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Abstract

This article proposes a microstructure model for stock prices in which parameters are modu-
lated by a Markov chain determining the market behaviour. In this approach, called the switching
microstructure model (SMM), the stock price is the result of the balance between the supply
and the demand for shares. The arrivals of bid and ask orders are represented by two mutually-
and self-excited processes. The intensities of these processes converge to a mean reversion level
that depends upon the regime of the Markov chain. The �rst part of this work studies the
mathematical properties of the SMM. The second part focuses on the econometric estimation of
parameters. For this purpose, we combine a particle �lter with a Markov Chain Monte Carlo
(MCMC) algorithm. Finally, we calibrate the SMM with two and three regimes to daily returns
of the S&P500 and compare them with a non switching model.

Keywords: Hawkes process, Switching process, microstructure

1 Introduction

As emphasized in the review of Bouchaud (2010), the market microstructure literature aims to
explain the role of market orders on stock prices. The understanding of this relationship has signi�-
cantly progressed during the last decade. For example, Bouchaud et al. (2009) explain that, because
market liquidity may be low, large orders to buy or sell are only traded incrementally, over periods
of time as long as weeks. As a result, order �ow is a persistent long-memory process. Bacry and
Muzy (2014) mention that this persistence of information causes endogeneity in stocks markets and
contradicts the classical theory in which prices are driven by an exogenous �ow of information.

To duplicate the endogeneity in prices, Bouchaud et al. (2010) propose a model of price �uc-
tuations by generalizing Kyle's approach (1985) according to which the price is the result of the
balance (up to a noise term) between bid and ask orders. Cont et al. (2013) study the price impact
of order book events using the NYSE TAQ data for 50 U.S. stocks. They show that, over short time
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intervals, price changes are mainly driven by the imbalance between supply and demand. Kelly and
Yudovina (2017) model the limit order book on short time scales, where the dynamics are driven
by stochastic �uctuations between supply and demand. Horst and Paulsen (2017) study the limit
properties of order books.

Bacry et al. (2013 a) reproduce the microstructure noise with multivariate Hawkes processes as-
sociated with positive and negative jumps of the asset prices. Bacry et al. (2013 b) characterise
the exact macroscopic di�usion limit of this model and show in particular its ability to reproduce
empirical stylised fact such as the Epps e�ect and the lead-lag e�ect. Bacry and Muzy (2014) ex-
tend this approach to prices and volumes with self and mutually excited processes. This particular
category of point processes was developed by Hawkes (1971a, b) and Hawkes and Oakes (1974). In
its simplest version, the intensity of jumps is persistent and suddenly increases as soon as a jump
occurs in the asset price. Bowsher (2002), Hautsch (2004) and Large (2005) illustrate that Hawkes
processes capture the dynamics in �nancial point processes remarkably well. This indicates that
the cluster structure implied by the self-exciting nature of these processes provides a reasonable
description of the timing structure of events in �nancial markets. Hardiman and Bouchaud (2014)
propose a method to evaluate the integral of the Hawkes kernel, called the branching ratio which
is a measure of markets endogeneity. Da Fonseca and Zaatour (2014) provide explicit formulas for
moments and the autocorrelation function of the number of jumps over a given interval for the
Hawkes process. Based on these moments, they propose an estimation method. Filimonov and
Sornette (2015) study the pitfalls in the calibration of Hawkes processes to high frequency data.
Jaisson and Rosenbaum (2015) show that nearly unstable Hawkes processes asymptotically behave
like integrated Cox�Ingersoll�Ross models. Bacry and Muzy (2016) demonstrate that the jumps cor-
relation matrix of a multivariate Hawkes process is related to the Hawkes kernel matrix by a system
of Wiener-Hopf integral equations. This relation is next used to calibrate microstructure models
to EuroStoxx (FSXE) and EuroBund (FGBL) future contracts. Bormetti et al. (2015) propose a
Hawkes factor model to capture the time clustering of jumps and the high synchronization of jumps
across assets. Hainaut (2016 a) introduces clustering of shocks in the dynamic of short term rates
with Hawkes processes. Ait-Sahalia et al. (2015) use Hawkes processes to study the level of conta-
gion between stocks markets. Chavez-Demoulin and McGill (2012) model excesses of high-frequency
�nancial time series via a Hawkes process. Hainaut (2016 b) adapts the microstructure model of
Bacry and Muzy (2014) to explain the behaviour of swap rates. Lee and Seo (2017) examines the
theoretical and empirical perspectives for the symmetric Hawkes model of the price tick structure.
Whereas Hainaut (2017) reveals that time changed Lévy processes with self-excited clocks explain
the clustering of jumps of S&P 500 and Eurostoxx 50 index. A detailed survey of other applications
of Hawkes processes in �nance is available in Bacry et al. (2015).

Given that economic cycles in�uence the trading behaviour and drive up or down the stocks mar-
ket, we propose a microstructure model allowing for changes of trading dynamics. Our model is an
extension of Bacry et al. (2013) in two directions. First, our model allows for regime shifts in the
mean reversion level of orders arrivals. Second, the sizes of orders are random positive variables. In
this new approach, called the �Switching Microstructure Model� (SMM), each state of the Markov
chain represents a particular trading trend. Our approach is also related to the work of Wang
et al. (2012) who study an univariate Markov-modulated Hawkes process, with jumps at discrete
occurence times. After a complete study of SMM mathematical properties, we develop an estima-
tion procedure that combines a particle �lter with a Markov Chain Monte Carlo algorithm. We
can draw a parallel between our approach and the research done at a macro-level that emphasizes
the strong link between economic cycles and the dynamic of markets. For example, Guidolin and
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Timmermann (2005) present evidence of persistent 'bull' and 'bear' regimes in UK stock and bond
returns. Guidolin and Timmermann (2008) obtain similar results for international stock markets.
Hainaut and MacGilchrist (2012) use Markov-modulated copulas to �lter economic cycles in the
French stocks and bonds markets. They consider the economic implication of this relation from the
perspective of an investor's portfolio allocation. Whereas Al-Anaswah and Wil�ng (2011) estimate a
two regimes Markov-switching speci�cation of speculative bubbles. Recently, Branger et al. (2014)
compares the correlations between asset returns induced by regime switching models with jumps
and models with contagious jumps.

The paper proceeds as follows. Section 2 presents the high frequency dynamic of prices. Sec-
tion 3 proposes closed form and semi-closed form expressions for moments and moment generating
functions of jumps intensities and stock prices. The rest of the article focuses on the estimation of
SMM parameters. Given that stock prices do not have an analytical probability distribution and
that state variables are not observable, the estimation of parameters is done with a particle Markov
Chain Monte Carlo algorithm. The SMM with two and three regimes is next �tted on daily data
of the S&P 500 index. Our analysis con�rms that the switching microstructure market model out-
performs its non-switching equivalent version. Furthermore, each regime is clearly identi�ed to a
trading trend and to a level of market stress.

2 The switching microstructure model (SMM)

2.1 Stock price

The proposed approach for the analysis of stock prices determination looks at supply and demand in
the market. It �nds its foundations in the economics theory. In economics, the relationship between
the quantity supplied and the price is described by a curve. Under the assumption that all other
economic variables are constant, quantities of supplied stocks, noted B1, increase linearly with prices
P1. The supply curve is then described by the following relation

P1 = L1 + ζ1B1 ,

where L1 and ζ1 > 0 are respectively the intercept and the elasticity of the supply curve. Under the
same assumption, we can derive a demand curve that shows the relationship between the demanded
quantities and prices. This demand curve has the usual downward slope, indicating that as the price
increases (everything else being equal), the demanded quantity of stocks falls. The equation de�ning
this line is the following

P2 = L2 − ζ2B2 ,

where L2 and ζ2 are respectively the intercept and the elasticity of the demand curve. The market
equilibrium occurs when the demand equals the supply, B∗ = B1 = B2, at a price S such that,

S = L2 − ζ2B
∗ = L1 + ζ1B

∗. (1)

In economics, a change in market conditions is represented by a parallel shift of the demand or
supply curve. Mathematically, this shift corresponds to a modi�cation of the intercept L2 or L1.
In order to model the dynamics of stock prices, L1 and L2 are then indexed by the time t and are
assumed to be stochastic processes. According to the relation (1), the volume of exchanged stocks
at any given time is hence equal to:

B∗t =
L2
t − L1

t

ζ1 + ζ2
, (2)
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and the equilibrium stocks price at time t is given by

St =
ζ1

ζ1 + ζ2
L2
t −

ζ2

ζ1 + ζ2
L1
t . (3)

Starting from this theoretical result, we postulate that the stock price St is a di�erence between
demand (L2

t ) and supply (L1
t )

St = α2L
2
t − α1L

1
t (4)

These processes are de�ned on a complete probability space (Ω,F , P ), with a right-continuous and
complete information �ltration F = (Ft)t>0. P denotes from now on the probability measure. In
order to de�ne a realistic microstructure price model while accounting for the impact of market
orders as suggested by equation (4), the framework of multivariate switching Hawkes processes is
well suited. Inspired from the work of Bacry et al. (2014), the supply and demand quantities that
rules St are related to numbers and sizes of bid-ask orders.

Let us respectively denote by T 1
1< T 1

2 < ... and T 2
1< T 2

2 < ..., the sequences of arrival times of
supply (bid) and demand (ask) orders. The bid order at time T 1

n and the ask order at time T 2
n are

de�ned by random variables O1
n ∈ FT 1

n
and O2

n ∈ FT 2
n
. The sequences (T 1

n , O
1
n) and (T 2

n , O
2
n) gen-

erate non explosive counting processes N1
t =

∑
n≥1 1{T 1

n≤t} and N
2
t =

∑
n≥1 1{T 2

n≤t}. From now on,

L1
t and L

2
t point out the processes modeling the aggregate supply and demand instead of intercepts

of demand-supply curves. They are de�ned as the total of all bid and ask orders till time t which
are de�ned as follows:

L1
t =

N1
t∑

i=1

O1
i , (5)

L2
t =

N2
t∑

i=1

O2
i . (6)

An increase of the aggregate o�er of stocks causes a decline of their prices. In the opposite scenario,
under the pressure of a high aggregate demand, stocks prices grow up. Then if α1 and α2 respec-
tively denotes the permanent impact of bid and ask orders, the economics theory suggests therefore
the dynamic (4) for St. The order sizes, O1

i and O2
i , are assumed to be identically independent

(i.i.d.) positive random variables: O1
i ∼ O1 and O2

i ∼ O2 . The assumption of independence be-
tween sizes cannot be checked statistically as we do not have information about volumes. However
this assumption is common in the literature about microstructure, as e.g. in Bacry et al. (2014).
The densities of supply and demand orders are denoted by ν1(z) and ν2(z) and de�ned on (0,∞)
sich that the moment generating function of orders, noted ψi(ω) := E(eωOi) exists and is �nite for

ω ∈ C. First and second moments exists and are denoted µ1 = E(O1), µ2 = E(O2), η1 = E
((
O1
)2)

,

η2 = E
((
O2
)2)

.

2.2 Economic regimes

At this stage, stock prices in this model are not explicitly mean reverting. Then, there is no warranty
that prices do not diverge at long term to extreme positive or negative values. However, we will
see that such a divergence can be avoided by introducing dependence between arrivals of bid and
ask orders. If new bid (resp. ask) orders raise the probability of ask (resp. bid) order arrivals, we
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expect a stable behaviour for (St)t≥0. Mathematically, the mutual- and self-excitation is obtained
by assuming that intensities are driven by a bivariate Hawkes process but we will come back on
this point later. On the other hand, �ows of information and economic cycles in�uence the demand
and supply for stocks at macro level. To introduce such a feature in our model, we assume that
the economic information is carried by a hidden Markov chain with a �nite number of regimes,
noted l. The chain is a vector process (θt)t≥0 taking values from a set of Rl-valued unit vectors

E = {e1, . . . , el}, where ej = (0, . . . , 1, . . . , 0)
′
. The �ltration generated by (θt)t≥0 is denoted by

(Gt) t≥0 and is a sub�ltration of (Ft)t. The set of regimes is denoted by N := {1, 2, · · · , l}. The
generator of θt is an l × l matrix Q0 := (qi,j)i,j=1,2,...,l containing the instantaneous probabilities of
transition. They satisfy the following standard conditions:

qi,j ≥ 0, ∀i 6= j, and
l∑

j=1

qi,j = 0, ∀i ∈ N . (7)

If ∆ is a small interval of time, qi,j∆ is close to the probability that the Markov chain transits from
state i to state j, with i 6= j. Whereas 1− qi,i∆ approaches the probability that the chain stays in
state i. The matrix of transition probabilities over the time interval [t, s] is denoted as P (t, s) and
is the matrix exponential of the generator matrix, times the length of the time interval:

P (t, s) = exp (Q0(s− t)) , s ≥ t. (8)

The elements of this matrix , pi,j(t, s), i, j ∈ N , de�ned as

pi,j(t, s) = P (θs = ej | θt = ei), i, j ∈ N , (9)

are the probabilities of switching from state i at time t to state j at time s. The probability of the
chain being in state i at time t, denoted by pi(t), depends upon the initial probabilities pk(0) at
time t = 0 and the transition probabilities pk,i(0, t), where k = 1, 2, . . . , l, as follows:

pi(t) = P (θt = ei) =
l∑

k=1

pk(0)pk,i(0, t), ∀i ∈ N . (10)

The stationary distribution of the Markov chain is denoted Π and is de�ned by the next limit

Π = lim
t→∞

exp (Q0t) .

These stationary probabilities will play an important role in the calculation of the stock equilibrium
price.

2.3 Order arrival intensities

We propose to specify the processes N1
t , N2

t , directly through their conditional arrival rates or
intensities,

(
λ1
t

)
t≥0

and
(
λ2
t

)
t≥0

. We assume that intensities λ1
t and λ

2
t of order arrivals (OAI) are

processes de�ned on a sub�ltration Ht ⊂ Ft governed by the next equations:

dλit = κi(ci,t − λit)dt+ δi,1dL
1
t + δi,2dL

2
t i = 1, 2, (11)

where δi,j for i, j = 1, 2, are constant. Coe�cients δ1,2 ∈ R+ and δ2,1 ∈ R+ set the cross impact of
demand on supply and vice versa. They measure the dependence between them and can capture
some interesting stylized facts. E.g. if δ12 > 0, the frequency of bid orders increases when the
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demand, L2
t , steps up and drives up stock prices according to equation (4). Coe�cients δ1,1 and δ2,2

set the self-excitation levels. The levels of mean reversion of OAI, ci,t for i = 1, 2, are modulated by
the Markov chain θt representative of the economic regime and introduced in the previous section:

ci,t = c>i θt .

where ci=1,2 are two strictly positive l−vectors: ci = (ci,1, ..., ci,l)
>. κi ∈ R+ for i = 1, 2 are the

speeds of mean reversion of intensities. (κi)i=1,2 and coe�cients (δi,j)i,j=1,2 are not modulated by
the Markov chain for several reasons. This hypothesis aims to preserve the parsimony and the ana-
lytical tractability of our model. From an economic point of view, this assumption implies that the
market always adjusts to new conditions with the same velocity. From a technical point of view, we
will see later that modulating other parameters than c makes processes non Markov.

To summarize, we use three �ltrations in the following developments. The �rst �ltration (Gt)t≥0 is
generated by (θt)t≥0. The second �ltration (Ht)t≥0 is the collection of sigma-algebras carrying ex-

clusively the information about intensity processes: Ht = σ
(
λ1
u, λ

2
u : u ≤ t

)
. Observing Ht informs

us about the values of intensities up to time t. Conditionally to Ht, the jump processes
(
N1
t

)
t≥0

and
(
N2
t

)
t≥0

are non-homogeneous Poisson processes with Ht−-adapted intensities λ1
t and λ

2
t . The

�ltration Ht is not independent from Gt as intensities depends upon the evolution of θt. Notice
however that Gt contains less information than Ht about the intensities. Therefore

(
N1
t

)
t≥0

and(
N2
t

)
t≥0

remains still non-homogeneous Poisson processes conditionally to Ht ∨ Gt.

The third �ltration (Ft)t≥0 is the global �ltration. This is the collection of sigma-algebras gen-
erated by all processes:

Ft = σ
(
λ1
u, L

1
u, N

1
u , λ

2
u, L

2
u, N

2
u , θu, Su : u ≤ t

)
.

By de�nition, the �ltrations (Gt)t≥0 and (Ht)t≥0 are included in Ft. From equation (11), we infer
the following lemma:

Lemma 2.1. Under the assumption that λ1
t and λ2

t are driven by the SDE (11) and that λ1
0 > 0 ,

λ2
0 > 0, order arrival intensities (OAI) are strictly positive processes equal to:

λit = λi0 − κi
∫ t

0
eκi(s−t)

(
λi0 − ci,s

)
ds (12)

+

∫ t

0
δi,1e

κi(s−t)dL1
s +

∫ t

0
δi,2e

κi(s−t)dL2
s i = 1, 2.

The proof is reported in appendix. From equation (12) we can show that λit is related to λis for
any s ≤ t as follows:

λit = λis − κi
∫ t

s
eκi(u−t)

(
λis − ci,u

)
du (13)

+

∫ t

s
δi,1e

κi(u−t)dL1
u +

∫ t

s
δi,2e

κi(u−t)dL2
u i = 1, 2.

The next section explores the properties of intensities, orders counting and cumulated orders pro-
cesses. We will �rst show that their moments exist and shows that

(
λ1
t , L

1
t , N

1
t , λ

2
t , L

2
t , N

2
t , θt

)
t≥0

is
a Ft-Markov process.
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3 Main properties

This section explores the mathematical features of the Switching Microstructure Model (SMM). The
�rst subsection presents the �rst and second moments of orders arrival intensities (OAI). The second
subsection studies the expected stock price and its asymptotic limit. Whereas the last subsection
focuses on the probability generating and moment generating functions.

3.1 Moments of Order Arrival Intensities (OAI)

The expected intensities, conditionally to the sample path of the hidden Markov chain (information
carried by the augmented �ltration Fs ∨ Gt with s ≤ t), are provided in the following proposition.
This result is next used to deduce their expectations with respect to the smaller �ltration Fs.

Proposition 3.1. Let us denote by γ1 and γ2 the following real numbers:

γ1 :=
1

2
((δ1,1µ1 − κ1) + (δ2,2µ2 − κ2)) +

1

2

√
((δ1,1µ1 − κ1)− (δ2,2µ2 − κ2))2 + 4δ1,2δ2,1µ1µ2, (14)

γ2 =
1

2
((δ1,1µ1 − κ1) + (δ2,2µ2 − κ2))−

1

2

√
((δ1,1µ1 − κ1)− (δ2,2µ2 − κ2))2 + 4δ1,2δ2,1µ1µ2 .

Conditionally to Fs ∨ Gt with s ≤ t, the processes λit are Markov and their expected value of λit is
given by the next expression:(

E
(
λ1
t | Fs ∨ Gt

)
E
(
λ2
t | Fs ∨ Gt

) ) = V

∫ t

s

(
eγ1(t−u) 0

0 eγ2(t−u)

)
V −1

(
κ1c1,u

κ2c2,u

)
du

+V

(
eγ1(t−s) 0

0 eγ2(t−s)

)
V −1

(
λ1
s

λ2
s

)
, (15)

where V ,V −1 are matrices given by:

V =

(
−δ1,2µ2 −δ1,2µ2

(δ1,1µ1 − κ1)− γ1 (δ1,1µ1 − κ1)− γ2

)
, (16)

V −1 =
1

Υ

(
(δ1,1µ1 − κ1)− γ2 δ1,2µ2

γ1 − (δ1,1µ1 − κ1) −δ1,2µ2

)
, (17)

and Υ ∈ R is the determinant of V de�ned by

Υ := −δ1,2µ2

√
((δ1,1µ1 − κ1)− (δ2,2µ2 − κ2))2 + 4δ1,2δ2,1µ1µ2. (18)

The proof is reported in appendix. Knowing the expectation of λit conditionally to the sample
path of θt, we can infer the unconditional expectations of intensities and prove that λit are Markov
as stated in the following proposition.
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Proposition 3.2. The expected values of λ1
t and λ2

t conditionally to Fs for s ≤ t, are given by the

next expression:(
E
(
λ1
t | Fs

)
E
(
λ2
t | Fs

) ) = V

(
m1(t, θs)
m2(t, θs)

)
+ V

(
eγ1(t−s) 0

0 eγ2(t−s)

)
V −1

(
λ1
s

λ2
s

)
, (19)

where m1(t, θs) and m2(t, θs) are respectively equal to

m1 (t, θs) = e>1 M1(t, θs)

(
1
Υκ1 ((δ1,1µ1 − κ1)− γ2)

1
Υκ2δ1,2µ2

)
, (20)

m2 (t, θs) = e>2 M1(t, θs)

(
1
Υκ1 (γ1 − (δ1,1µ1 − κ1))

− 1
Υκ2δ1,2µ2

)
, (21)

and M1(t, θs) is the following time and state dependent matrix:

M1(t, θs) :=

(
θ>s (Q0 − γ1I)−1 0

0 θ>s (Q0 − γ2I)−1

)
(22)

×
(

[exp (Q0(t− s))− exp (Iγ1(t− s))] 0
0 [exp (Q0(t− s))− exp (Iγ2(t− s))]

)(
c1 c2

c1 c2

)
.

Here, I points out the identity matrix of size l × l.

See the appendix for the proof. Notice that we cannot �nd moments and prove the Markov
feature of

(
λ1
t , L

1
t , N

1
t , λ

2
t , L

2
t , N

2
t , θt

)
t≥0

when the speed reversion or mutual excitation parameters
are modulated by θt. To understand this point, let us assume that κ1 and κ2 depends on θt . In this
case, the matrix V and parameters γ1, γ2 involved in conditional expectations of intensities with
respect to Fs ∨ Gs (proposition 3.1) are modulated by θt. Calculating the expectation with respect
to the �ltration Fs, as done in the proof of proposition 3.2 is in this case no more possible. Mainly
because this requires to calculate the expectation of an integral of a product of terms related to V ,
V −1, γ1, γ2 , c1,t and c2,t that all are modulated by θt. If we want to preserve the Markov feature of
our model, the drift is the only modulable parameter. Wang et al. (2012) draw the same conclusion
for an univariate switching Hawkes process.

From this last proposition, we infer the conditions that ensure the stability of the process. The
OAI's remain �nite ( λ1

t <∞ and λ2
t <∞ almost surely ∀t ≥ 0) if only γ1 and γ2 are negative. In

the opposite case, the limits of λit for i = 1, 2 when t → ∞ diverge to +∞. If γ1 < 0 and γ2 < 0,
the expected intensities converge toward:

lim
t→∞

(
E
(
λ1
t | Fs

)
E
(
λ2
t | Fs

) ) = V

(
m1(∞, θs)
m2(∞, θs)

)
, (23)

where the constant m1(∞) and m2(∞) are the limits of functions m2(t, θs) and m2(t, θs):

m1(∞, θs) := lim
t→∞

m1(t, θs) =
1

Υ

[
κ1 ((δ1,1µ1 − κ1)− γ2) θ>s (Q0 − γ1I)−1 Π c1

+κ2δ1,2µ2θ
>
s (Q0 − γ1I)−1 Π c2

]
,

m2(∞, θs) := lim
t→∞

m2(t, θs) =
1

Υ

[
κ1 (γ1 − (δ1,1µ1 − κ1))κ1θ

>
s (Q0 − γ2I)−1 Π c1

−κ2δ1,2µ2θ
>
s (Q0 − γ2I)−1 Π c2

]
,
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and Π = limt→∞ exp (Q0t) is the stationary distribution of θt. From propositions 15 and 3.2, we
infer the following result:

Corollary 3.3.
(
λ1
t , L

1
t , N

1
t , λ

2
t , L

2
t , N

2
t , θt

)
t≥0

is a Ft-Markov process in the state space

D =
(
R+ × R+ × N

)2 × E .
The expectations of L1

t and L
2
t admit closed form expressions that are developed in Section 3.2.

Let us denote by J it = (Lit, N
i
t ) for i = 1, 2 the bivariate processes related to arrivals of orders. The

multivariate process (λ1
t , J

1
t , λ

2
t , J

2
t , θt) is a Markov process adapted to F with càdlag paths. By

construction, it is decomposable and then a semi-martingale. The Itô's formula for semi-martingales
(see e.g. Protter 2004, theorem 32, p79), allows us to �nd the in�nitesimal generator for any function
g : D → R with continuous partial derivatives gλ1 , gλ2 . If θt = ei, the generator of this function,
denoted Ag(.), is given by the following expression:

Ag(λ1
t , J

1
t , λ

2
t , J

2
t , ei) = κ1(c>1 ei − λ1

t )gλ1 + κ2(c>2 ei − λ2
t )gλ2 (24)

+λ1
t

∫ +∞

−∞
g(λ1

t + δ1,1z, J
1
t + (z, 1)>, λ2

t + δ2,1z, J
2
t , ei)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)ν1(dz)

+λ2
t

∫ +∞

−∞
g(λ1

t + δ1,2z, J
1
t , λ

2
t + δ2,2z, J

2
t + (z, 1)>, ei)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)ν2(dz)

+

l∑
j 6=i

qi,j
(
g(λ1

t , J
1
t , λ

2
t , J

2
t , ej)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)

)
.

Under mild conditions, the expectation of g(.) is equal to the integral of the expected in�nitesimal
generator. Using the Fubini's theorem leads to the following result:

E
(
g(λ1

T , J
1
T , λ

2
T , J

2
T , θT )|Ft

)
(25)

= g(λ1
t , J

1
t , λ

2
t , J

2
t ) +

∫ T

t
E
(
Ag(λ1

s, J
1
s , λ

2
s, J

2
s , θs)|Ft

)
ds.

The derivative of this expectation with respect to time is equal to its expected in�nitesimal generator:

∂

∂T
E
(
g(λ1

T , J
1
T , λ

2
T , J

2
T , , θT )|Ft

)
= E

(
Ag(λ1

T , J
1
T , λ

2
T , J

2
T , θT )|Ft

)
. (26)

We use this result later in the proof of Proposition 3.6. The remainder of this paragraph is devoted
to the calculation of the variance of intensities λ1

t and λ
2
t . Unfortunately, the variances of these OAI

do not admit any closed form expression. But the second order moment of λit can be calculated nu-
merically by solving a system of ordinary di�erential equations (ODE). Writing this system requires
additional intermediate results about the expectations of mean reversion levels and OAI. The next
proposition (proven in appendix) presents these expectations when the sample path of θt is observed
from 0 up to time t.
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Proposition 3.4. The expected value of cj,tλ
i
t for i, j = 1, 2 with respect to the augmented �ltration

F0 ∨ Gt is given by
E
(
c1,tλ

1
t |F0 ∨ Gt

)
E
(
c2,tλ

1
t |F0 ∨ Gt

)
E
(
c1,tλ

2
t |F0 ∨ Gt

)
E
(
c2,tλ

2
t |F0 ∨ Gt

)
 =

∫ t

0
W exp (F s) W−1K

 c2
1,s

c2
2,s

c1,sc2,s

 ds (27)

+W exp (F t)W−1


c1,0λ

1
0

c2,0λ
1
0

c1,0λ
2
0

c2,0λ
2
0

 ,

where W is a 4× 4 matrix

W =


−δ1,2µ2 − δ1,2µ2 0 0

0 0 −δ1,2µ2 − δ1,2µ2

(δ1,1µ1 − κ1)− γ1 (δ1,1µ1 − κ1)− γ2 0 0
0 0 (δ1,1µ1 − κ1)− γ1 (δ1,1µ1 − κ1)− γ2

 ,

that admits the following inverse

W−1 =
1

Υ


(δ1,1µ1 − κ1)− γ2 0 δ1,2µ2 0
γ1 − (δ1,1µ1 − κ1) 0 −δ1,2µ2 0

0 (δ1,1µ1 − κ1)− γ2 0 δ1,2µ2

0 γ1 − (δ1,1µ1 − κ1) 0 −δ1,2µ2

 .

Υ is still de�ned by equation (18) whereas F and K are the following matrix

F =


γ1 0 0 0
0 γ2 0 0
0 0 γ1 0
0 0 0 γ2

 , K =


κ1 0 0
0 0 κ1

0 0 κ2

0 κ2 0

 .

γ1 and γ2 are de�ned by equations (14).

Using similar arguments to these used in the proof of proposition 3.2, we infer the unconditional
expectations of the product of mean reversion levels and of intensities:

Proposition 3.5. Let us denote c̄2
1 =

(
c2

1,1, . . . , c
2
1,l

)
, c̄2

2 =
(
c2

2,1, . . . , c
2
2,l

)
and

c̄1×2 = (c1,1 × c2,1, . . . , c1,l × c2,l) .

Expectations of cj,tλ
i
t for i, j = 1, 2 with respect to the F0 are equal to

E
(
c1,tλ

1
t |F0

)
E
(
c2,tλ

1
t |F0

)
E
(
c1,tλ

2
t |F0

)
E
(
c2,tλ

2
t |F0

)
 = W (X (t, θ0) + Y (t, θ0)) +W exp (Ft)W−1


c1,0λ

1
0

c2,0λ
1
0

c1,0λ
2
0

c2,0λ
2
0

 ,
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where X (t, θ0) and Y (t, θ0) are the next time-dependent vectors of dimension 4:

X (t, θ0) =
1

Υ



κ1 ((δ1,1µ1 − κ1)− γ2)

(
θ0

(
(e(Q0+γ1I)t−I)

Q0+γ1I

)
c2

1

)
κ1 (γ1 − (δ1,1µ1 − κ1))

(
θ0

(
(e(Q0+γ2I)t−I)

Q0+γ2I

)
c2

1

)
κ1 ((δ1,1µ1 − κ1)− γ2)

(
θ0

(
(e(Q0+γ1I)t−I)

Q0+γ1I

)
c̄1,2

)
κ1 (γ1 − (δ1,1µ1 − κ1))

(
θ0

(
(e(Q0+γ2I)t−I)

Q0+γ2I

)
c̄1,2

)


,

Y (t, θ0) =
1

Υ



δ1,2µ2κ2

(
θ0

(
(e(Q0+γ1I)t−I)

Q0+γ1I

)
c̄1,2

)
−δ1,2µ2κ2

(
θ0

(
(e(Q0+γ2I)t−I)

Q0+γ2I

)
c̄1,2

)
δ1,2µ2κ2

(
θ0

(
(e(Q0+γ1I)t−I)

Q0+γ1I

)
c̄2

2

)
−δ1,2µ2κ2

(
θ0

(
(e(Q0+γ2I)t−I)

Q0+γ2I

)
c̄2

2

)


.

As announced earlier, the last result of this subsection presents the ODE's satis�ed by the second
order moments of intensities. Solving them numerically allows us to evaluate the standard deviation
and correlation of intensities.

Proposition 3.6. The second order moments of λt are solution of a system of ODE:
∂
∂tE

((
λ1
t

)2 | F0

)
∂
∂tE

((
λ2
t

)2 | F0

)
∂
∂tE

(
λ1
tλ

2
t | F0

)
 =

 2κ1 0 0 0
0 0 0 2κ2

0 κ2 κ1 0




E
(
c1,tλ

1
t |F0

)
E
(
c2,tλ

1
t |F0

)
E
(
c1,tλ

2
t |F0

)
E
(
c2,tλ

2
t |F0

)
+

 δ2
1,1η1 δ2

1,2η2

δ2
2,1η1 δ2

2,2η2

δ1,1δ2,1η1 δ1,2δ2,2η2

( E
(
λ1
t | F0

)
E
(
λ2
t | F0

) )+


2 (δ1,1µ1 − κ1) 0 2δ1,2µ2

0 2 (δ2,2µ2 − κ2) 2δ2,1µ1

δ2,1µ1 δ1,2µ2

(
δ1,1µ1 − κ1

+δ2,2µ2 − κ2

)



E
((
λ1
t

)2 | F0

)
E
((
λ2
t

)2 | F0

)
E
(
λ1
tλ

2
t | F0

)
 ,

with the initial conditions E
((
λ1

0

)2 | F0

)
=
(
λ1

0

)2
, E
((
λ2

0

)2 | F0

)
=
(
λ2

0

)2
and E

(
λ1
tλ

2
t | F0

)
= λ1

0λ
2
0.

We refer the reader to the appendix for the proof of this result, which is based on relation (26).
The next subsection studies the equilibrium price of stocks, such as de�ned by equation (4) .

3.2 Stock price

This subsection presents the expectation, the asymptotic limit and the moment generating function
of stock prices. Remember that in the SMM, the price is determined by the equilibrium between
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the aggregate supply and o�er as follows:

St = α2

∫ t

0
dL2

s − α1

∫ t

0
dL1

s .

Given that intensities at time t− are independent from jumps at time t, then the expected stock
price is equal to

E (St|F0) = α2µ2

∫ t

0
E
(
λ2
s|F0

)
ds− α1µ1

∫ t

0
E
(
λ1
s|F0

)
.

If we insert the expressions (3.2) of the conditionial expectations, we prove by direct integration
that the expected price, as stated in the following proposition.

Proposition 3.7. The expected stock price in the SMM is equal to:

E (St|F0) = S0 +

(
−α1µ1

α2µ2

)>
V

( ∫ t
0 m1 (s, θ0) ds∫ t
0 m2 (s, θ0) ds

)
(28)

+

(
−α1µ1

α2µ2

)>
V

(
1
γ1

(
eγ1t − 1

)
0

0 1
γ2

(
eγ2t − 1

) )V −1

(
λ1

0

λ2
0

)
.

The integrals
∫ t

0 m1 (s, θ0) ds and
∫ t

0 m2 (s, θ0) ds are respectively given by∫ t

0
m1 (s, θ0) ds = e>1 M2(t, θ0)

(
1
Υκ1 ((δ1,1µ1 − κ1)− γ2)

1
Υκ2δ1,2µ2

)
(29)∫ t

0
m2 (s, θ0) ds = e>2 M2(t, θ0)

(
1
Υκ1 (γ1 − (δ1,1µ1 − κ1))

− 1
Υκ2δ1,2µ2

)
,

where M2(t, θ0) is a time-dependent matrix de�ned by

M2(t, θ0) =

(
θ>0 (Q0 − γ1I)−1 0

0 θ>0 (Q0 − γ2I)−1

)
(30)

×

(
(Q0)−1 (exp (Q0t)− I)− 1

γ1
I
(
eγ1t − 1

)
0

0 (Q0)−1 (exp (Q0t)− I)− 1
γ2
I
(
eγ2t − 1

) )( c1 c2

c1 c2

)
.

Notice that the matrice Q0 is not well conditioned as the sum of its column is the null vector.
In theory, it is then not possible to invert it. However, the expression (28) may be calculated if we
remember the de�nition of the matrix exponential. In this case, we calculate Q−1

0 (exp (Q0t)− I)
by the following sum:

Q−1
0 (exp (Q0t)− I) = Q−1

0

(
I +

∞∑
k=1

1

k!
Qk0t

k − I

)

=

∞∑
k=1

1

k!
Qk−1

0 tk .

From the last proposition, we infer that the long term mean of the stock price is constant if γ1 < 0
and γ2 < 0. In this case, the asymptotic stock price is constant and detailed in the next corollary:
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Corollary 3.8. If γ1 and γ2 are strictly negative, the asymptotic expected price is equal to:

lim
t→∞

E (St|F0) = S0 +

(
−α1µ1

α2µ2

)>
V lim
t→∞

( ∫ t
0 m1 (s, θ0) ds∫ t
0 m2 (s, θ0) ds

)

+

(
−α1µ1

α2µ2

)>
V

(
− 1
γ1

0

0 − 1
γ2

)
V −1

(
λ1

0

λ2
0

)
,

where the limits of integrals present in the �rst term are given by

lim
t→∞

∫ t

0
m1 (s, θ0) ds = e>1 M2(∞, θ0)

(
1
Υκ1 ((δ1,1µ1 − κ1)− γ2)

1
Υκ2δ1,2µ2

)
(31)

lim
t→∞

∫ t

0
m2 (s, θ0) ds = e>2 M2(∞, θ0)

(
1
Υκ1 (γ1 − (δ1,1µ1 − κ1))

− 1
Υκ2δ1,2µ2

)
,

and where M2(∞, θ0) is the constant matrix

M2(∞, θ0) =

 θ>0 (Q0 − γ1I)−1
(

(Q0)−1 (Π− I) + 1
γ1
I
)
c1 0

0 θ>0 (Q0 − γ2I)−1
(

(Q0)−1 (Π− I) + 1
γ2
I
)
c2

 .

As mentioned in the introduction, we denote by ψ1(.) and ψ2(.) the moment generating of O1

and O2. The next proposition presents the Laplace transform of the number of jumps Nk, k ∈ {1, 2}
which is the exponential of an a�ne function of the intensities. This result is very useful if we want
to calculate numerically the �rst moments of orders counting processes.

Proposition 3.9. For any ω ∈ R, the probability generating function for Nk
T , conditionally to Ft,

for k = 1, 2 with T ≥ t is given by

E
(
ωN

k
T | Ft

)
= ωN

k
t exp

(
A(t, T, θt) +Bk(t, T )λkt

)
, k ∈ {1, 2}

where B(t, T ) is the solution of an ODE:

∂

∂t
B1 = κ1B1 − [1k=1ωψ1 (B1δ1,1 +B2δ2,1)− 1] , (32)

∂

∂t
B2 = κ2B2 − [1k=2ωψ2 (B1δ1,2 +B2δ2,2)− 1] ,

with the terminal condition Bk(T, T ) = 0 for k = 1, 2. Let us de�ne Ã(t, T ) =
[
eA(t,T,e1), ..., eA(t,T,el)

]>
.

Ã(t, T ) is a vector, solution of the ODE system:

∂Ã(t, T )

∂t
+ (diag (κ1c1,tB1 + κ2c2,tB2) +Q0) Ã(t, T ) = 0, (33)

under the terminal boundary condition:

Ã(T, T ) = 0l .

where 0l is the null vector of dimension l.
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The proof is detailed in appendix. The next proposition presents the moment generating function
(mgf) of St. The mgf may be inverted numerically by a discrete Fourier transform to retrieve the
probability density function of St. We could eventually think to use this density to calibrate the
model by log-likelihood maximization. In numerical applications, we instead opt for a MCMC
algorithm which is detailed in Section 4.1.

Proposition 3.10. For any (ω1, ω2, ω3) ∈ C−3, the mgf of ω1ST + ω2λ
1
T + ω3λ

2
T , conditionally to

Ft, for T ≥ t, is given by the following expression

E
(
eω1ST+ω2λ1

T+ω3λ2
T | Ft

)
= exp

(
ω1St +A(t, T, θt) +B1(t, T )λ1

t +B2(t, T )λ2
t

)
,

where B1(t, T ) and B2(t, T ) are functions of time, solutions of the ODE:

∂

∂t
B1 = κ1B1 − ω1α1µ1 − [ψ1 (B1δ1,1 +B2δ2,1 + C1)− 1] (34)

∂

∂t
B2 = κ2B2 + ω1α2µ2 − [ψ2 (B1δ1,2 +B2δ2,2 + C2)− 1] ,

with the terminal condition B1(T, T ) = ω2 and B2(T, T ) = ω3. And where

Ã(t, T ) =
[
eA(t,T,e1), ..., eA(t,T,el)

]>
is a vector of functions, solution of the ODE system:

∂Ã(t, T )

∂t
+ (diag (κ1c1,tB1 + κ2c2,tB2) +Q0) Ã(t, T ) = 0.

under the terminal boundary condition:

Ã(T, T ) = 0l .

where 0l is the null vector of dimension l.

The proof of this result being similar to the one of proposition 3.9, we do not provide it. The
functions B1(t, T ) and B2(t, T ) in proposition 3.9 do not admit any simple analytical expression.
However, they can be reformulated as solution of a non-linear system of equations. Furthermore, we
can �nd the domain of R, on which these functions are de�ned as stated in the next proposition.

Proposition 3.11. for k = 1, 2 , let us de�ne

βk(ω1) = (−1)k ω1αkµk + 1 , (35)

and functions F 1
ω1

(x, y) : R2 → R+ ,

F 1
ω1

(x, y) :=

∫ x

ω2

du1

−κ1u1 + ψ1 (u1δ1,1 + yδ2,1 + C1)− β1(ω1)
, (36)

F 2
ω1

(x, y) :=

∫ y

ω3

du2

−κ2u2 + ψ2 (xδ1,2 + u2δ2,2 + C2)− β2(ω1)
.

14



If
(
F 1
ω1

)−1
(τ | y) and

(
F 2
ω1

)−1
(τ |x) are respectively the inverse functions of F 1

ω1
(., y) and F 2

ω1
(x, .),

then the functions B1(t, T ) and B2(t, T ) solution of ODEs (34){
B1(t, T ) =

(
F 1
ω1

)−1
(T − t |B2(t, T ))

B2(t, T ) =
(
F 2
ω1

)−1
(T − t |B1(t, T ))

And for k ∈ {1, 2}, Bk ∈ [ωk + 1, u∗k) or Bk ∈ [u∗k, ωk + 1) where (u∗1, u
∗
2) is the unique solution of

the system:

ψk (u1δ1,k + u2δ2,k + Ck) = βk(ω1) + κkuk

In numerical applications, we prefer to solve numerically ODE's (34) instead of inverting functions
F 1
ω1

and F 2
ω1
, which reveals hard to numerically invert in practice.

4 Estimation of parameters

Given that economic regimes and jump intensities are not directly observable, the estimation of SMM
parameters is challenging. On the other hand, the statistical distribution of prices does not admit a
closed form expression. It is then not possible to infer parameters by log-likelihood maximization.
Instead, we use a Particle Monte Carlo Markov Chain (PMCMC) method to �t the SMM to a
time serie. The PMCMC algorithm is based on a particle �lter that evaluates the log-likelihood by
simulations. The next paragraph details this �lter.

4.1 A Particle �lter

The Markov chain θt and intensities of jumps λ1
t , λ

2
t , are hidden state variables. We use then a

sequential Monte-Carlo (SMC) method, also called particle �lter, to guess their sample paths. This
Bayesian technique is combined later with a Monte-Carlo Markov Chain to �t the SMM, but for the
moment, we assume that parameters are known. The procedure is based on a discrete versions of
equations (4) de�ning prices and (11) that drives the jumps arrival intensities. We denote by ∆ the
length of the time interval. The ex ante variation of prices (over the period ∆) at time tj = j∆ ,
de�ned by Xj = S(j+1)∆ − Sj∆, then satis�es the following equation in discrete time

Xj = α2∆L2
j − α1∆L1

j , (37)

where ∆Lij =
∑N i

(j+1)∆

u=N i
j∆

Oiu for i = 1, 2 is the sum of buy-sell orders. In the discretized frame-

work, N i
(j+1)∆ − N

i
j∆ are Poisson random variables with a constant intensity λij∆, over ∆ . The

economic regime is assumed to remain unchanged over the time interval ∆ and the value of θt for
t ∈ [j∆ , (j + 1)∆] is denoted by θj . The mean reversion levels of λ1

j and λ
2
j are constant over the

jth interval of time and equal to ci,j = c>i θj for i = 1, 2.

The Euler approximation of equations (11) provides the discrete dynamics of latent processes
λi =

(
λit
)
t
:

λij+1 = λij+ κi(ci,j − λij)∆ + δi,1∆L1
j + δi,2∆L2

j i = 1, 2 . (38)

The second latent process carries the information about the economic regime. We denote by (θj)j∈N
the discrete Markov chain approximating θt. This chain has a matrix of transition probabilities
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denoted P∆ = exp (Q0∆) and the transition random measure K(.) such that θj+1 =
∫
θ∈E K(θj , dθ).

Remember that at this stage, the model parameters are assumed to be known. A particle at time
tj is a triplet denoted by vj = (λ1

j , λ
2
j , θj) that contains information about the economic regime and

intensities. The model admits a useful state-space representation, where the equation (37) provides
a measurement equation or system (the 'space') that de�nes the relationship between variations of
prices and hidden state variables. The particle vj helps to �nd the transition system (the 'state')
that describes the dynamics of state variables.

In the remainder of the paper, we denote by {x1, x2, ..., xn}, the sample of observed variations
of stock prices, realisations of Xj for j = 1, ..., n. Conditionally to information contained in vj , the
probability density function (pdf) of price variations at time j p(xj |vj) is given by

p (xj | vj) =

∞∑
k1=1

∞∑
k2=1

[
P
(
N1

(j+1)∆ −N
1
j∆ = k1 |λ1

j

)
×P

(
N2

(j+1)∆ −N
2
j∆ = k2 |λ2

j

)
× fk1,k2(xj)

+P
(
N1

(j+1)∆ −N
1
j∆ = 0 |λ1

j

)
×P

(
N2

(j+1)∆ −N
2
j∆ = 0 |λ2

j

)
1{xj=0}

]
, (39)

where fk1,k2(.) is the convoluted law of the sum of random variables: α2
∑k2

i=1O
2
i − α1

∑k1
i=1O

1
i .

Given that the interval ∆ between two successive observations is small, the probability of observing
more than one or two jumps is negligible. The sum in equation (39) may then be limited to a few
terms in order to reduce the computation time. In numerical applications orders are assumed dis-
tributed as normal random variables and α1, α2 are set to one. The sum α2

∑k2
i=1O

2
i − α1

∑k1
i=1O

1
i

is then Gaussian with a mean and a standard deviation respectively equal to (k2µ2 − k1µ1) and√
k2σ2

2 + k1σ2
1. Here σ

2
1 and σ2

2 are the variance of O1 and O2.

On the other hand, it is also possible to simulate the transition density p(vj+1 | vj) with equa-
tions (38) and θj+1 =

∫
θ∈E K(θj , dθ). The density of the intial particle v0 is denoted by p(v0) and

the posterior distribution of vj given observations till time tj , is denoted by p(vj |x1:j). Using the
Bayes' rule, the posterior distribution is developped as follows

p(vj |x1:j) =
p(x1:j , vj )

p(x1:j)
, (40)

and the denominator satis�es the equality:

p(x1:j) = p(x1:j−1, xj) = p(xj |x1:j−1)p(x1:j−1) .

Given that the numerator of equation (40) is equal to

p(x1:j , vj ) = p(xj | vj)p(vj |x1:j−1)p(x1:j−1),

the expression for the posterior distribution is rewritten as:

p(vj |x1:j) =
p(xj | vj)∫

p(xj |vj)p(vj |x1:j−1)dvj
p(vj |x1:j−1) , (41)

where

p(vj |x1:j−1) =

∫
p(vj | vj−1)p(vj−1 |x1:j−1)dvj−1 . (42)
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The calculation of p(λ1
j , λ

2
j , θj |x1:j) is done in two steps. The �rst one is a prediction step in which

we estimate p(vj |x1:j−1) by the relation (42). In the correction step, we approach the probabilities
p(vj |x1:j) using the equation (41). In practice, the integral in the prediction step is replaced by a

Monte Carlo simulation, of M particles, denoted by v
(k)
j = (λ

1 (k)
j , λ

2 (k)
j , θ

(k)
j ) for k = 1, . . . ,M . The

structure of the particle �lter algorithm is the following:

Particle �lter algorithm

1. Initial step: draw M values of v
(k)
0 for k = 1, . . . ,M , from an initial distribution p(v0)

2. For j = 1 : T

Prediction step: draw a sample of ∆L
1 (k)
j , ∆L

2 (k)
j and θ

(k)
j and update λ

1 (k)
j , λ

2 (k)
j , c

1 (k)
j ,

c
2 (k)
j using the relations (38) c

1 (k)
j = c>1 θ

(k)
j , and c

2 (k)
j = c>2 θ

(k)
j .

Correction step: the particle v
(k)
j has a probability of w

(k)
j =

p(xj | vj)∑
k=1:M p(xj | v

(k)
j )

where p(xj | v(k)
j )

is distributed according to the mixture distribution of equation (39).

Resampling step: resample with replacement M particles according to the importance

weights w
(k)
j . The new importance weights are set to w

(k)
j = 1

M .

Finally, the �ltered intensities for the period j is computed as the sum of particles, weighted by
their probabilities of occurrence:

E
(
λ1
j | GT

)
=
∑
i=1:M

λ
1 (i)
j w

(k)
j E

(
λ2
j | GT

)
=
∑
i=1:M

λ
2 (i)
j w

(k)
j ,

whereas the log-likelihood is approached as follows:

logL(Θ) =

T∑
j=1

log p (xj |xj−1) (43)

=
T∑
j=1

log

∫
p(xj | vj)p(vj |vj−1)dvj

=

T∑
j=1

log

(
1

M

M∑
k=1

p(xj | v(k)
j )

)
.

However, the estimator of the likelihood is not continuous as a function of parameters because it
is based on simulations. Fitting parameters by log-likelihood maximization is then ine�cient. This
observation justi�es working with a Monte-Carlo Markov Chain algorithm.

4.1.1 Application on simulated data

To conclude this section, we test the performance of the SMC �lter with a simulated data-set. We
�rst simulate a daily sample path of a SMM, with three economic regimes and over a period of ten
years. The parameters used for this simulation1 are reported in table 1. The �rst state corresponds

1Chosen parameters are in the same range of values as real estimates reported in Section 4.2. In order to clearly
vizualize changes of regimes, the gap between mean reversion levels in each regimes is increased. For the same reason,
we have also modi�ed transition probabilities in order to observe a su�cient number of changes of regime during the
simulation.
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to a period of economic recession: negative average return, high volatility and frequency of jumps.
The third regime represents a period of economic growth: positive expected return, low volatility and
frequency of jumps. The second state is an intermediate conjuncture, close to economic stagnation.
The one year matrix of transition probabilities used for this exercise is presented in table 2.

c1,1 10 c2,1 20 κ1 56 κ2 50
c1,2 35 c2,2 70 α1 1 α2 1
c1,3 50 c2,3 100 µ1 10 µ2 10
δ1,1 1 δ2,1 1 σ1 5 σ2 3
δ1,2 1 δ2,2 1 λ1

0 12 λ2
0 17

Table 1: This table reports the parameters used for the simulation of a daily sample path of the
SMM, with three regimes.

(pij(0, 1))i,j=1,2,3 state 1 state 2 state 3

state 1 0.60 0.20 0.20
state 2 0.20 0.60 0.20
state 3 0.25 0.25 0.50

Table 2: This table presents the one year matrix of transition of θt, used for the simulation of a
daily sample path of the SMM, with three regimes.

After simulation of a sample path, we run the SMC �lter with 500 particles. The graphs of
�gure 1 compare simulated and �ltered intensities of jumps and economic regimes. They con�rm
the e�ciency of the SMC algorithm. This �lter is combined in a next section to a Monte Carlo
Markov Chain (MCMC) algorithm to estimate the SSEJD. But before, we introduce an approached
estimation method that is used to initialize the MCMC algorithm.
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Figure 1: This graph shows simulated and �ltered sample paths of λ1
t , λ

2
t and θt.

4.2 Calibration by Particle Monte Carlo Markov Chain

When dealing with a non-Gaussian and nonlinear speci�cation, simulation-based methods o�er
strong advantages over the alternative approaches. In this paper, we employ a Particle Markov
Chain Monte Carlo method (PMCMC) to �t the SMM to a time-serie. We refer to Doucet et al.
(2000) for a review of other simulation-based methods. The set of parameters is denoted by Ξ
and serves us as index for the probability distribution function. We adopt a Bayesian approach to
estimate Ξ by computing the parameters posterior distribution

π(Ξ) = p(Ξ |x1:T ) =
p(Ξ)p(x1:T |Ξ)∫
p(Ξ′)p(x1:T |Ξ′)dΞ′

, (44)

where p(Ξ) and p(x1...T |Ξ) denotes respectively the parameters prior distribution and the likelihood
of the data. The density π(Ξ) is built by the PMCMC method that generates a sample from
π(Ξ) by creating a Markov chain with the same stationary distribution as the parameters posterior
one. Once that the Markov chain has reached stationarity after a transient phase, called �burn-in�
period, samples from the posterior distribution can then be simulated. Standard MCMC algorithm
requires a point-wise estimate of p(x1...T |Ξ), that is not available in our model. Instead, p(x1...T |Ξ)
is approached by its estimate computed with a particle �lter.

The construction of the Markov chain consists of two steps, iteratively repeated. At the beginning
of the kth iteration, we propose a candidate parameter Ξ′ from a proposal distribution q(Ξ′|Ξ(k−1))
given the previous state of the Markov chain, noted Ξ(k−1). The proposal distribution has a support
that covers the target distribution. In the second step, we determine if we update the state by Ξ′.

19



For this purpose, the acceptance probability is computed as follows

ε(Ξ′,Ξ(k−1)) = min

{
1,

π(Ξ′)

π(Ξ(k−1))

q
(
Ξ(k−1) |Ξ′

)
q
(
Ξ′ |Ξ(k−1)

)} . (45)

This determines the probability that we assign the candidate parameter as the next state of the
Markov chain, Ξ′ → Ξ(k). Intuitively, if we disregard the in�uence of the proposal q, a candidate is
accepted if it increases the posterior likelihood π(Ξ′) > π(Ξ(k−1)). The presence of q(.) in equation
(45) allows a small decrease in the posterior likelihood, so as to explore the entire posterior.

The resulting K samples Ξ(1:K) (after the burn in period) serve next to build the empirical
distribution of π(Ξ), which is de�ned by

π̂(Ξ) =
1

K

K∑
k=1

δΞ(k)(dΞ),

where δΞ(k)(dΞ) are the Dirac atoms located at Ξ = Ξ(k), with equal weights. The expected param-
eters with respect to the posterior distribution of parameters is then approached as follows

E (Ξ|x1:T ) ≈ 1

K

∑
k=1:K

π̂(Ξ(k)) Ξ(k) .

In numerical applications, the transition distribution q(Ξ′ |Ξ(k−1)) is assumed Normal,N (Ξ′ |Ξ(k−1), σq).
As this distribution is symmetric, q

(
Ξ(k−1) |Ξ′

)
= q

(
Ξ′ |Ξ(k−1)

)
, the acceptance probability simpli-

�es to

ε(Ξ′,Ξ(k−1)) = min

{
1,

π(Ξ′)

π(Ξ(k−1))

}
,

= min

{
1,

p(Ξ′)p(x1:T |Ξ′)
p(Ξ(k−1))p(x1:T |Ξ(k−1))

}
.

We use the PMCMC algorithm to calibrate the SMM model. We test the calibration algorithm with
daily data of the S&P 500, from February 2010 to February 2017 (1763 observations). We use this
dataset to compare the classic approach without modulation of parameters, to models with 2 and 3
regimes. The PMCMC algorithm is applied to the set of parameters

Ξ = {c̄, κ1, κ2, µ1, µ2, σ1, σ2, (δi,j)i,j=1,2, (qi,j)i,j=1,2}

that counts respectively 12, 16 and 22 parameters with 1, 2 and 3 regimes. Gatumel and Ielpo
(2014) reject the hypothesis that two regimes are enough to capture asset returns evolutions for
many securities. Their empirical results point out that between two and three regimes are required
to capture the features of asset's distribution.

The �lter runs with 500 particles and we perform 5000 iterations for the PMCMC procedure. We
obtain acceptance rates of 36.41% and 41.16% for models with respectively 2 and 3 regimes. The
convergence is checked by analyzing the log-likelihood, which is stable for both models after a burn
in period of 2500 iterations. The average log-likelihoods over the last 2500 runs are reported in table
3. We also report the Akaike and Bayesian information criterions. These �gures clearly con�rm that
switching models outperform the classic microstructure model with a single regime.

20



1D 2D 3D

Log-likelihood -7242 -7119 -7049
AIC 7266 7151 7093
BIC 14574 14358 14264

Table 3: Log-likelihood, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)

Parameters estimated by the PMCMC algorithm are reported in tables 4, 5 and 6. The speeds
of mean reversion (κ1, κ2) are comparable for all models. In the 1D and 3D SMM, the parameters
of mutual-excitation (δ12, δ21) are less important than these of self-excitation (δ11, δ22). For the 2D
model, the situation is di�erent and mutual excitation is more pronounced than the self-excitation.
Averages and standard deviations of orders are similar whatever the model. Figures reported in
table 5, reveals that the probabilities of staying in the same state over a period of one year are
respectively around 56% and 36% for the 2D and 3D SMMs.

Table 6 compares the reversion levels of intensities in each regime. In the one dimension model,
these levels for the supply and demand are comparable. In the 2D SMM, c1,1, c1,2 are respectively
higher and lower than c2,1 , c2,2. This means that the market receives more bid than ask orders in the
�rst regime, and more ask than bid orders in the second regime. As bid and ask orders respectively
drive down and up the stock price, the �rst regime is then assimilated to the conditions of a bear
market. Whereas the second regime corresponds to a period of economic growth.

1D 2D 3D

Estimate St.dev. Estimate St.dev. Estimate St.dev.

κ1 21.316 2.790 25.802 5.283 43.187 4.765
κ2 38.238 4.678 33.828 6.010 38.408 4.289
δ11 2.881 0.347 0.891 0.367 8.033 0.915
δ12 0.2580 0.223 5.136 1.035 0.190 0.250
δ21 0.132 0.152 4.512 0.532 0.184 0.188
δ22 7.951 0.615 0.360 0.316 6.962 0.641
µ1 6.708 0.403 5.220 0.255 4.880 0.303
µ2 4.065 0.362 4.530 0.424 4.986 0.340
σ1 2.133 0.712 3.726 0.489 4.742 1.155
σ2 5.723 0.430 3.962 0.443 3.271 0.409

Table 4: This table reports parameters independent from θt, for the 1D, 2D and 3D MSM models,
(averages and standard deviations over the last 2500 simulations).
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Transition matrix of probabilities

2D P =

(
0.572 0.428
0.433 0.567

)
3D P =

 0.369 0.296 0.335
0.333 0.333 0.334
0.333 0.299 0.368



Table 5: Matrix of transition probabilities, for the SMM models with 2 and 3 regimes.

Estimate St.dev. Estimate St.dev.

1D c1 27.334 6.5064 c2 23.203 3.0661

2D c1,1 48.858 9.741 c2,1 20.896 4.3289
c1,2 21.43 5.0021 c2,2 32.234 7.087

3D c1,1 27.035 6.2039 c2,2 2.4002 1.5993
c1,2 11.852 2.4269 c2,2 27.471 7.2078
c1,3 15.459 3.5566 c2,3 7.6532 4.9848

Table 6: Mean reversion levels of intensities in each regime for the three tested models.
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Figure 2: This graph shows �ltered sample paths of λ1
t , λ

2
t and θt for the model with 2 regimes. The

upper right plot presents the history of the S&P 500 from 2010 to 2017.

This interpretation is con�rmed by the right graphs of �gure 2 that display the evolution of the
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S&P index 500 and �ltered states. We observe a switch toward the �rst regime when the index
drops. We draw the same conclusion for the 3D SMM, in which states one and two correspond
respectively to bear and bull markets. Whereas the third regime is an intermediate state in which
stock prices stagnate. The �ltered regime informs us about the mood of markets. We may then
imagine to use this information to de�ne a dynamic trading strategy as proposed in Hainaut and
MacGilchrist (2012). Finally, the two left graphs of �gure 2 exhibit the �ltered sample path of λ1

t

and λ2
t . We observe that intensities reach their highest level when the S&P 500 falls. Monitoring

these intensities could then be used by regulators to measure the stocks market stress.

5 Conclusions

This article proposes a new microstructure model for stock prices with regime shifts and mutual-
excitation in the dynamic of orders arrivals. In this approach, called the switching microstructure
model (SMM), the intensities of orders counting processes revert to a mean level that is modulated
by a hidden Markov chain. This chain determines the direction of the market trend and the trading
behaviour. In the �rst part of this work, we study the mathematical properties of the SMM. We
show that the SMM presents a su�cient degree of analytical tractability for most of applications.
The rest of the article focuses on the estimation of parameters.

The probability density function of prices does not have a closed form expression and increments of
prices are not identically, independently distributed. Furthermore, prices depend upon three hidden
state variables: the two mutually excited intensities of orders counting processes and the Markov
chain. It is then not possible to estimate the SMM parameters by log-likelihood maximization.
Instead, we develop a new sequential Monte Carlo algorithm to �lter hidden processes, that is com-
bined with a Markov Chain Monte Carlo (MCMC) procedure to estimate parameters.

The model is next �tted to daily returns of the S&P 500 stock index. This exercise reveals that the
SMM with two and three regimes have a better explanatory power than a model without regime
shift. Each state of the hidden Markov chain clearly corresponds to a particular trading trend. In
the 3 states model, two regimes respectively correspond to a bear and a bull market whereas stock
prices stagnate in the third regime. Filtering the evolution of the Markov chain can then help traders
to adjust their positions to take advantage of market conditions. The �ltered intensities of orders
counting processes are also excellent indicators of markets stress.

Appendix

Proof of lemma 2.1 To prove this relation, we di�erentiate the expression of λit to retrieve its
dynamic:

dλit = κici,t − κi
(
λi0 − κi

∫ t

0
eκi(s−t)

(
λi0 − ci,s

)
ds +∫ t

0
δi,1e

κi(s−t)dL1
sdt+

∫ t

0
δi,2e

κi(s−t)dL2
s

)
+ δi,1dL

1
t + δi,2dL

2
t

= κi(ci,t − λit)dt+ δi,1dL
1
t + δi,2dL

2
t i = 1, 2.
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To prove the positivity, we �rst remind that
∫ t

0 δi,1e
κi(s−t)dL1

s and
∫ t

0 δi,2e
κi(s−t)dL2

s are positive by
construction. According to equation (12), the process λit admit the following lower bound:

λit > λi0 +
(
min (ci)− λi0

)
κi

∫ t

0
eκi(s−t)ds . (46)

Given that κi
∫ t

0 e
κi(s−t)ds =

(
1− e−κit

)
> 0, we conclude that

λit > λi0e
−κit + min (ci)

(
1− e−κit

)
> 0 .

�

Proof of proposition 3.1. As Fs ⊂ Fs ∨ Gt, using nested expectations leads to the following
expression for the expected intensity:

E(λit|Fs) = E
(
E
(
λit|Fs ∨ Gt

)
|Fs
)
.

If we remember the expression (13) of the intensity, using the Fubini's theorem leads to the following
expression for the expectation of λit, conditionally to the augmented �ltration Fs ∨ Gt :

E
(
λit|Fs ∨ Gt

)
= λis − κi

∫ t

s
eκi(u−t)

(
λis − ci,u

)
du (47)

+

∫ t

s
δi,1e

κi(u−t)E
(
dL1

u|Fs ∨ Gt
)

+

∫ t

s
δi,2e

κi(u−t)E
(
dL2

u|Fs ∨ Gt
)
.

Using the same approach as in Errais et al. (2010), dLiu is rewritten as follows:

dLiu =

{
Oi if dN1

u = 1

0 otherwise
.

The order size Oi being independent from all processes and then from Fs ∨ Gt, we infer that

E
(
dLiu|Fs ∨ Gt

)
= E

(
Oi
)
× E

(
dN1

u | Fs ∨ Gt
)

= µi × E
(
dN1

u | Fs ∨ Gu
)
.

Using nested expectations and conditioning with respect to the sample path of λ1
u contained in the

sub�ltration Hu of Fu leads to equality for u ≤ t

E
(
dLiu|Fs ∨ Gt

)
= µi × E

(
E
(
dN1

u | Fs ∨ Gu ∨Hu
)
| Fs ∨ Gu

)
.

Conditionally to the sample path of λ1
u, N

1
u is a non-homogeneous Poisson process,

E
(
dN1

u | Fs ∨ Gu ∨Hu
)

= λiu−

therefore, we infer that

E
(
dLiu|Fs ∨ Gt

)
= µi × E

(
λiu− | Fs ∨ Gu

)
du ∀u ≤ t,

If we derive equation (47) with respect to time, we �nd that E
(
λit|Fs ∨ Gt

)
is solution of an ordinary

di�erential equation (ODE):

∂

∂t
E
(
λit|Fs ∨ Gt

)
= −κi

(
λis − ci,t

)
+ κ2

i

∫ t

s
eκi(u−t) (λs − ci,u) du

+δi,1µ1E
(
λ1
t |Fs ∨ Gt

)
− κiδi,1µ1

∫ t

s
e−κi(t−u)E

(
λ1
u− | Fs ∨ Gt

)
du

+δi,2µ2E
(
λ2
t |Fs ∨ Gt

)
− κiδi,2µ2

∫ t

s
e−κi(t−u)E

(
λ2
u− | Fs ∨ Gt

)
du .
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Using equation ((47)), allows us to rewrite these ODE's as follows:(
∂
∂tE

(
λ1
t |Fs ∨ Gt

)
∂
∂tE

(
λ2
t |Fs ∨ Gt

) ) =

(
κ1c1,t

κ2c2,t

)
+

(
δ1,1µ1 − κ1 δ1,2µ2

δ2,1µ1 δ2,2µ2 − κ2

)(
E
(
λ1
t |Fs ∨ Gt

)
E
(
λ2
t |Fs ∨ Gt

) ) .(48)

Solving this system of equation requires to determine eigenvalues γ and eigenvectors (v1, v2) of the
matrix present in the right term of this system:(

(δ1,1µ1 − κ1) δ1,2µ2

δ2,1µ1 (δ2,2µ2 − κ2)

)(
v1

v2

)
= γ

(
v1

v2

)
.

We know that eigenvalues cancel the determinant of the following matrix:

det

(
(δ1,1µ1 − κ1)− γ δ1,2µ2

δ2,1µ1 (δ2,2µ2 − κ2)− γ

)
= 0 ,

and are solutions of the second order equation:

γ2 − γ ((δ1,1µ1 − κ1) + (δ2,2µ2 − κ2)) + (δ1,1µ1 − κ1)(δ2,2µ2 − κ2)− δ1,2δ2,1µ1µ2 = 0.

Roots of the last equation are γ1 and γ2, as de�ned by the equation (14). One way to �nd an
eigenvector is to note that it must be orthogonal to each rows of the matrix:(

(δ1,1µ1 − κ1)− γ δ1,2µ2

δ2,1µ1 (δ2,2µ2 − κ2)− γ

)(
v1

v2

)
= 0,

then necessary, (
vi1
vi2

)
=

(
−δ1,2µ2

(δ1,1µ1 − κ1)− γi

)
for i = 1, 2.

If we note D := diag(γ1, γ2), the matrix in the right term of equation (48) admits the decomposition:(
δ1,1µ1 − κ1 δ1,2µ2

δ2,1µ1 δ2,2µ2 − κ2

)
= V DV −1,

where V is the matrix of eigenvectors, as de�ned in equation (16). Its determinant, Υ, and its inverse
are respectively provided by equations (18) and (17). If two new variables are de�ned as follows:(

u1

u2

)
= V −1

(
m1

m2

)
.

The system (48) is decoupled into two independent ODEs:

∂

∂t

(
u1

u2

)
= V −1

(
κ1c1,t

κ2c2,t

)
+

(
γ1 0
0 γ2

)(
u1

u2

)
. (49)

And introducing the following notations

V −1

(
κ1c1,t

κ2c2,t

)
=

(
ε1(t)
ε2(t)

)
,

leads to the solutions for the system (49):(
u1(t)
u2(t)

)
=

( ∫ t
s ε1(u)eγ1(t−u)du∫ t
s ε2(u)eγ2(t−u)du

)
+

(
eγ1(t−s) 0

0 eγ2(t−s)

)
V −1

(
λ1
s

λ2
s

)
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that allows us to infer the expression (15) for moments of λit. Notice that the determinant Υ is
always real and if parameters of mutual excitations δ1,2 , δ2,1, are positive. As µ1, µ2 > 0, the de-
terminant is also strictly positive and the matric V is invertible. Finally, equation (15) states that
conditonally to the sample path of the Markov chain θt, processes λ

1
t and λ

2
t are Markov given that

their Fs ∨ Gt−expectations only depend on the pair
(
λ1
t , λ

2
t

)
.�

Proof of proposition 3.2 From the previous proposition, we infer that the unconditional ex-
pectations of OAI are the solutions of the following system(

E
(
λ1
t | Fs

)
E
(
λ2
t | Fs

) ) = V

∫ t

s

(
eγ1(t−u) 0

0 eγ2(t−u)

)
V −1

(
κ1E (c1,u | Fs)
κ2E (c2,u | Fs)

)
du (50)

+V

(
eγ1(t−s) 0

0 eγ2(t−s)

)
V −1

(
λ1
s

λ2
s

)
.

Given that θt is a �nite state Markov chain of generator Q0 and if we remember that ci =

 ci,1
...
ci,l


for i = 1, 2 are l- vectors, the expected level of mean reversion at time u is equal to:

E (ci,u|Fs) = θ>s exp (Q0 (u− s)) ci

then expectation of intensities, conditionally to Fs:(
E
(
λ1
t | Fs

)
E
(
λ2
t | Fs

) ) = V

∫ t

s

(
eγ1(t−u) 0

0 eγ2(t−u)

)
V −1

(
κ1θ
>
s exp (Q0(u− s)) c1

κ2θ
>
s exp (Q0(u− s)) c2

)
du

+V

(
eγ1(t−s) 0

0 eγ2(t−s)

)
V −1

(
λ1
s

λ2
s

)
. (51)

If we replace V −1 by its de�nition (17), we obtain that

V −1

(
κ1θ
>
s exp (Q0 (u− s)) c1

κ2θ
>
s exp (Q0 (u− s)) c2

)

=
1

Υ


(
κ1 ((δ1,1µ1 − κ1)− γ2) θ>s exp (Q0 (u− s)) c1

+κ2δ1,2µ2θ
>
s exp (Q0 (u− s)) c2

)
(
κ1 (γ1 − (δ1,1µ1 − κ1)) θ>s exp (Q0 (u− s)) c1

−κ2δ1,2µ2θ
>
s exp (Q0 (u− s)) c2

)
 .

The integrand in equation (51) becomes then:(
eγ1(t−u) 0

0 eγ2(t−u)

)
V −1

(
κ1θ
>
s exp (Q0(u− s)) c1

κ2θ
>
s exp (Q0(u− s)) c2

)

=
1

Υ


(
eγ1tκ1 ((δ1,1µ1 − κ1)− γ2) θ>s exp ((Q0 − γ1I) (u− s)) c1

+eγ1tκ2δ1,2µ2θ
>
s exp ((Q0 − γ1I) (u− s)) c2

)
(
eγ2tκ1 (γ1 − (δ1,1µ1 − κ1)) θ>s exp ((Q0 − γ2I) (u− s)) c1

−eγ2tκ2δ1,2µ2θ
>
s exp ((Q0 − γ2I) (u− s)) c2

)
 .

and we can conclude by direct integration that expected value of λit are given by equation (19). This
result also states processes λ1

t and λ
2
t are Markov given that their Fsexpectations only depend on

the information available at time s:
(
λ1
s, λ

2
s, θ

1
s , θ

2
s

)
. �
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Proof of Corollary 3.3

To prove this statement, it is su�cient to show that the conditional expectation of these processes
with respect to Fs depends exclusively upon the information available at time s. Using the Tower
property of conditional expectation, the expected number of supply order conditionally to Fs is then
equal to the following product:

E
(
N1
t |Fs

)
= E

(
E
(
N1
t |Fs ∨Ht

)
|Fs
)
.

By construction, the compensator of process N1
t is an Ht-adapted process

∫ t
0 λ

1
udu such that the

compensated process M1
t = N1

t −
∫ t

0 λ
1
udu is a martingale. Given that E

(
M1
t |Fs ∨Ht

)
= M1

s , we

deduce that E
(
N1
t |Fs ∨Ht

)
= N1

s +
∫ t
s λ

1
udu. Using the Fubini's theorem, we infer that

E
(
N1
t |Fs

)
=

(
N1
s + E

(∫ t

s
λ1
udu|Fs

))
(52)

= N1
s +

∫ t

s
E
(
λ1
u|Fs

)
du .

According to proposition 3.2, E
(
λ1
u|Fs

)
depends only upon λ1

s, λ
2
s and θs. From equation (52), we

immediately deduce that E
(
N1
t |Fs

)
is exclusively a function of (λ1

s, λ
2
s ,θs, N

1
s ). The same holds

for N2
t . By de�nition, L1

t is a sum of independent random variables:

E
(
L1
t |Fs

)
= E

 N1
t∑

n=1

O1
n|Fs


= µ1E

(
N1
t |Fs

)
.

As E
(
N1
t |Fs

)
is a function of (λ1

s, λ
2
s ,θs, N

1
s ), the same conclusion holds for E

(
L1
t |Fs

)
. A similar

reasoning for L2
t and proposition 3.2 allows to end the proof. �

Proof of proposition 3.4 If we remember the equation (48), we infer that the expectations of
cj,tλ

i
t for i, j = 1, 2 are solution of ordinary di�erential equations (ODE):

∂
∂tE

(
c1,tλ

1
t |F0 ∨ Gt

)
∂
∂tE

(
c2,tλ

1
t |F0 ∨ Gt

)
∂
∂tE

(
c1,tλ

2
t |F0 ∨ Gt

)
∂
∂tE

(
c2,tλ

2
t |F0 ∨ Gt

)


︸ ︷︷ ︸
:=dE(t)

=


κ1 0 0
0 0 κ1

0 0 κ2

0 κ2 0


︸ ︷︷ ︸

:=K

 c2
1,t

c2
2,t

c1,tc2,t


︸ ︷︷ ︸

:=C2
t

+


δ1,1µ1 − κ1 0 δ1,2µ2 0

0 δ1,1µ1 − κ1 0 δ1,2µ2

δ2,1µ1 0 δ2,2µ2 − κ2 0
0 δ2,1µ1 0 δ2,2µ2 − κ2


︸ ︷︷ ︸

WFW−1


E
(
c1,tλ

1
t |F0 ∨ Gt

)
E
(
c2,tλ

1
t |F0 ∨ Gt

)
E
(
c1,tλ

2
t |F0 ∨ Gt

)
E
(
c2,tλ

2
t |F0 ∨ Gt

)


︸ ︷︷ ︸
E(t)

.

We summarize this system of ODE as follows

dE(t) = K C2
t +W F W−1E(t) .
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If we note U(t) = W−1E(t) , we rewrite this last system:

dU(t) = W−1K C2
t + F U(t) ,

that admits the following solution:

U(t) =

∫ t

0
exp (F s) W−1K C2

s ds+ exp (F t)U(0) ,

and we can conclude.�

Proof of proposition 3.5. If we remember equation (27), we can develop it as follows

exp (F s)W−1


κ1c

2
1,s

κ1c1,sc2,s

κ2c1,sc2,s

κ2c
2
2,s



=
1

Υ


κ1 ((δ1,1µ1 − κ1)− γ2)

(
eγ1sc2

1,s

)
+ δ1,2µ2κ2 (eγ1sc1,sc2,s)

κ1 (γ1 − (δ1,1µ1 − κ1))
(
eγ2sc2

1,s

)
− δ1,2µ2κ2 (eγ2sc1,sc2,s)

κ1 ((δ1,1µ1 − κ1)− γ2) (eγ1sc1,sc2,s) + δ1,2µ2κ2

(
eγ1sc2

2,s

)
κ1 (γ1 − (δ1,1µ1 − κ1)) (eγ2sc1,sc2,s)− δ1,2µ2κ2

(
eγ2sc2

2,s

)
 ,

and its expectation is given by

E

exp (F s)W−1


κ1c

2
1,s

κ1c1,sc2,s

κ2c1,sc2,s

κ2c
2
2,s




=
1

Υ


κ1 ((δ1,1µ1 − κ1)− γ2)

(
θ0e

(Q0+γ1I)sc̄2
1

)
+ δ1,2µ2κ2

(
θ0e

(Q0+γ1I)sc̄1,2

)
κ1 (γ1 − (δ1,1µ1 − κ1))

(
θ0e

(Q0+γ2I)sc̄2
1

)
− δ1,2µ2κ2

(
θ0e

(Q0+γ2I)sc̄1,2

)
κ1 ((δ1,1µ1 − κ1)− γ2)

(
θ0e

(Q0+γ1I)sc̄1,2

)
+ δ1,2µ2κ2

(
θ0e

(Q0+γ1I)sc̄2
2

)
κ1 (γ1 − (δ1,1µ1 − κ1))

(
θ0e

(Q0+γ2I)sc̄1,2

)
− δ1,2µ2κ2

(
θ0e

(Q0+γ2I)sc̄2
2

)
 .

Integrating this last equation allows us to conclude. �

Proof of proposition 3.6. If we remember the expression (24) of the in�nitesimal generator,
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we have

A
((
λ1
t

)2)
= 2κ1(c1,t − λ1

t )λ
1
t + λ1

t

∫ +∞

−∞

(
λ1
t + δ1,1z

)2 − (λ1
t

)2
ν1(dz)

+λ2
t

∫ +∞

−∞

(
λ1
t + δ1,2z

)2 − (λ1
t

)2
ν2(dz) ,

A
((
λ2
t

)2)
= 2κ2(c2,t − λ2

t )λ
2
t + λ1

t

∫ +∞

−∞

(
λ2
t + δ2,1z

)2 − (λ2
t

)2
ν1(dz)

+λ2
t

∫ +∞

−∞

(
λ2
t + δ2,2z

)2 − (λ2
t

)2
ν2(dz) ,

A
(
λ1
tλ

2
t

)
= κ1(c1,t − λ1

t )λ
2
t + κ2(c2,t − λ2

t )λ
1
t

+λ1
t

∫ +∞

−∞

(
λ1
t + δ1,1z

) (
λ2
t + δ2,1z

)
− λ1

tλ
2
t ν1(dz)

+λ2
t

∫ +∞

−∞

(
λ1
t + δ1,2z

) (
λ2
t + δ2,2z

)
− λ1

tλ
2
t ν2(dz) .

And given that ∂
∂tg = E (Ag | F0), we can conclude.�

Proof of proposition 3.9. Let us assume that θt = ei. If we denote by g(λ1
t , J

1
t , λ

2
t , J

2
t , θt) =

E
(
ωN

k
T | Ft

)
, g is solution of the following Itô's equation for semi martingale :

0 = gt + κ1(c1,t − λ1
t )gλ1 + κ2(c2,t − λ2

t )gλ2 (53)

+λ1
t

∫ +∞

−∞
g(λ1

t + δ1,1z, J
1
t + (z, 1)>, λ2

t + δ2,1z, J
2
t , ei)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)dν1(z)

+λ2
t

∫ +∞

−∞
g(λ1

t + δ1,2z, J
1
t , λ

2
t + δ2,2z, J

2
t + (z, 1)>, ei)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)dν2(z)

+

N∑
j 6=i

qi,j
(
g(λ1

t , J
1
t , λ

2
t , J

2
t , ej)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)

)
.

Next, we assume that g is an exponential a�ne function of λ1
t , λ

2
t and N

i
t :

g = exp
(
A(t, T, ej) +B1(t, T )λ1

t +B2(t, T )λ2
t + C(t, T )Nk

t

)
,

where A(t, T, ei) for i = 1 to l, B1(t, T ), B2(t, T ) and C(t, T ) are time dependent functions. The
partial derivatives of g are then given by:

gt =

(
∂

∂t
A(t, T, ej) +

∂

∂t
B1(t, T )λ1

t +
∂

∂t
B2(t, T )λ2

t +
∂

∂t
C(t, T )Nk

t

)
g,

gλ1 = B1(t, T )g and gλ2 = B2(t, T )g .

And the integrands in equation (53) are rewritten with the notations A := A(t, T, ei), B1 := B1(t, T ),
B2 := B2(t, T ) and C := C(t, T ) as follows:∫ +∞

−∞
g(λ1

t + δ1,1z, J
1
t + (z, 1)>, λ2

t + δ2,1z, J
2
t , ei)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei) dν1(z)

= g
[
e1k=1Cψ1 (B1δ1,1 +B2δ2,1)− 1

]
,
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∫ +∞

−∞
g(λ1

t + δ1,2z, J
1
t , λ

2
t + δ2,2z, J

2
t + (z, 1)>, ej)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei) dν2(z)

= g
[
e1k=2Cψ2 (B1δ1,2 +B2δ2,2)− 1

]
.

As the sum of instantaneous probabilities is null, qii = −
∑l

i 6=j qi,j , we have that

l∑
j 6=i

qi,j
(
g(λ1

t , J
1
t , λ

2
t , J

2
t , ej)− g(λ1

t , J
1
t , λ

2
t , J

2
t , ei)

)
=

l∑
j=1

qi,jg(λ1
t , J

1
t , λ

2
t , J

2
t , ej) .

Then the equation (53) becomes:

0 =

(
∂

∂t
A+

∂

∂t
B1 λ

1
t +

∂

∂t
B2 λ

2
t +

∂

∂t
C N i

t

)
eA(t,T,ei) (54)

+κ1(c1,t − λ1
t )B1 e

A(t,T,ei) + κ2(c2,t − λ2
t )B2 e

A(t,T,ei)

+λ1
t

(
e1k=1Cψ1 (B1δ1,1 +B2δ2,1)− 1

)
eA(t,T,ei)

+λ2
t

(
e1k=2Cψ2 (B1δ1,2 +B2δ2,2)− 1

)
eA(t,T,ei)

+

l∑
j=1

qi,jg(λ1
t , J

1
t , λ

2
t , J

2
t , ej) ,

from which we guess that C(t, s) = lnω. Regrouping terms allows to infer that

0 =
∂

∂t
AeA(t,T,ei) + κ1c1,tB1 e

A(t,T,ei) + κ2c2,tB2 e
A(t,T,ei) +

l∑
j=1

qi,je
A(t,T,ej)

+λ1
t

(
∂

∂t
B1 − κ1B1 + [1k=1ωψ1 (B1δ1,1 +B2δ2,1)− 1]

)
eA(t,T,ei)

+λ2
t

(
∂

∂t
B2 − κ2B2 + [1k=2ωψ2 (B1δ1,2 +B2δ2,2)− 1]

)
eA(t,T,ei) .

Given that λ1
t and λ

2
t are random quantities, this equation is satis�ed if and only if

∂

∂t
B1 = κ1B1 − [1k=1ωψ1 (B1δ1,1 +B2δ2,1)− 1]

∂

∂t
B2 = κ2B2 − [1k=2ωψ2 (B1δ1,2 +B2δ2,2)− 1](

∂

∂t
A

)
eA(t,T,ei) = −κ1c1,tB1 e

A(t,T,ei) − κ2c2,tB2 e
A(t,T,ei) −

l∑
j=1

qi,je
A(t,T,ej) .

If we de�ne Ã(t, T ) =
(
eA(t,T,e1), ..., eA(t,T,el)

)
, the last equations can �nally be put in matrix form

as:
∂Ã

∂t
+ (diag (κ1c1,tB1 + κ2c2,tB2) +Q0) Ã = 0.

�

Proof of proposition 3.11. From previous results, we know that Bk(t, T ) is solution of the
following ODE

∂

∂t
Bk = κkBk + (−1)k ω1αkµk − [ψk (B1δ1,k +B2δ2,k + Ck)− 1] , k = 1, 2
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with terminal condition Bk(T, T ) = ωk+1. If we set Bk(t, T ) = Dk(T − t) and τ = T − t. Then

∂Bk
∂t

=
∂Dk

∂τ

∂τ

∂t
= −∂Dk

∂τ
.

Thus we obtain

∂Dk

∂τ
= −κkBk(τ)− (−1)k ω1αkµk + [ψk (D1(τ)δ1,k +D2(τ)δ2,k + Ck)− 1] (55)

= −κkDk(τ) + ψk (D1(τ)δ1,k +D2(τ)δ2,k + Ck)−
[
(−1)k ω1αkµk + 1

]
= −κkDk(τ) + ψk (D1(τ)δ1,k +D2(τ)δ2,k + Ck)− βk(ω1) .

The left hand side is then denoted hk(D1, D2). Due to the convexity of ψk there is only one point
(u∗1, u

∗
2) such that hk(u) = 0 for k = 1, 2. These equations are indeed equivalent to

ψk (u1δ1,k + u2δ2,k + Ck) = βk(ω1) + κkuk .

We rewrite the equations (55) as follows,

dDk

−κkDk + ψk (D1δ1,k +D2δ2,k + Ck)− βk(ω1)
= dτ .

As Dk(0) = ωk+1 for k ∈ {1, 2} by direct integration, we have that∫ D1

ω2

du1

−κ1u1 + ψ1 (u1δ1,1 +D2δ2,1 + C1)− β1(ω1)
= τ ,

∫ D2

ω3

du2

−κ2u2 + ψ2 (D1δ1,2 + u2δ2,2 + C2)− β2(ω1)
= τ .

with Dk ∈ [ωk + 1, u∗k) or Dk ∈ [u∗k, ωk + 1).
We can remark that if (D1, D2) = (u∗1, u

∗
2) then τ = +∞ as the numerator converges to zero. If

we de�ne the functions F 1
ω1

(x, y) and F 2
ω1

(x, y) from R2 to R+ by equations (36), D1 and D2 are such

that F kω1
(D1, D2) = τ . If

(
F 1
ω1

)−1
(τ | y) and

(
F 2
ω1

)−1
(τ |x) are respectively the inverse functions of

F 1
ω1

(., y) and F 2
ω1

(x, .), then D1 and D2 satisfy the following system

D1 =
(
F 1
ω1

)−1
(τ |D2) ,

D2 =
(
F 2
ω1

)−1
(τ |D1) ,

or B1(t, T ) =
(
F 1
ω1

)−1
(T − t |B2(t, T )) and B2(t, T ) =

(
F 2
ω1

)−1
(T − t |B1(t, T )) . �
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