ACM.

[Cox, 1998] Cox, A. (1998). Cathedrals, bazaars and the town council. Available

at http://www.linux.org.uk/Papers_CathPaper.cs.

 23

[Crowston et al., 2005] Crowston, K., Heckman, R., Annabi, H., and Masango,

C. (2005). A structuration perspective on leadership in free/libre open source

software teams. In Proceedings of the first international conference on open source

systems, pages 9–15. Genoa, Italy.

[Crowston and Howison, 2005] Crowston, K. and Howison, J. (2005). The

social structure of open source software development teams. First Monday, 10(2).

[Crowston and Howison, 2006] Crowston, K. and Howison, J. (2006).

Hierarchy and centralization in free and open source software team

communications. Knowledge, Technology & Policy, 18(4):65–85.

[Crowston et al., 2006] Crowston, K., Wei, K., Li, Q., and Howison, J. (2006).

Core and periphery in free/libre open source software team communications. In

Proceedings of the 39th Annual Hawaii International Conference on System

Sciences (HICCS-39).

[Dalle and David, 2007] Dalle, J.-M. and David, P. (2007). Simulating code

growth in libre (open-source) mode. In Curien, N. and Brousseau, E., editors, The

Economics of the Internet. Cambridge University Press, Cambridge, UK.

[Dalle et al., 2008] Dalle, J.-M., den Besten, M., and Masmoudi, H. (2008).

Channelling Firefox developers: Mom and dad aren’t happy yet. In Proceedings of

the Fourth International Conference on Open Source Systems, Milan.

[den Besten et al., 2008] den Besten, M., Dalle, J.-M., and Galia, F. (2008). The

 24

allocation of collaborative efforts in open-source software. Information Economics

and Policy, 20(4):316–322.

[Lakhani, 2006] Lakhani, K. R. (2006). The Core and the Periphery in

Distributed and Self-Organizing Innovation Systems. PhD thesis, MIT.

[Lanzara and Morner, 2005] Lanzara, G. F. and Morner, M. (2005). Artifacts rule!

how organizing happens in open source software projects. In Czarniawska, B. and

Hernes, T., editors, Actor-Network Theory and Organizing, pages 67–90.

Copenhagen Business School Press.

[Lebart and Salem, 1994] Lebart, L. and Salem, A. (1994). Statistique textuelle.

[Lebart et al., 1998] Lebart, L., Salem, A., and Berry, L. (1998). Exploring Textual

Data.

[Lee and Cole, 2003] Lee, G. K. and Cole, R. E. (2003). From a firm-based to a

community-based model of knowledge creation: The case of the linux kernel

development. Organization Science, 14(6):633–649.

[Masmoudi et al., 2009] Masmoudi, H., den Besten, M., de Loupy, C., and

Dalle, J.-M. (2009). Peeling the onion: The words and actions that distinguish core

from periphery in Firefox bug reports, and how they interact together. In Crowston,

K. and Boldyreff, C., editors, Proceedings of the Fifth International Conference on

Open Source Systems.

 25

 26

[Mockus et al., 2002] Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two

case studies of open source software development: Apache and Mozilla. ACM

Transactions on Software Engineering and Methodology, 11(3):309–346.

[Moon and Sproull, 2000] Moon, J. Y. and Sproull, L. (2000). Essence of

distributed work: The case of the Linux kernel. First Monday, 5(11).

[Raymond, 1998] Raymond, E. S. (1998). The cathedral and the bazaar. First

Monday, 3.

[Ripoche and Sansonnet, 2006] Ripoche, G. and Sansonnet, J.-P. (2006).

Experiences in automating the analysis of linguistic interactions for the study of

distributed collectives. Computer Supported Cooperative Work, 15:149–183.

[Rullani, 2009] Rullani, F. (2009). The periphery on stage: Functions, properties and

dynamic evolution of the periphery in the free/open source software community.

Unpublished report.

[Villa, 2003] Villa, L. (2003). Large free software projects and bugzilla: Lessons

from GNOME project QA. In Proceedings of the Linux Symposium, Ottawa, Canada.

[von Krogh et al., 2003] von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003).

Community, joining, and specialization in open source software innovation: a case

study. Research Policy, 32:1217–1241.

	Abstract
	Keywords
	1. Introduction and brief survey of the literature
	2. Selection and preparation of the bug report database
	3. Characterizing core and periphery with bug threads
	A. Frequency of bug threads
	B. Entry and words used

	4. Characterizing core and periphery with praxic alphabets
	Conclusion

