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1. Introduction

We study the limiting properties of out-of-equilibrium dynamics with
decentralized exchange (bilateral bargaining between randomly matched
pairs of agents)1. When agent’s have perfect foresight, the equilibrium
outcomes of decentralized exchange have been used to provide strate-
gic foundations for competitive equilibria, see for example (Rubinstein
& Wolinsky 1985, Gale 1986a, Gale 1986b, McLennan & Sonnenschein
1991, Gale & Sabourian 2005). In this paper, starting from an out-of-
equilibrium scenario, we characterize the conditions under which out-
of-equilibrium trading convergences to efficient allocations, and exam-
ine, numerically, the rate of convergence to efficient allocations.

In our set-up agents are myopic, have limited information about
other agents and trading histories. Under assumptions on preferences
that ensure pairwise optimal allocations are also Pareto optimal, we
show that limit allocations must be efficient as long as traders trade
cautiously (they propose and accept trades that improve their utility
evaluated at their current holdings), the proposals made are drawn
from a distribution that satisfies a minimum probability weight con-
dition and the underlying trading process is connected (any pair of
agents meet with positive probability after any history of matches). In
an example we, then, show that trade may not converge to an efficient
allocation if the minimum probability weight condition fails to be sat-
isfied. Straightforwardly, our results extend to the case of production
once Rader’s principle of equivalence (Rader 1976) is invoked. Nu-
merically, in economies where agent’s preferences can be represented
by Cobb-Douglass utility functions, we show that the rate of conver-
gence to efficient allocations is exponential even as we vary both the
number of agents and the number of commodities. We are also able
to show, numerically, that the distribution of initial wealth and final
wealth (initial and final endowments evaluated at limit prices) have a
linear relationship.

Next, we turn to economies where multilateral exchange is essential
for achieving gains from trade. An example of such a setting is the
exchange economy studied by (Scarf 1959) with a unique competitive
equilibrium that is globally unstable under tâtonnement dynamics. We
show that in Scarf’s example, if traders generate offers and accept
proposals cautiously, trading fails to converge to efficient allocations.
However, once trading is augmented to allow agents to experiment (that
is accept proposals with lead to small utility loss relative to current
holdings) and such experimentation is almost surely finite, we show
that there is convergence to efficient allocations. Further, numerically,

1Our set-up could be interpreted as modelling exchange in barter economies
where the underlying fundamentals are stationary.
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we show that the speed of convergence remains exponential with Cobb
Douglas utilities.

We, then, examine the role played by the connectedness assump-
tion in obtaining our results. In the language of graph theory, we
think of agents as vertices and potential trading links as edges that
connect agents so that trade is restricted to only those agents who
are connected by an edge. Straightforwardly, trade will converge to
an efficient allocation as long as the underlying network of agents is
connected implying that our earlier limiting results (which implicitly
assumed that all agents were connected) are robust. Next, we examine
numerically the impact of network structure on the rate of convergence
and the link between the distribution of initial and final wealth. As
long as the level of connectivity between agents is high, the average
path of the economy is very similar. However, in a centralised network
(a star network), we show that the speed of convergence is lowered and
the link between initial and final wealth is random.

In our model of decentralised exchange, the map from action profiles
to prices and allocations is well-defined both out-of-equilibrium and
along the equilibrium path of play. Therefore, the properties of the
out-of-equilibrium dynamics studied by us can be explicitly related to
the behaviour of agents and the underlying structure of connections be-
tween agents. In contrast, classical approaches, for example (Arrow &
Hahn 1971), whether tâtonnement (without explicit out-of-equilibrium
trading) or non-tâtonnement (with explicit out-of-equilibrium trad-
ing) - suffer from the problem that the price adjustment and alloca-
tion dynamics isn’t explicitly grounded on the behaviour of agents.
Such conceptual problems have important consequences. For example,
tâtonnement dynamics may not always converge. Moreover, to con-
struct a convergent non-tâtonnement dynamics typically requires that
the preferences of agents be known.

Various attempts have been made to model trade in decentralised
economies. Early results (Feldman 1973, Rader 1976) characterise the
conditions required for for a decentralised bilateral exchange economy
to converge to a Pareto Optimal allocation. (Goldman & Starr 1982)
derives generalised versions of these results for k-lateral exchange where
exchange happens between groups of k agents. An alternative approach
is the assumption of ”zero intelligence” (Gode & Sunder 1993). Here
there are a variety of computer agents, one form of which simply makes
random offers subject to a budget constraint. They speculate that the
”efficient” outcomes are due to the double auction market structure
under investigation. Another angle is taken by Foley’s work on statis-
tical equilibrium, for example (Foley 1999), which models an economy
via discrete flows of classes, that is homogeneous classes of, traders
entering a market who have discrete sets of trades they wish to carry
out. The result is probability distributions over trades, so as in our
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process agents with identical initial endowments may end up with dif-
ferent final allocations, but as in the many Walrasian frameworks, but
unlike our approach, the trading process remains an unspecified black
box. More recently (Gale 2000) has approached an out of equilibrium
economy with a model with decentralized exchange in the special case
with two commodities and quasi-linear utility functions.

Axtell (Axtell 2005) has explored decentralised exchange from a com-
putational complexity perspective. He argues that the Walrasian auc-
tioneer picture of exchange is not computationally feasible, while de-
centralised exchange is. While this adopts a somewhat decentralised
(possibly bilateral perspective) it assumes a high level of information in
the groups which are bargaining (essentially a Pareto optimal outcome
for that group is directly calculated) and seems to sidestep the issue of
coordinating the matching of these groups.

In a related contribution Fisher (Fisher 1981) studied a model of
general equilibrium stability in which agents are aware they are not
at equilibrium. In our paper, in contrast to Fisher (Fisher 1981) we
do not require agents to hold their expectations with certainty and we
allow for price setting by individual agents.

Gintis has looked at an agent-based model of both an exchange econ-
omy (Gintis 2006) and general equilibrium economy (Gintis 2007) al-
though the dynamics in his models, driven by evolutionary selection,
are limited to quite homogeneous agents (for example, in his exchange
economy agents all have the same linear utility functions).

The remainder of the paper is structured as follows. The next sec-
tion is devoted to the study of cautious trading. Section 3 presents
numerical methods and results. Section 4 studies the effect of network
topology on cautious trading. The last section concludes. Appendix B
presents the key sections of the source code.

2. The model

We consider individuals who are aware they are in an out-of-equilibrium
state and thus realise they may make mistakes if they were to attempt
to condition their current trade based on their future expectations. In
response to this agents may only accept trades which improve upon
their current holdings or which disimprove in a limited way. We as-
sume that the process is connected, that is at every time any given pair
of agents will attempt exchange at some point in the future. We call
this process, in a connected exchange economy, cautious trading and
specify fully below.

2.1. Specification of model. There are individuals i ∈ I = {1, . . . , I},
commodities j ∈ J = {1, . . . , J} and endowments eji ∈ R, eji > 0 of
commodity j for individual i. Trade takes place in periods t ∈ 1, 2, . . .
and we write the bundle of commodities belonging to individual i at
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time t as xit and restrict these to positive bundles (you can only trade
what you currently have). Agents have strictly increasing real valued
utility functions ui(xit) which are defined for all non-negative consump-
tion bundles2.

In each period t two agents are matched at random with equal prob-
ability that any particular pair will be selected. We will assume that
once a pair is matched the two agents put up all their current holdings
for exchange. One agent, the proposer, which without loss of generality
is m, proposes a non-positive3 trade zt to a responder n such that:

xjmt > −z
j
t > −x

j
nt ∀j

and
um(xmt + zt) > um(xmt).

The first condition is just that the trade would leave m and n with
positive quantities of each good. The second condition is that the
trade is utility increasing for m. The responder, n, will accept the
trade if it improves his utility, that is

un(xnt − zt) > un(xnt).

but reject it otherwise (in which case no trade takes place). We will
weaken this condition of mutual strict utility improvement shortly.

Note that the requirement that agents put up all their current hold-
ings applies to a wide variety of cases. Firstly no agent is likely to have
an incentive to conceal his holdings. An agent is free to reject any offer
that is put on the table and by concealing some of his holdings the agent
reduces the probability of generating a mutually improving trade4. Sec-
ondly a wide variety of conceptions of markets would make an agent’s
holding’s public knowledge and this is a stronger requirement than the
framework presented here which only requires that the proposer knows
his current holdings, his utility function and the responder’s holdings.

For the analytical results presented in this section attention is fo-
cused on the following solution of k−wise optimality. An allocation
X = (x1, . . . ,xI) is pairwise optimal if there exists no way of redis-
tributing bundles between any pair m,n that would make at least one
strictly better off, while making the other at least as well off. This
notion can be generalised to k−wise optimality in the obvious way. If
k = I (that is if it equals the total number of agents in the economy)

2Formally, the trading dynamics we study in this paper has the feature that
agents do not consume till trade stops. However, following (Ghosal & Morelli 2004),
note that a reinterpretation of our model so that agents trade durable goods that
generate consumption flows within each period will allow for both consumption and
trade.

3That is not simply proposing a gift: it must be an bilateral exchange.
4Analytically for the below convergence results we could work with a weaker

condition, an upper bound on trade proposals, but the form presented here will
turn out to be numerically convenient, something we will return to in section 3.



6 SAYANTAN GHOSAL AND JAMES PORTER

then one would be considering Pareto optimality. The formulation of
these concepts used here are drawn from (Goldman & Starr 1982).

Let us assume that the proposals are drawn at random from the set of
all such proposer’s utility improving proposals, Z, such that there is a
strictly positive probability of choosing a proposal within any open set
X ⊂ Z. Furthermore we will assume that the random choice of a new
proposal will satisfy the following minimal probability weight condition:
there exists some c ∈ (0, 1] such that for all periods t the probability
of choosing a proposal from any open subset X of Z is greater than cp
where p is the probability of choosing a proposal in X if we choose from
a multivariate uniform random distribution over Z. We could actually
use the weaker condition that for some strictly positive proportion of
periods the original condition holds, however (at least with respect to
analytical results) this would in effect mean ignoring the other periods.

The following example makes clear the crucial role of the minimal
probability weight condition in obtaining convergence to pairwise opti-
mal allocations.

Example 1. Suppose there are two agents i and j. We will set up our
example such that there is a non-zero probability that trade will never
occur. Consider i’s proposals to j; assuming that no trade occurs the
set, Z, that these are drawn from will not vary with time. Furthermore
we can partition the set of improving trades Z into Zi the set of indi-
vidually improving but not improving to j trades and Z(i,j) the set of
mutually improving trades. Assume we are not at a pairwise (in this
example trivially Pareto) optimal allocation and that Zi is also non-
empty. Now assume that i draws its proposals from a fixed probability
distribution for each proposal in this particular state. That is it picks a
z ∈ Zi∪Z(i,j). Now let pi be the probability it picks a proposal in Zi and

p(i,j) be the probability it picks a proposal in Z(i,j). It has been assumed
that there is a strictly positive probability of choosing a proposal within
any open set X ⊂ Z, so this applies in particular to Zi and Z(i,j).

Now consider a new process where we transform the probability dis-
tributions over the disjoint sets Zi and Z(i,j) by a constant scaling such

that pit = (1− τt)pi and p
(i,j)
t = τtp

(i,j) where τt is given by the sequence
τt = 1

2t+1 for time periods t = 1, 2, . . .. We make no restrictions on the
behaviour if we were to leave the initial state and claim that there is
now a positive probability that trade will never occur so a fortiori we
will not converge to a pairwise/Pareto optimal.

To see this consider the probability of at some point proposing a trade
in Z(i,j), that is one which will be accepted. This is strictly less than

p(i,j)
∑

t τt = p(i,j)

2
, which implies there is a non-zero probability that

trade will never occur. Actually to complete this argument we need j to
propose in the same way. If both agents are proposing in this fashion
then there is a non-zero probability that trade, and hence any kind of
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convergence, will never occur. Note that is is possible to generalise
this to a larger number of agents by using the same weights on each
distribution of proposals of i to any agent k.

While this example is somewhat pathological it illustrates an impor-
tant point. For cautious trade to work we can’t have agents condi-
tioning their actions on the period in a way which essentially rules out
trade at all, or via a limiting process. 5

A benchmark process that satisfies the above conditions and which
will satisfy our solution concepts is a set of n agents, with Cobb-Douglas
utility functions and interior endowments. In Lemma 1 this is proven
for a more general set of scenarios and in section 3 further results are
obtained numerically for this and more sophisticated cases.

So far a basic model of bilateral trade has been introduced; however
there is one more major element to add to the model. Below it is shown
how the process that has been defined along the lines proposed above
may under certain circumstances fail to carry out any trades, even
where it would benefit all individuals in such an economy to do so.
Furthermore we would ideally like to include the possibility of making
mistakes in the model. It turns out one can include both ideas in a
straightforward way by including an “experimentation” process in the
model.

One famous class of examples that show non-convergence and insta-
bility in a global competitive equilibrium is presented in (Scarf 1959).
This example can be adapted for our model in a similar way to (Gintis
2007): the basic idea is that there are three classes of agents each of
whom has a utility function which is the minimum of the good it has
and one other; but no agent, at least initially, can find an agent with
whom a mutually improving trade can take place. To specify precisely:

u1 = min(x1, x2) with endowment e1 = (1, 0, 0)

u2 = min(x2, x3) with endowment e2 = (0, 1, 0)

u3 = min(x1, x3) with endowment e3 = (0, 0, 1)

This means that in the model proposed above, and similar models,
no trade will ever take place. However once one introduces a small
probability ε of experimenting, that is proposing or accepting a disim-
proving trade (either deliberately or through making a mistake) then
trade will take place and outcomes which are Pareto improvements
over the initial state can be attained. In figure 8 in section 3 this is
numerically illustrated.

One can incorporate a more general form of experimentation in a
relatively straightforward way which can include both making mistakes

5Note that in this example we have assumed that agent i needs to know the utility
function of agent j. One could weaken this to an assumption of the knowledge of
the forms of utility functions over an economy as a whole.
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and a heterogeneous, limited amount of experimentation on the part of
agents. For each agent an experimentation function fi(t) from current
period in t ∈ N to a probability in [0, 1] is required. Furthermore the
limit as t → ∞ should be 0; this is the probability in a given period
that experimentation will take place. Also required is a further function
hi(t) which determines the loss in utility that is acceptable in a given
period (that is loss in utility for each agent engaged in trade), subject
to a similar condition that the limit a t → ∞ is 0, that is no loss is
deemed acceptable at the limit. For most of the analytical results the
heterogeneity is unimportant. The realised loss by agent i in period t
is εit where is there is a gain in utility by i we set εit = 0.

Total experimentation is almost surely finite if the composite process
described above leads to a total loss across periods t to all agents that
is bounded with probability one. Formally, with probability one, the
sum over losses

∑i=I
i=1

∑∞
t=1 εit ≤ H for some finite H. Any form of

experimentation which ceases in finite time will trivially satisfy the
above.

To clarify these concepts consider the following examples:

(1) Experimentation is fixed at a level ε̃ for all times, that is h(t) =
ε̃∀t and probability of experimentation is also fixed at some
strictly positive value. In this case experimentation is not al-
most surely finite.

(2) h(t) = 1/t and f(t) = p̃ is any function that satisfies the above
definition. In this case experimentation is almost surely finite
as the sum of the bounds on losses converges.

All of the key concepts have now been introduced. So to state in full,
a set of n agents with strictly positive endowments carry out Cautious
Trading if:

(1) In each period ttwo agents i, j are matched at random (with
equal probability of any particular pair being selected).

(2) Agent i proposes a non-positive trade such that xjmt > −z
j
t >

−xjnt ∀j.
(3) The trade either improves i’s utility level or with probability

fi(t) reduces it by at most hi(t).
(4) The trade is accepted if it either improves j’s utility level or

with probability fj(t) reduces it by at most hj(t).
(5) The experimentation process defined by the collection {fi}i∈I

and {hi}i∈I collectively define an experimentation process which
is almost surely finite.

(6) The proposals satisfy the minimal probability weight condition.

2.2. Results.
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Lemma 1. The Cautious Trading, with the limit for experimentation
set at 0 (for all agents, for all time), converges in utility and the alloca-
tions converge to a set of pairwise optimal utility-identical allocations.

Proof. We know that ut+1
i ≥ uti for any agent i as only mutually utility

increasing trades will be made as experimentation is set at zero. Fur-
thermore the sequence of utility values is bounded as the set of feasible
allocations is compact (the sum of all goods must be the sum of the
endowments) and a maximum utility value for each agent is the value
when it has all of all goods. So for each agent i the sequence of utility
values ui(xit) converges to its supremum; call the vector of these ū.

Now consider the sequence of allocations Xt generated by cautious
trading. We claim that any limit points of such a sequence must be
pairwise optimal allocations with utilities ū. Suppose it wasn’t then
by definition there would exist a pair of agents i, j and trade vector z
such that

ui(x
t
i + z) > ui(x

t
i)

and
uj(x

t
i − z) > uj(x

t
i)

But by assumption there is a strictly positive lower bound on the prob-
ability of picking a trade within every neighbourhood of z in every pe-
riod. By continuity there exists some such neighbourhood of z which
pairwise improves (there may in fact be additional regions of our al-
location space where this holds) so we know that a trade will almost
surely happen at some point in the future between these two agents
and so this cannot be an allocation at ū. �

It should be noted that the limit allocation is path dependent, there
is no unique pairwise optimal allocation; though it would be possible to
define a process which had such a feature, it would necessitate greatly
constraining possible exchanges.

Corollary 1. If after some finite time an exchange process begins cau-
tious trading as in Lemma 1, then it will converge to a pairwise optimal
allocation.

So we could have any kind of initial experimentation process or trad-
ing conditioned on future expectations based on empirical distribution
of trades and still obtain the same result if eventually cautious trading
with zero experimentation commences.

Proposition 1. Cautious trading converges with probability one to a
set of Pairwise optimal allocations.

Proof. For a particular realisation let xti be the current allocation of
agent i at time t, uti the utility of agent i at time t. Let εit be the
loss in utility to agent i in period t. (If no experimentation occurs in
period t for agent i then εit = 0 as before.) By assumption the total
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amount of experimentation of all agents is almost surely finite, so for
any particular agent the sum of εit is also finite.

Let the sequence vi, indexed by t, be given by vti = uti +
∑t

k=1 εit.
Then this new sequence vi is increasing. It is also bounded as it is the
sum of two bounded sequences. Therefore it converges to a limit, say
ṽi. But this implies that ui also converges to some limit ũi.

Now consider once more allocations at this limit ũi. They must be
pairwise optimal as if they weren’t then a pairwise improving trade
would be made at some point in the future, even without experimen-
tation to perturb the state. �

The following proposition shows that under the assumptions made
cautious trading will get arbitrarily close to the Pareto frontier in finite
time.

Proposition 2. (i) If the utility functions are continuously differen-
tiable on the interior of the consumption set a Pairwise optimal alloca-
tion is Pareto optimal. (ii) If indifference surfaces through the interior
of the allocation set do not intersect the boundary of the allocation set
then if one agent has some of all goods and others have some of at least
one good then cautious trading without experimentation converges to a
Pareto optimal.

Proof. Let X be a pairwise optimal allocation in the interior of the
allocation set. If we are in the interior of the allocation set then by
assumption marginal rates of substitution exist for each agent i and for
each pair of goods m,n. These must be equal for every pair of agents
i, j otherwise a pairwise improvement would be possible. So they must
be equal for all agents which implies that the allocation X is Pareto
optimal.

From proposition 1 we know that the sequence converges to a set of
Pairwise optimal states, so under the extra conditions imposed above
it converges to a set of Pareto optimal states.

Now consider the case where one agent has some of all goods, without
loss of generality let this be agent 1 and others have some of at least
one good, without loss of generality less this be good 1. We need to
establish that the process reaches the interior of the the allocation set
then the result follows by the above argument.

Consider an agent i 6= 1 and set non-empty set M = {m ∈ J |xmi =
0}. As the indifference curves through the interior of the allocation set
for all agents do not intersect the boundary of the set it is always in
the agent’s interest to accept a trade away from the boundary, that is
a trade z such that for each m ∈ M , zi 6= 0. When paired with agent
1 there exists an open set of trades Z which leaves him with some of
all goods and improves the utility of agent 1. So eventually such at
trade will happen. This argument trivially extends to all agents on
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the boundary, so with probability one in finite time we will reach an
allocation in the interior of the allocation set. �

Even if we augment the trading process with the possibility that
agents may trade to boundary allocations, subject to the conditions
of continuity and strict monotonicity this will never occur under the
conditions specified below.

Corollary 2 (First Welfare Theorem for Cautious Trading). If utility
functions are continuously differentiable and indifference curves in the
interior of the allocation set do not intersect the boundary, the process
of Cautious Trading will with probability one both

(1) not go to an allocation on the boundary
(2) and will converge to a set of Pareto Optimal allocations.

Proof. To go to an allocation on the boundary with the above con-
ditions an agent must in effect accept an infinite loss in utility; but
with probability one this will not occur as it is assumed that the total
amount of experimentation is almost surely finite, so the loss in any
particular period must also be bounded.

If the utility functions are continuously differentiable then any pair-
wise optimal allocation is a Pareto optimal allocation as the marginal
rates of substitution of goods for each agent must be equal. By propo-
sition 1 the process converges to a set of pairwise optimal allocation al-
locations, so with the additional assumption this is Pareto optimal. �

2.3. Extension to Production. Our convergence results for exchange
can be extended to economies with production using the process de-
scribed in (Rader 1964, Rader 1976). Formally an exchange economy
is an array {(ui, ei,RJ

+): i ∈ I}. An economy with production is an
array {(ui, ei,RJ

+) : i ∈ I; (Y f ) : f ∈ F, θif : f ∈ F, i ∈ I} where
f ∈ F = {1 . . . F} is the set of firms and θif is individual i’s share
in firm f with

∑
i θif = 1, ∀f . Assume that the production set Y f of

firm f is convex, non-empty, closed, satisfies the no free lunch condi-
tion (Y f ∩ RJ

+ ⊂ {0}), allows for inaction (that is 0 ∈ Y f ), satisfies
free disposal and irreversibility (that is if y ∈ Y f and y 6= 0 then
−y /∈ Y f ). We can convert an economy with production to an econ-
omy with household production by endowing each individual i with a
production set Ỹi =

∑
f θifY

f . Next, by using Rader’s principle of

equivalence (Rader 1976), an economy with household production can
be associated with an equivalent economy with pure exchange with
indirect preferences defined on trades. The conditions under which
pairwise optimality implies Pareto optimality with such indirect pref-
erences follow directly from Theorem 2 and its applications, also in
(Rader 1976).
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3. Numerical Results

While we have shown that the sequence of allocations will converge
to a Pareto optimal set, this does not answer the question of how long
such a process will take to get close to Pareto optimal. This section
examines this question via a numerical approach, showing that for a
common class of utility functions, the average speed of convergence is,
in a sense to be specified shortly, good6. This section also examines
the question of how the cautious trading process effects the wealth of
agents.

3.1. Numerical Model. Attention is focused on sets of heterogeneous
agents with Cobb-Douglas preferences and random initial endowments
as a benchmark case. We can represent the preferences by utility func-
tions:

ui(xi) =
∑
j

αji ln(xji ).

One can of course represent Cobb Douglas utilities by ui(xi) =
∏

j(x
j
i )
λj

i .
However, the logarithmic representation is preferred for numerical work
because it has a considerably lower computational cost. We have ini-
tial endowments, eji , of each commodity drawn from a uniform distri-

bution over (0, 1] and parameters αji of the functions are again drawn

from (0, 1] uniformly, then normalised such that the sum,
∑

j α
j
i = 1.

They are normalised to a fixed value so as to make talking about global
utility as the sum of agent’s utilities more meaningful; this does not
change the preferences which they represent.

As before trades are restricted to the set of all trades which leave
both proposer i and responder j with positive quantities of each good,
that is:

−xjmt < zit < −xint
as to actually implement the trading process it is necessary to fix some
boundary values7

6This section has been written so as to be as accessible as possible to the non-
programmer. Those with experience of programming may wish to skim this section,
while consulting the source code directly, the key sections of which are included in
appendix.

7An alternative, and in some ways more satisfying alternative (as it limits re-
quired information), might be to restrict trades to within the total endowment of
the economy. While analytically we would obtain the same asymptotic results, nu-
merically it would simply lead to many rejected proposal and vastly longer running
times if these were simulated directly. One could try and simulate the proposal pro-
cess indirectly if one could formulate joint probability distributions over improving
offers, over improving proposals and over agent pairing. However for anything other
than trivial economies this is extremely difficult due to the number of dimensions
and changing state when proposals accepted.
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The key objects we need in our computational model is an agent
and a collection of agents. The former implements agents with Cobb-
Douglas utility functions as specified above, random initial endowments
and importantly specifies the actual mechanics of trade proposals, ac-
ceptance or rejection and trades. The later creates a collection of these
agents and carries out realisations of the economy. A schematic repre-
sentation of these classes can be found in figure 1. Utilising these we
can obtain various numerical results via processes like that illustrated
in figure 2.

Figure 1. An outline of the main attributes and meth-
ods of the Agent and Economy objects.

We make one further major assumption: each agent makes one pro-
posal per round, irrespective of the size of the economy. An alternative
way to approach implementing this model might be to fix some n, per-
haps n = 1 as the total number of proposals per round, with agents
drawn at random in each round. However, if one takes seriously the de-
centralisation of the economy, then one should assume that the agents
actions are unconstrained by the size of the global economy.

3.2. Results. Attention was focused on estimated convergence in av-
erage global utility to assess the performance of cautious trading. To
estimate this we calculate global utility by summing across utility for
all agents in the economy, then take an average over many runs as the
process is stochastic. One can then use the final value as an estimate of
limiting utility and calculate how far away earlier values are. The last
few hundred values are discarded as for them this estimate of limiting
utility is not, relatively speaking, as good. The analysis depends on the
increasing nature of sequences of utility values for agents this analysis
to make sense.
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Figure 2. An example algorithm of a numerical sim-
ulation of Cautious Trading. The precise details vary
depending the experiment being carried out but this ex-
ample gives an overview of the kind of algorithm used to
generate the data for most of the figures in this paper.

In figure 3 one can see how varying the total number of agents effects
the average speed of convergence. As one can see there is in fact very
little qualitative effect. There is some increase in time taken, however
when one plots the log of average convergence as in figure 4 one can
see that we get a close approximation to a straight line after an initial
faster period; suggesting an exponential speed of convergence, at least
over the these time periods.

We also examined the effect of the number of goods via similar anal-
ysis. In figure 5 one can see how the speed of convergence varies with
the total number of goods in the economy. There is a similar result of
little qualitative change. This is more surprising as we have the same
number of proposals taking place as before over larger increasing num-
bers of goods. When one examines the the log plot in figure 6 one gets
the same kind of result as for varying agents.

One can fit an exponential function, via regression on the log of the
values, to these average utility paths in order to obtain a numerical
estimate for the average speed of convergence. In tables 1 and 2 we
present such results for a range of model sizes. The important point
to note is the approximately exponential convergence in global utility
for a range of sizes of economy, both in terms of number of goods
and number of agents, rather than the actual fitted parameters. Note
that the p-values for the regressions are less than 0.0005 indicating an
extremely high level of confidence in the fit of the model.
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Figure 3. Average over many runs of global utility con-
vergence when varying the total number of agents in the
economy. Parameters: 5 goods, 25-100 agents.

Figure 4. Log of average global utility convergence
when varying the total number of agents in the economy.
Parameters: 5 goods, 25-100 agents.

Another aspect of the exchange process we can analyse numerically
is that of wealth dynamics or change. If we had a single set of prices or
relative valuations p in the economy, then we could obtain the wealth
of an agent i, simply be calculating pxi. In our out-of-equilibrium
scenario there is no single set of prices, however given that the marginal
rates of substitution converge, this implies a convergence to a uniform
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Figure 5. Average global utility convergence when
varying the total number of goods in the economy. Pa-
rameters: 4-7 goods, 50 agents.

Figure 6. Log of average global utility convergence
when varying the total number of goods in the economy.
Parameters: 4-7 goods, 50 agents.

set of relative evaluations (in terms of changes in utility); in effect a
common set of prices. From this set of prices we can calculate a value
for each agent’s bundle. But if we know their original endowment we
can calculate their initial wealth using these prices, so we can obtain a
set of ex-post wealth values.
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Goods 4 5 6 7
linear coefficient: -0.0026 -0.0019 -0.0021 -0.0021
constant term: 6.3642 5.6688 5.9079 6.3833

Table 1. Fitting exponential function to average con-
vergence for varying numbers of goods. The values given
are for linear fit of log of convergence. For every fit the
p-values for the regressions are less than 0.0005 indicat-
ing an extremely high level of confidence in the fit of the
model.

Agents 25 50 75 100
linear coefficient: -0.0023 -0.0022 -0.0022 -0.0023
constant term: 4.4728 4.3750 5.3190 5.2299

Table 2. Fitting exponential function to average con-
vergence for varying numbers of agents. The values given
are for linear fit of log of convergence. For every fit the
p-values for the regressions are less than 0.0005 indicat-
ing an extremely high level of confidence in the fit of the
model.

In figure 7 the density of wealth change is plotted. We see a linear
relationship of final to original wealth, but with a very high level of
noise, as one might expect. It should be emphasised that in all cases
utility for every agent increases over time, however ’wealth’ may change
in either direction.

In figure 8 we take the example outlined above in section 2.1 and
examine what happens numerically, introducing a small probability ε
of making a mistake, that is proposing or accepting a disimproving
trade. If no experimentation takes place no trade ever happens and
global utility remains at 0. As we increase the level of experimentation
short term global utility improves (rises more steeply) at the cost of a
lower level of long term convergence. In cautious trading form nothing
happens, but with experimentation trade happens.

For high values of experimentation faster initial improvement than
low values, but longer term global utility is slightly lower and the econ-
omy more volatile. This suggests that in selecting the level of experi-
mentation there is a trade off between convergent level of utility and
speed of convergence.

Above an example adapted from Scarf was presented which showed
how experimentation could lead to a better outcome than before, how-
ever, this example is a very special case. An interesting question we can
ask numerically is how experimentation effects the speed of convergence
in a larger, more heterogeneous example such as the Cobb Douglas
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Figure 7. This uses the average of the final marginal
rates of substitution to obtain an estimate for initial and
final wealth. The darker the square the more likely such
a transition from initial to final wealth in that square is;
this heatmap was included as the scatter plot is difficult
to read due to the high number of samples with similar
changes in wealth 12500 samples (or 250 realisations of
2000 periods, with 50 agents; normalised per realisation.

Figure 8. Without experimentation no trade takes
place in this model adapted from a model of Scarf. No-
tice how long term utility appears lower for a higher level
of experimentation.

utility function economy we looked at previously. In fact there is quali-
tatively similar long term behaviour when experimentation is included
as can be seen in figure 6 where experimentation is introduced into the
original model from section 3. For certain values of experimentation
we even see slightly better overall performance with experimentation.
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Figure 9. Low levels of experimentation have little ef-
fect in the Cobb Douglas economy we looked at before.

So we have seen that cautious trading allows trade to occur when it
would not have otherwise happened. Furthermore, in economies where
experimentation is not required, such as the Cobb-Douglas economy
in figure 9, experimentation does not appear to have a qualitatively
detrimental effect.

4. The Role of Connectedness

So far we have assumed a anonymous, fully connected economy, with
trading partners picked at random from all agents in the economy. But
an attempt to investigate decentralised economies would be incomplete
without a consideration of if and how the structure of that economy
effects outcomes. The natural way to think about this is in terms of a
network of agents with edges representing potential trading partners8.
So we have a undirected graph G = (V,E), where V is the set of
vertices (agents) and E the set of edges (potential trading links).

4.1. Cautious Trading on Networks. Agent i has endowment ei
as before, however we now restrict offers and trade to pairs of agents
connected by an edge e ∈ E. We call this Networked Cautious Trading.
We can use the same formulations for proposals and acceptance as
before, however our “local” optimality will have to be redefined as
follows: an allocation X = (x1, . . . ,xI) is connected-pairwise optimal
if there exists no way of redistributing bundles between any connected

8We consider only static networks, however if one is conceiving of an exchange
economy where the cautious trading process is one step repeated with changes to
the fundamentals of the economy at each step, then there is no reason why the
network topology couldn’t be considered a fundamental to be altered at each step.
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pair m,n that would make at least one strictly better off, while making
the other at least as well off. If we have a fully connected9 graph then
we would be considering Pareto optimality.

4.2. Results. We can reformulate the above analytical results for Cau-
tious Trading in the context of networks, as summarised in the following
propositions. Proofs are omitted as they can be obtained by replacing
the notion of pairwise optimality with connected-pairwise optimality
and taking account of networks specific issues such as requiring the
network be connected10.

"ring" network "star" network

random network "hierarchical" network

(a) (b)

(c) (d)

Figure 10. This figure illustrates some network struc-
tures. Note that simulations were run on networks of
much larger size.

(1) The Networked Cautious Trading process with zero experimen-
tation converges in utility and the allocations converge to a set
of connected-pairwise optimal utility-identical allocations.

(2) If we also have that:

9There is an edge linking every agent to all all other agents.
10There exists a path from every vertex to all other vertices.
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(a) the utility functions are continuously differentiable and the
graph G is connected and

(b) indifference surfaces through the interior of the allocation
set do not intersect the boundary of the allocation set,

then then on the interior of the consumption set a pairwise
optimal allocation is Pareto optimal and if one agent has some
of all goods and others have some of at least one good then
cautious trading converges to a Pareto optimal.

(3) If total experimentation is almost surely finite then networked
cautious trading converges with probability one to a set of
connected-Pairwise optimal allocations.

(4) If furthermore utility functions are continuously differentiable,
indifference curves in the interior of the allocation set do not
intersect the boundary and G is connected the process of Cau-
tious Trading will with probability one, both:
(a) not go to an allocation on the boundary
(b) and will converge to a set of Pareto Optimal allocations.

So asymptotically Cautious Trading on a network has similar prop-
erties to anonymous, pairwise matching. However, there may be sig-
nificant differences in properties like initial convergence which we are
able to examine numerically. In figure 10 some different structures of
networks are illustrated: a ring network, where each vertex has an edge
joining it to each of its nearest neighbours; a star network where one
vertex is joined to all others; a random network and a hierarchical net-
work which has a hierarchy of star-like components. All these networks
are connected, but far from fully connected as was assumed to be the
case for the original formulation of cautious trading. In any case if an
economy were not connected then we would really be dealing with two
or more economies.

The key issue seems to be the level of connectivity as illustrated
in figures 11 and 12. In the first figure extremely similar results are
obtained for the original cautious trading process, cautious trading
on a “ring” network and cautious trading on a random network. In
figure 12 the results are quite different for networks with lower levels
of connectivity. In summary, if connectivity is low, as is the case for a
“star” network the speed of convergence is reduced; if it is sufficiently
high (for the sizes of networks examined in this paper this means around
four edges per vertex) then the results are similar to the fully connected
scenario, with the actual structure of connection having little effect.

We looked at varying levels of clustering using the Watts and Stro-
gatz model for small world graph generation (Watts & Strogatz 1998));
basically we start off with a ring network (agents are connected to their
nearest neighbours) and rewire each edge with a fixed probability β.
We obtained similar results to figure 11, that is there was little effect at
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a global level if we kept connectivity constant (as the Watts-Strogatz
model does by construction).

Examining wealth change in a centralised economy (a star network)
there is a substantial contrast with the original cautious trading model,
now final wealth appears to be more random, with only a slight corre-
lation with initial wealth as can be seen in figure 13. Again there would
appear to be a high level of noise in the system, with many outliers.

Figure 11. Here we have three quite different struc-
tures for our economy; however the average path of the
economy if very similar. We have the original Cautious
Trading, a uniformly randomly connected graph (with
an average of four edges per vertex) and a ring graph
(each agent is connected to it four nearest neighbours).
These all have quite different properties but seemingly
due to the reasonably high level of connectivity result in
the same average behaviour. Averaging over 2000 reali-
sations, 100000 proposals per realisation, 50 agents.

5. Conclusions

Even with “zero information” an exchange economy with typical as-
sumptions will converge to a Pareto optimal outcome purely through
bilateral exchange among uninformed partners. It is possible to numer-
ically examine the speed of convergence which turns out to be exponen-
tial for a typical class of utility function. Augmenting this process with
experimentation leads to both convergence in some examples where it
did not previously occur and potentially faster convergence in cases
which did converge previously.
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Figure 12. In contrast to figure 11 we see quite differ-
ent average behaviours for these networks versus the orig-
inal cautious trading. These networks are a star network
in which one agent is connected to all others (an ideali-
sation of a central market in which all agents exchange
goods) and a hierarchical network (where there is a ’cen-
tral market’ which is connected to a small number of
other ’markets’, in turn connected to all the other agents
in the economy). These networks have low levels of con-
nectivity (roughly one edge per agent) and this seemingly
restricts the speed of converge and lowers global utility.
Averaging over 2000 realisations, 100000 proposals per
realisation, 50 agents.

One can conceive of this “zero information” as a worst case assump-
tion. In “real” markets one presumably has more to work with but al-
most never the kind of complete information that is typically assumed
in comparable models of exchange. The dual discipline of having to
deal with decentralisation and its resultant lack of information (not
simply uncertainty over a small number of possible states of the world)
and having to explicitly implement the models for numerical investi-
gation has proved useful. A possible next step would be to examine
out-of-equilibrium dynamics in asset trades.

References

K. Arrow & F. Hahn (1971). General Competitive Analysis.
R. Axtell (2005). ‘The Complexity of Exchange’. The Economic Journal
115(504):F193–F210.

A. Feldman (1973). ‘Bilateral Trading Processes, Pairwise Optimality, and Pareto
Optimality’. The Review of Economic Studies 40:463–473.



24 SAYANTAN GHOSAL AND JAMES PORTER

Figure 13. These plots show the change in wealth, us-
ing the average of the final marginal rates of substitution
to obtain an estimate of changes in wealth for a net-
worked (star network) economy 12500 samples (or 250
realisations of 2000 periods, with 50 agents; normalised
on a per realisation basis such that the total wealth sums
to one.

F. M. Fisher (1981). ‘Stability, Disequilibrium Awareness, and the Perception of
New Opportunities’. Econometrica 49(2):279–317.

D. K. Foley (1999). ‘Statistical Equilibrium in Economics: Method, Interpretation,
and an Example’ .

D. Gale (1986a). ‘Bargaining and Competition Part I: Characterization’. Econo-
metrica 54:785–806.

D. Gale (1986b). ‘Bargaining and Competition Part II: Existence’. Econometrica
54:807–818.

D. Gale (2000). Strategic Foundations of General Equilibrium. Cambridge Univer-
sity Press.

D. Gale & H. Sabourian (2005). ‘Competition and Complexity’. Econometrica
73:739–769.

S. Ghosal & M. Morelli (2004). ‘Retrading in Market Games’. Journal of Economic
Theory 115:151–181.

H. Gintis (2006). ‘The Emergence of a Price System from Decentralized Bilateral
Exchange’. Contributions to Theoretical Economics 6(1):1302–1302.

H. Gintis (2007). ‘The Dynamics of General Equilibrium’. Economic Journal
117(523):1280–1309.

D. K. Gode & S. Sunder (1993). ‘Allocative Efficiency of Markets with Zero Intel-
ligence Traders: Market as a Partial Substitute for Individual Rationality’. The
Journal of Political Economy 101(1):119–137.

S. M. Goldman & R. M. Starr (1982). ‘Pairwise, t-wise and Pareto Optimalities’.
Econometrica 50(3):593–606.

A. McLennan & H. Sonnenschein (1991). ‘Sequential Bargaining as a Noncoopera-
tive Foundation for Walrasian Equilibrium’. Econometrica 59(5):1395–1424.

T. Rader (1964). ‘Edgeworth Exchange and General Economic Equilibrium’.
T. Rader (1976). ‘Pairwise Optimality, Multilateral Optimality and Efficiency, With
and Without Externalities’. In Economics of Externalities. Academic Press.



DECENTRALIZED EXCHANGE 25

A. Rubinstein & A. Wolinsky (1985). ‘Equilibrium in a Market with Sequential
Bargaining’. Econometrica 53:1133–1150.

H. E. Scarf (1959). ‘Some Examples of Global Instability of the Competitive Equi-
librium’ (79).

D. J. Watts & S. H. Strogatz (1998)). ‘Collective dynamics of ’small-world’ net-
works’. Nature 393:440–442.



26 SAYANTAN GHOSAL AND JAMES PORTER

Appendix A. Numerical Implementation

The numerical model was implemented using the Java programming
language. The implementation explicitly models individual agents via
an Agent class. Each instance of the class stores the agent’s current
bundle of goods, the parameters of its utility function and its current
marginal rates of substitution. Each agent can make or consider offers,
carry out trades and reset itself for another realisation of trading.

The following subsections outline the details of the models and im-
plementation. The key source files are contained in appendix B below.

A.1. Cautious Trading. Two files contain the key parts of the im-
plementation of Cautious Trading: the Agent and CautiousEconomy
classes. The former implements agents with Cobb-Douglas utility func-
tions, random initial endowments and specifies the mechanics of trade
proposals and trades. The later creates a collection of these agents and
carries out simulated runs of the economy.

A.2. Scarf Example. A modified version of the Agent and CautiousEc-
onomy classes was created to study the behaviour of an economy which
in many settings may not converge. The implementation is broadly
similar to the original, the main changes being to the endowments and
utility functions.

A.3. Experimentation. The CautiousEconomy has been augmented
with the possibility of experimentation. Essentially the ExperimentingE-
conomy class adds experimentation to CautiousEconomy via a scaling
parameter to proposed trades. To be more precise an initial level of
allowable experimentation is selected and the allowable level decreases
linearly until it ceases. The probability of experimentation is fixed at
an initial level and this too decreases over time.

Appendix B. Source Code

This section contains the key source code files; many more were
actually used to model the cautious economy. The code is arranged
into four distinct levels: agent, economy, experiment and simulation.
The first two play obvious roles, the experiment code provides general
code to investigate the cautious economy and the simulation code runs
experiments and does some processing of results. Figures in this report
were then produced using Matlab.

B.1. Agent Code. The below code is for the basic form of the Agent
class.

Listing 1. Agent class source code
1 package ac . decentra l i s edExchange . caut i ous . model ;
2
3 import java . u t i l . Random ;
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4
5 public class Agent {
6
7 protected double goods [ ] ;
8 protected double or ig ina lGoods [ ] ;
9 protected double exponents [ ] ;

10 protected double or ig ina lExponent s [ ] ;
11 protected double c u r r e n t U t i l i t y ;
12 protected int nGoods ;
13 protected Random gen ;
14
15 public Agent ( int nGoods ) {
16 this . nGoods = nGoods ;
17 gen = new Random( ) ;
18
19 goods = new double [ nGoods ] ;
20 exponents = new double [ nGoods ] ;
21
22 or ig ina lGoods = new double [ nGoods ] ; // i n i t i a l endowment

s to r ed f o r r e s t a r t
23 or i g ina lExponent s = new double [ nGoods ] ; // i n i t i a l

exponents s to r ed f o r r e s t a r t
24 in i t i a l i z eRandomly ( ) ; // a c t u a l l y i n i t i a l i s e the se

ar rays
25
26 update ( ) ;
27 }
28
29 /∗∗
30 ∗ I n i t i a l i s e the agent with a random s e t o f exponents and

goods ; then norma l i s ing the exponenents
31 ∗/
32
33 protected void i n i t i a l i z eRandomly ( ) {
34 for ( int i =0; i < nGoods ; i++){
35 goods [ i ] = gen . nextDouble ( ) ;
36 or ig ina lGoods [ i ] = goods [ i ] ;
37
38 exponents [ i ] = gen . nextDouble ( ) ;
39 or i g ina lExponent s [ i ] = exponents [ i ] ;
40 }
41 normal i s e ( ) ;
42 }
43
44 /∗∗
45 ∗ Reset the agent , i . e . generate new endowments and

exponents
46 ∗/
47 public void r e s e t ( ) {
48 in i t i a l i z eRandomly ( ) ;
49 update ( ) ;
50 }
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51
52 /∗∗
53 ∗ Restart the agent , i . e . r e s t o r e endowments and

exponents
54 ∗/
55 public void r e s t a r t ( ) {
56 r e s t o r e ( ) ;
57 update ( ) ;
58 }
59
60 /∗∗
61 ∗ Update u t i l i t y when t h i s i s nece s sa ry . Should add any

other update
62 ∗ a c t i o n s here .
63 ∗/
64 protected void update ( ) {
65 updat eUt i l i t y ( ) ;
66 }
67
68 /∗∗
69 ∗ Restore o r i g i n a l s t a t e o f agent
70 ∗/
71 protected void r e s t o r e ( ) {
72 for ( int i =0; i < nGoods ; i++){
73 goods [ i ] = or ig ina lGoods [ i ] ;
74 exponents [ i ] = or ig ina lExponent s [ i ] ;
75 }
76 normal i s e ( ) ;
77 }
78
79 /∗∗
80 ∗ Normalise the u t i l i t y func t i on so exponents sum to

1 .
81 ∗/
82 protected void normal i s e ( ) {
83 double sum = 0 . 0 ;
84 for ( int i =0; i < goods . l ength ; i++){
85 sum += exponents [ i ] ;
86 }
87 a s s e r t sum != 0 . 0 ;
88 for ( int i =0; i < goods . l ength ; i++){
89 exponents [ i ] = exponents [ i ] / sum ;
90
91 }
92 }
93
94 /∗∗
95 ∗ Return u t i l i t y o f an agent (Cobb−Douglas )
96 ∗/
97 public double u t i l i t y ( ) {
98 return u t i l i t y ( this . goods ) ;
99 }
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100
101 /∗∗
102 ∗ Assess the u t i l i t y o f bundle (Cobb−Douglas )
103 ∗/
104 public double u t i l i t y (double [ ] bundle ) {
105 double u = 0 . 0 ;
106 for ( int i = 0 ; i < goods . l ength ; i++){
107 u += (Math . l og ( bundle [ i ] ) ∗ exponents [ i ] ) ;
108 }
109 a s s e r t ( ! Double . isNaN (u) ) ;
110 return u ;
111 }
112
113 /∗∗
114 ∗ Assess the u t i l i t y i f g ive a ( i . e . subt rac t a ) bundle .
115 ∗/
116 protected double u t i l i t y I f G i v e (double change [ ] ) {
117 double [ ] temp = new double [ nGoods ] ;
118 for ( int i =0; i<nGoods ; i++){
119 temp [ i ] = this . goods [ i ] − change [ i ] ;
120 }
121 return u t i l i t y ( temp ) ;
122 }
123
124 /∗∗
125 ∗ Assess the u t i l i t y i f get a ( i . e . add a ) bundle .
126 ∗/
127 protected double u t i l i t y I f G e t (double change [ ] ) {
128 double [ ] temp = new double [ nGoods ] ;
129 for ( int i =0; i<nGoods ; i++){
130 temp [ i ] = this . goods [ i ] + change [ i ] ;
131 }
132 return u t i l i t y ( temp ) ;
133 }
134
135 /∗∗
136 ∗ Update the cur rent u t i l i t y l e v e l − c a l l t h i s i f you

change the bundle or exponents
137 ∗/
138 protected void updat eUt i l i t y ( ) {
139 c u r r e n t U t i l i t y = u t i l i t y ( ) ;
140 }
141
142 /∗∗
143 ∗ An agent makes a proposa l to another Agent other .
144 ∗ @param The agent to propose o f f e r to
145 ∗ @return Whether a trade took p lace
146 ∗/
147 public boolean propose ( Agent other ) {
148 i f ( other != null ) {
149 double proposa l [ ] = getProposa l ( other ) ;
150
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151 i f ( other . c on s id e r ( proposa l ) ) {
152 trade ( other , proposa l ) ;
153 return true ;
154 }
155 else {
156 return fa l se ;
157 }
158 } else {
159 return fa l se ;
160 }
161 }
162
163 /∗∗ Consider a trade o f change , re turn true i f improving ,

f a l s e o the rwi se ∗/
164 public boolean con s id e r (double change [ ] ) {
165 i f ( u t i l i t y I f G e t ( change ) > c u r r e n t U t i l i t y ) {
166 return true ;
167 }
168 else {
169 return fa l se ;
170 }
171 }
172
173 public boolean propose ( Agent other , double

a l l owab l e expe r imenta t i on ) {
174 double [ ] p roposa l = getProposa l ( other ) ;
175 i f ( other . c on s id e r ( proposal , a l l owab l e expe r imenta t i on )

) {
176 trade ( other , proposa l ) ;
177 return true ;
178 }
179 else {
180 return fa l se ;
181 }
182 }
183
184 protected double [ ] ge tProposa l ( Agent other ) {
185 double proposa l [ ] = new double [ nGoods ] ;
186 boolean improving = fa l se ;
187 int j = 0 ;
188 while ( ! improving ) {
189 for ( int i = 0 ; i < nGoods ; i++) {
190 proposa l [ i ] = goods [ i ] − gen . nextDouble ( ) ∗( goods [ i

] + other . goods [ i ] ) ;
191 a s s e r t ( proposa l [ i ] < goods [ i ] ) ;
192 }
193 i f ( u t i l i t y I f G i v e ( proposa l ) > c u r r e n t U t i l i t y ) {
194 improving = true ;
195 }
196 j ++;
197 }
198 return proposa l ;
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199 }
200
201
202 /∗∗
203 ∗ Consider a trade o f change , re turn true i f improving ,

f a l s e o the rwi se
204 ∗/
205 public boolean con s id e r (double change [ ] , double

a l l owab l e expe r imenta t i on ) {
206 i f ( u t i l i t y I f G e t ( change ) > c u r r e n t U t i l i t y −

a l l owab l e expe r imenta t i on ) {
207 return true ;
208 }
209 else {
210 return fa l se ;
211 }
212 }
213
214 /∗∗
215 ∗ Agent ge t s the bundle o f goods change ( some or a l l

components may be negat ive i . e . they l o s e t h i s )
216 ∗/
217 public void get (double change [ ] ) {
218 for ( int i = 0 ; i < nGoods ; i++) {
219 goods [ i ] += change [ i ] ;
220 }
221 update ( ) ;
222 }
223
224 /∗∗
225 ∗ Agent g i v e s the bundle o f goods change ( some or a l l

components may be negat ive i . e . they gain t h i s )
226 ∗/
227 public void g ive (double change [ ] ) {
228 for ( int i = 0 ; i < nGoods ; i++) {
229 goods [ i ] −= change [ i ] ;
230 }
231 update ( ) ;
232 }
233
234 /∗∗
235 ∗ Trading procedure : parameters : another Agent other and

the trade to take p lace change .
236 ∗/
237 public void t rade ( Agent other , double change [ ] ) {
238 g ive ( change ) ;
239 other . get ( change ) ;
240 }
241
242 /∗∗ The exponents o f the agent are shocked v ia a

normal i sed
243 ∗ Gaussian s c a l e d v ia the shockS ize parameter
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244 ∗ @param shockS ize The s c a l i n g to be app l i ed to a
normal i sed Gaussian

245 ∗ ∗/
246 public void shockGaussian (double shockS ize ) {
247 for ( int i = 0 ; i < nGoods ; i++) {
248 exponents [ i ] += this . gen . nextGaussian ( ) ∗ shockS ize ;
249 }
250 }
251
252 public double [ ] [ ] getMRS ( ) {
253 double [ ] [ ] mrs = new double [ nGoods ] [ nGoods ] ;
254 for ( int i = 0 ; i < nGoods ; i++) {
255 for ( int j = 0 ; j < nGoods ; j++) {
256 mrs [ i ] [ j ] = ( goods [ i ]∗ exponents [ j ] ) / ( goods [ j ]∗

exponents [ i ] ) ;
257 a s s e r t mrs [ i ] [ j ] != 0 . 0 ;
258 }
259 }
260 return mrs ;
261 }
262 }

B.2. Cautious Economy Code. The below code presents the basic
abstract economy class, which all economies subclass.

Listing 2. Cautious Economy source code
1 package ac . decentra l i s edExchange . caut i ous . model ;
2 import java . i o . ∗ ;
3 import java . u t i l . ArrayList ;
4 import ac . decentra l i s edExchange . u t i l . ∗ ;
5
6 /∗∗ The c l a s s Economy c o n s i s t s o f a c o l l e c t i o n
7 ∗ o f independent Agents , who trade
8 ∗ v ia Cautious Trading .
9 ∗/

10 public abstract class Economy{
11
12 public ArrayList<Agent> agents ;
13
14 public int s i z e ;
15 public int nGoods ;
16 public int trades , per iod , round ;
17
18 /∗∗ Reset the economy i . e . g ive each agent a random
19 ∗ a l l o c a t i o n and u t i l i t y func t i on .
20 ∗/
21 public void r e s e t ( ) {
22 for ( Agent a : agents ) {
23 a . r e s e t ( ) ;
24 }
25 re se tCounte r s ( ) ;
26 }
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27
28 /∗∗
29 ∗ Restore o r i g i n a l s t a t e o f economy
30 ∗/
31 public void r e s t a r t ( ) {
32 for ( Agent a : agents ) {
33 a . r e s t a r t ( ) ;
34 }
35 re se tCounte r s ( ) ;
36 }
37
38 protected void r e se tCounter s ( ) {
39 t rade s = 0 ;
40 per iod = 0 ;
41 round = 0 ;
42 }
43
44 /∗∗
45 ∗ Return the t o t a l u t i l i t y o f a l l Agents in the

Economy .
46 ∗/
47 public double t o t a l U t i l i t y ( ) {
48 double t o t a l = 0 ;
49 for ( int i = 0 ; i < this . agents . s i z e ( ) ; i++) {
50 t o t a l += agents . get ( i ) . c u r r e n t U t i l i t y ;
51 }
52 return t o t a l ;
53 }
54 /∗∗
55 ∗ Attempt one exchange per member o f the economy
56 ∗/
57 public abstract void round ( ) ;
58
59 /∗∗
60 ∗ Carry out mu l t ip l e rounds o f t rad ing
61 ∗ @param n Number o f rounds to run
62 ∗/
63 public void runRounds ( int n) {
64 for ( int i = 0 ; i < n ; i++) {
65 round ( ) ;
66 }
67 }
68 //
69 // pub l i c void outputTota lUt i l i t y ( F i l eWr i t e r w r i t e r ) {
70 // try {
71 // w r i t e r . wr i t e (” Total U t i l i t y : ” + t o t a l U t i l i t y

( ) ) ;
72 // }
73 // catch ( IOException e ) {
74 // e . pr intStackTrace ( ) ;
75 // }
76 // }
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77
78 /∗∗
79 ∗ @param per i od s The number o f pe r i od s
80 ∗ @param r e p e t i t i o n s The number o f r e a l i s a t i o n s to

average over
81 ∗ @throws IOException
82 ∗ ∗/
83 public double [ ] a v e r a g e U t i l i t y ( int per iods , int

r e p e t i t i o n s ) {
84 double r e s u l t s [ ] = new double [ p e r i od s ] ;
85 Proce s s ing . i n i t i a l i s e A r r a y T o Z e r o ( r e s u l t s ) ;
86
87 for ( int r = 0 ; r < r e p e t i t i o n s ; r++) {
88 for ( int i = 0 ; i < pe r i od s ; i++) {
89 round ( ) ;
90 r e s u l t s [ i ]+= t o t a l U t i l i t y ( ) ;
91 }
92 r e s t a r t ( ) ;
93 }
94 for ( int i = 0 ; i < r e s u l t s . l ength ; i++) {
95 r e s u l t s [ i ] /= r e p e t i t i o n s ;
96 }
97 return r e s u l t s ;
98 }
99

100 /∗∗
101 ∗ @param per i od s The number o f pe r i od s
102 ∗ @param r e p e t i t i o n s The number o f r e a l i s a t i o n s to

average over
103 ∗ @throws IOException
104 ∗ ∗/
105 public double [ ] [ ] manyUti l i ty ( int rounds , int r e p e t i t i o n s

) {
106 double r e s u l t s [ ] [ ] = new double [ rounds ] [ r e p e t i t i o n s ] ;
107 Proce s s ing . i n i t i a l i s e A r r a y T o Z e r o ( r e s u l t s ) ;
108
109 for ( int r = 0 ; r < r e p e t i t i o n s ; r++) {
110 for ( int i = 0 ; i < rounds ; i++) {
111 round ( ) ;
112 r e s u l t s [ i ] [ r ] = t o t a l U t i l i t y ( ) ;
113 }
114 r e s e t ( ) ;
115 }
116 return r e s u l t s ;
117 }
118
119 /∗∗
120 ∗ Returns average MRS. I f economy has converged

s u f f i c i e n t l y
121 ∗ t h i s i s a proxy f o r p r i c e s
122 ∗ @return Average MRS va lues
123 ∗/
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124 public double [ ] [ ] getsAverageMRS ( ) {
125 double [ ] [ ] mrs = new double [ nGoods ] [ nGoods ] ;
126 Proce s s ing . i n i t i a l i s e A r r a y T o Z e r o ( mrs ) ;
127
128 for ( Agent a : agents ) {
129 Proce s s ing . add2dArrayInPlace ( mrs , a . getMRS ( ) ) ;
130 }
131
132 Proce s s ing . normal i se2dArrayInPlace ( mrs , ( double ) s i z e ) ;
133 return mrs ;
134 }
135
136 public double [ ] est imateWealth (double [ ] [ ] goodsList ,

double [ ] [ ] mrs ) {
137 double [ ] wealth = new double [ s i z e ] ;
138 for ( int i = 0 ; i < s i z e ; i++) {
139 for ( int j = 0 ; j < nGoods ; j++) {
140 //Add to wealth the amount o f good j m u l t i p l i e d by

mrs with good 1
141 wealth [ i ] += mrs [ j ] [ 0 ] ∗ goodsL i s t [ i ] [ j ] ;
142 }
143 }
144 return wealth ;
145 }
146
147 public double [ ] est imateWealth (double [ ] [ ] goodsBundles )

{
148 return estimateWealth ( goodsBundles , getsAverageMRS

( ) ) ;
149 }
150
151
152 public double [ ] est imateCurrentWealth ( ) {
153 return estimateWealth ( getAllGoodsBundles ( ) ,

getsAverageMRS ( ) ) ;
154 }
155
156 public double [ ] e s t imateOr ig ina lWeal th ( ) {
157 return estimateWealth ( getAl lOr ig ina lGoodsBundles ( ) ,

getsAverageMRS ( ) ) ;
158 }
159
160 /∗∗
161 ∗ Get the cur rent a l l o c a t i o n bundle o f goods
162 ∗ @return cur rent a l l o c a t i o n bundle o f goods
163 ∗/
164 public double [ ] [ ] getAllGoodsBundles ( ) {
165 double [ ] [ ] goods = new double [ s i z e ] [ nGoods ] ;
166 for ( int i = 0 ; i < s i z e ; i++) {
167 for ( int j = 0 ; j < nGoods ; j++) {
168 goods [ i ] [ j ] = agents . get ( i ) . goods [ j ] ;
169 }
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170 }
171 return goods ;
172 }
173
174 public double [ ] [ ] getAl lOr ig ina lGoodsBundles ( ) {
175 double [ ] [ ] o r i g ina lGoods = new double [ s i z e ] [ nGoods ] ;
176 for ( int i = 0 ; i < s i z e ; i++) {
177 for ( int j = 0 ; j < nGoods ; j++) {
178 or ig ina lGoods [ i ] [ j ] = agents . get ( i ) . o r i g ina lGoods [ j

] ;
179 }
180 }
181 return or ig ina lGoods ;
182 }
183 }

B.3. Experimenting Economy Code. The below code shows how
the above economy has been expanded to include the idea of experimen-
tation. We were able to utilise much of the functionality of the Cau-
tiousEconomy superclass. The key changes are to the round method
and to the counters which are now of type double for efficiency purposes
as we would otherwise need to cast integers to doubles to calculate ex-
perimentation scaling in each round.

Listing 3. Experimenting Economy source code
1 package ac . decentra l i s edExchange . caut i ous . model ;
2
3 /∗∗ The c l a s s Economy c o n s i s t s o f a c o l l e c t i o n
4 ∗ o f independent Agents , who trade
5 ∗ v ia Cautious Trading . ∗/
6 public class ExperimentingEconomy extends CautiousEconomy {
7 public double acceptab le , propens i ty , decay ;
8 public double doubleEndDecay , doubleRoundCount ;
9 public double base l ineExper imentat ion ;

10 public int endDecay ;
11
12 /∗∗An Economy i s o f s i z e no . o f agents each
13 ∗ o f whom dea l with nGoods no . o f Goods .
14 ∗ @param s i z e Number o f agents in economy
15 ∗ @param nGoods Number o f goods in economy
16 ∗ @param a c c e p t a b l e l o s s p r o p o r t i o n The propor t ion o f

average i n i t i a l
17 ∗ abso lu t e u t i l i t y that i s i n i t i a l l y
18 ∗ acceptab l e to l o s e in a trade .
19 ∗ This d e c l i n e s u n t i l 0 at endDecay . Obviously the re are

schemes which are
20 ∗ more a n a l y t i c a l l y s a t i s f y i n g , t h i s one i s a compromise

between t h i s and ease o f computation .
21 ∗ @param propens i ty to expe r iment How o f t en to

experiment
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22 ∗ @param endDecay The po int at which exper imentat ion
s tops

23 ∗ ∗/
24 public ExperimentingEconomy ( int s i z e , int nGoods , double

a c c e p t a b l e l o s s p r o p o r t i o n , double
propens i ty to exper iment , int endDecay )

25 throws I l l ega lArgumentExcept ion {
26
27 super ( s i z e , nGoods ) ;
28 //Check va lues o f parameters
29 i f ( 0 . 0 > a c c e p t a b l e l o s s p r o p o r t i o n | |

a c c e p t a b l e l o s s p r o p o r t i o n > 1 .0
30 | | 0 .0 > propens i ty to expe r iment | |

propens i ty to expe r iment > 1 .0
31 | | 0 > endDecay ) {
32 throw new I l l ega lArgumentExcept ion ( ” Values must be in

range ( 0 , 1 ] f o r Acceptable , Propens i ty and
p o s i t i v e i n t e g e r f o r endDecay” ) ;

33 }
34
35 this . p ropens i ty = propens i ty to expe r iment ;
36 this . endDecay = endDecay ;
37 this . doubleEndDecay = ( f loat ) endDecay ;
38
39 this . a c ceptab l e = a c c e p t a b l e l o s s p r o p o r t i o n ;
40
41 this . base l ineExper imentat ion =

ca l cu l a t eBase l i n eExpe r imenta t i on (
a c c e p t a b l e l o s s p r o p o r t i o n ) ;

42 }
43
44 /∗∗
45 ∗ No exper imentat ion v e r s i o n o f Economy , should perform

as Cautious Economy
46 ∗ @param s i z e
47 ∗ @param nGoods
48 ∗ @param acceptab l e
49 ∗ @param proport ion
50 ∗ @throws I l l ega lArgumentExcept ion
51 ∗/
52 public ExperimentingEconomy ( int s i z e , int nGoods ) throws

I l l ega lArgumentExcept ion {
53 this ( s i z e , nGoods , 0 . 0 , 1 . 0 , 0) ;
54 }
55
56 protected double ca l cu l a t eBase l i n eExpe r imenta t i on (double

a c c e p t a b l e l o s s p r o p o r t i o n ) {
57 return a c c e p t a b l e l o s s p r o p o r t i o n ∗

c a l c u l a t e A v e r a g e A b s o l u t e U t i l i t y ( ) ;
58 }
59
60 protected double c a l c u l a t e A v e r a g e A b s o l u t e U t i l i t y ( ) {
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61 double t o t a l = 0 . 0 ;
62 for ( int i = 0 ; i < s i z e ; i++) {
63 t o t a l += Math . abs ( agents . get ( i ) . c u r r e n t U t i l i t y ) ;
64 }
65 return t o t a l /(double ) s i z e ;
66 }
67
68 @Override
69 public void round ( ) {
70 double a l l owab l e expe r imenta t i on = this .

base l ineExper imentat ion ∗
71 ( 1 . 0 − doubleRoundCount/

doubleEndDecay ) ;
72 int r ;
73
74 for ( int i = 0 ; i < s i z e ; i++) {
75 r = gen . next Int ( s i z e ) ;
76
77 // get another agent at random
78 while ( r == i ) {
79 r = gen . next Int ( s i z e ) ;
80 }
81
82 i f ( this . round < endDecay && gen . nextDouble ( ) <

propens i ty ∗ ( 1 . 0 − doubleRoundCount/
doubleEndDecay ) ) {

83 i f ( agents . get ( i ) . propose ( agents . get ( r ) ,
a l l owab l e expe r imenta t i on ) ) {

84 t rade s++;
85 }
86 }
87 else {
88 i f ( agents . get ( i ) . propose ( agents . get ( r ) ) ) {
89 t rade s++;
90 }
91 }
92 per iod++;
93 }
94 round++;
95 doubleRoundCount++;
96 }
97
98 @Override
99 protected void r e se tCounter s ( ) {

100 super . r e s e tCounte r s ( ) ;
101 doubleRoundCount = 0 .0 f ;
102 doubleEndDecay = 0 .0 f ;
103 }
104 }

The code for networked economies can be found in the source files;
but it is omitted here as it functions more or less as the above code.
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